Properties

Label 504.2.bl
Level $504$
Weight $2$
Character orbit 504.bl
Rep. character $\chi_{504}(17,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $16$
Newform subspaces $1$
Sturm bound $192$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.bl (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 21 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(504, [\chi])\).

Total New Old
Modular forms 224 16 208
Cusp forms 160 16 144
Eisenstein series 64 0 64

Trace form

\( 16 q - 8 q^{7} + 12 q^{19} + 12 q^{25} + 24 q^{31} + 4 q^{37} + 8 q^{43} + 32 q^{49} - 28 q^{67} - 60 q^{73} - 32 q^{79} - 32 q^{85} - 84 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(504, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
504.2.bl.a 504.bl 21.g $16$ $4.024$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 504.2.bl.a \(0\) \(0\) \(0\) \(-8\) $\mathrm{SU}(2)[C_{6}]$ \(q+(\beta _{4}-\beta _{10})q^{5}+(-\beta _{3}-\beta _{9})q^{7}+(-\beta _{2}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(504, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(504, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(21, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(42, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(63, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(126, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(252, [\chi])\)\(^{\oplus 2}\)