Properties

Label 504.2.bf
Level $504$
Weight $2$
Character orbit 504.bf
Rep. character $\chi_{504}(115,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $184$
Newform subspaces $2$
Sturm bound $192$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bf (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 504 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 2 \)
Sturm bound: \(192\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(504, [\chi])\).

Total New Old
Modular forms 200 200 0
Cusp forms 184 184 0
Eisenstein series 16 16 0

Trace form

\( 184 q - 2 q^{2} - 6 q^{3} - 2 q^{4} - 6 q^{6} - 8 q^{8} - 2 q^{9} + O(q^{10}) \) \( 184 q - 2 q^{2} - 6 q^{3} - 2 q^{4} - 6 q^{6} - 8 q^{8} - 2 q^{9} - 6 q^{10} + 2 q^{11} + 12 q^{12} + 2 q^{14} - 2 q^{16} - 12 q^{17} - 4 q^{18} - 12 q^{19} + 24 q^{20} - 6 q^{22} - 12 q^{24} - 74 q^{25} - 5 q^{30} - 42 q^{32} - 6 q^{33} - 6 q^{34} - 18 q^{35} + 2 q^{36} - 33 q^{38} + 12 q^{40} + 10 q^{42} - 4 q^{43} - 21 q^{44} + 2 q^{46} - 9 q^{48} - 2 q^{49} + 19 q^{50} + 6 q^{51} + 21 q^{52} - 51 q^{54} - 2 q^{56} - 20 q^{57} + 5 q^{58} + 25 q^{60} - 8 q^{64} + 36 q^{65} + 36 q^{66} - 4 q^{67} + 12 q^{68} + 21 q^{70} - 4 q^{72} - 12 q^{73} + 47 q^{74} - 6 q^{75} - 12 q^{76} - 39 q^{78} - 63 q^{80} + 14 q^{81} - 12 q^{82} + 60 q^{83} + 7 q^{84} - 31 q^{86} + 9 q^{88} - 36 q^{89} - 33 q^{90} + 20 q^{91} - 32 q^{92} - 45 q^{96} + 27 q^{98} - 26 q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(504, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
504.2.bf.a 504.bf 504.af $4$ $4.024$ \(\Q(\zeta_{12})\) None 504.2.bf.a \(4\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1+\zeta_{12}^{3})q^{2}+(1-2\zeta_{12}^{2})q^{3}+2\zeta_{12}^{3}q^{4}+\cdots\)
504.2.bf.b 504.bf 504.af $180$ $4.024$ None 504.2.bf.b \(-6\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$