Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [504,2,Mod(139,504)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(504, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 2, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("504.139");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 504.be (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.02446026187\) |
Analytic rank: | \(0\) |
Dimension: | \(184\) |
Relative dimension: | \(92\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
139.1 | −1.41404 | + | 0.0218513i | −1.61755 | − | 0.619288i | 1.99905 | − | 0.0617973i | 0.694615 | − | 1.20311i | 2.30083 | + | 0.840355i | −0.407789 | − | 2.61414i | −2.82539 | + | 0.131066i | 2.23297 | + | 2.00346i | −0.955927 | + | 1.71643i |
139.2 | −1.41404 | + | 0.0218513i | 1.61755 | + | 0.619288i | 1.99905 | − | 0.0617973i | −0.694615 | + | 1.20311i | −2.30083 | − | 0.840355i | 2.06001 | + | 1.66022i | −2.82539 | + | 0.131066i | 2.23297 | + | 2.00346i | 0.955927 | − | 1.71643i |
139.3 | −1.41366 | − | 0.0394185i | −1.54504 | + | 0.782839i | 1.99689 | + | 0.111449i | 1.11062 | − | 1.92366i | 2.21503 | − | 1.04577i | −2.08899 | + | 1.62361i | −2.81854 | − | 0.236266i | 1.77433 | − | 2.41904i | −1.64588 | + | 2.67563i |
139.4 | −1.41366 | − | 0.0394185i | 1.54504 | − | 0.782839i | 1.99689 | + | 0.111449i | −1.11062 | + | 1.92366i | −2.21503 | + | 1.04577i | −2.45058 | + | 0.997318i | −2.81854 | − | 0.236266i | 1.77433 | − | 2.41904i | 1.64588 | − | 2.67563i |
139.5 | −1.38885 | − | 0.266643i | −0.855137 | + | 1.50623i | 1.85780 | + | 0.740655i | −1.56998 | + | 2.71929i | 1.58928 | − | 1.86392i | 1.10903 | − | 2.40210i | −2.38272 | − | 1.52403i | −1.53748 | − | 2.57607i | 2.90555 | − | 3.35806i |
139.6 | −1.38885 | − | 0.266643i | 0.855137 | − | 1.50623i | 1.85780 | + | 0.740655i | 1.56998 | − | 2.71929i | −1.58928 | + | 1.86392i | 2.63479 | + | 0.240603i | −2.38272 | − | 1.52403i | −1.53748 | − | 2.57607i | −2.90555 | + | 3.35806i |
139.7 | −1.38351 | + | 0.293103i | −0.0384188 | − | 1.73162i | 1.82818 | − | 0.811019i | −1.45134 | + | 2.51379i | 0.560696 | + | 2.38445i | 0.907665 | − | 2.48519i | −2.29159 | + | 1.65790i | −2.99705 | + | 0.133054i | 1.27114 | − | 3.90323i |
139.8 | −1.38351 | + | 0.293103i | 0.0384188 | + | 1.73162i | 1.82818 | − | 0.811019i | 1.45134 | − | 2.51379i | −0.560696 | − | 2.38445i | 2.60607 | + | 0.456532i | −2.29159 | + | 1.65790i | −2.99705 | + | 0.133054i | −1.27114 | + | 3.90323i |
139.9 | −1.37416 | − | 0.334195i | −0.522528 | − | 1.65135i | 1.77663 | + | 0.918475i | −0.649625 | + | 1.12518i | 0.166162 | + | 2.44385i | −0.237312 | + | 2.63509i | −2.13442 | − | 1.85587i | −2.45393 | + | 1.72576i | 1.26872 | − | 1.32908i |
139.10 | −1.37416 | − | 0.334195i | 0.522528 | + | 1.65135i | 1.77663 | + | 0.918475i | 0.649625 | − | 1.12518i | −0.166162 | − | 2.44385i | −2.40071 | − | 1.11203i | −2.13442 | − | 1.85587i | −2.45393 | + | 1.72576i | −1.26872 | + | 1.32908i |
139.11 | −1.29729 | + | 0.563073i | −1.71842 | − | 0.216873i | 1.36590 | − | 1.46093i | −1.92861 | + | 3.34045i | 2.35140 | − | 0.686250i | 1.79440 | + | 1.94426i | −0.949346 | + | 2.66435i | 2.90593 | + | 0.745357i | 0.621039 | − | 5.41946i |
139.12 | −1.29729 | + | 0.563073i | 1.71842 | + | 0.216873i | 1.36590 | − | 1.46093i | 1.92861 | − | 3.34045i | −2.35140 | + | 0.686250i | −0.786580 | − | 2.52612i | −0.949346 | + | 2.66435i | 2.90593 | + | 0.745357i | −0.621039 | + | 5.41946i |
139.13 | −1.28821 | + | 0.583540i | −0.476817 | + | 1.66513i | 1.31896 | − | 1.50344i | −0.852648 | + | 1.47683i | −0.357427 | − | 2.42327i | −1.56588 | + | 2.13261i | −0.821782 | + | 2.70641i | −2.54529 | − | 1.58792i | 0.236600 | − | 2.40002i |
139.14 | −1.28821 | + | 0.583540i | 0.476817 | − | 1.66513i | 1.31896 | − | 1.50344i | 0.852648 | − | 1.47683i | 0.357427 | + | 2.42327i | −2.62983 | + | 0.289791i | −0.821782 | + | 2.70641i | −2.54529 | − | 1.58792i | −0.236600 | + | 2.40002i |
139.15 | −1.20351 | − | 0.742667i | −1.22607 | − | 1.22342i | 0.896891 | + | 1.78762i | 0.417659 | − | 0.723407i | 0.566998 | + | 2.38296i | 2.60856 | − | 0.442060i | 0.248186 | − | 2.81752i | 0.00649163 | + | 2.99999i | −1.03991 | + | 0.560448i |
139.16 | −1.20351 | − | 0.742667i | 1.22607 | + | 1.22342i | 0.896891 | + | 1.78762i | −0.417659 | + | 0.723407i | −0.566998 | − | 2.38296i | 1.68711 | − | 2.03805i | 0.248186 | − | 2.81752i | 0.00649163 | + | 2.99999i | 1.03991 | − | 0.560448i |
139.17 | −1.19759 | − | 0.752180i | −1.58643 | + | 0.695160i | 0.868451 | + | 1.80161i | 0.0673890 | − | 0.116721i | 2.42278 | + | 0.360761i | 1.08501 | + | 2.41304i | 0.315085 | − | 2.81082i | 2.03351 | − | 2.20564i | −0.168500 | + | 0.0890957i |
139.18 | −1.19759 | − | 0.752180i | 1.58643 | − | 0.695160i | 0.868451 | + | 1.80161i | −0.0673890 | + | 0.116721i | −2.42278 | − | 0.360761i | −1.54725 | − | 2.14617i | 0.315085 | − | 2.81082i | 2.03351 | − | 2.20564i | 0.168500 | − | 0.0890957i |
139.19 | −1.12708 | + | 0.854224i | −1.71594 | + | 0.235665i | 0.540602 | − | 1.92555i | 0.892228 | − | 1.54538i | 1.73269 | − | 1.73141i | 2.64346 | − | 0.110098i | 1.03555 | + | 2.63204i | 2.88892 | − | 0.808775i | 0.314496 | + | 2.50393i |
139.20 | −1.12708 | + | 0.854224i | 1.71594 | − | 0.235665i | 0.540602 | − | 1.92555i | −0.892228 | + | 1.54538i | −1.73269 | + | 1.73141i | 1.41708 | − | 2.23425i | 1.03555 | + | 2.63204i | 2.88892 | − | 0.808775i | −0.314496 | − | 2.50393i |
See next 80 embeddings (of 184 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
8.d | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
56.e | even | 2 | 1 | inner |
63.l | odd | 6 | 1 | inner |
72.p | odd | 6 | 1 | inner |
504.be | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 504.2.be.a | ✓ | 184 |
7.b | odd | 2 | 1 | inner | 504.2.be.a | ✓ | 184 |
8.d | odd | 2 | 1 | inner | 504.2.be.a | ✓ | 184 |
9.c | even | 3 | 1 | inner | 504.2.be.a | ✓ | 184 |
56.e | even | 2 | 1 | inner | 504.2.be.a | ✓ | 184 |
63.l | odd | 6 | 1 | inner | 504.2.be.a | ✓ | 184 |
72.p | odd | 6 | 1 | inner | 504.2.be.a | ✓ | 184 |
504.be | even | 6 | 1 | inner | 504.2.be.a | ✓ | 184 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
504.2.be.a | ✓ | 184 | 1.a | even | 1 | 1 | trivial |
504.2.be.a | ✓ | 184 | 7.b | odd | 2 | 1 | inner |
504.2.be.a | ✓ | 184 | 8.d | odd | 2 | 1 | inner |
504.2.be.a | ✓ | 184 | 9.c | even | 3 | 1 | inner |
504.2.be.a | ✓ | 184 | 56.e | even | 2 | 1 | inner |
504.2.be.a | ✓ | 184 | 63.l | odd | 6 | 1 | inner |
504.2.be.a | ✓ | 184 | 72.p | odd | 6 | 1 | inner |
504.2.be.a | ✓ | 184 | 504.be | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(504, [\chi])\).