Properties

Label 504.2.br
Level $504$
Weight $2$
Character orbit 504.br
Rep. character $\chi_{504}(155,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $144$
Newform subspaces $1$
Sturm bound $192$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.br (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 72 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(504, [\chi])\).

Total New Old
Modular forms 200 144 56
Cusp forms 184 144 40
Eisenstein series 16 0 16

Trace form

\( 144 q + 6 q^{6} - 12 q^{12} + 34 q^{18} - 42 q^{20} - 30 q^{24} - 72 q^{25} + 24 q^{27} - 36 q^{30} - 30 q^{32} - 16 q^{33} + 12 q^{34} - 12 q^{36} + 12 q^{40} + 24 q^{41} - 20 q^{42} - 24 q^{46} - 24 q^{48}+ \cdots - 64 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(504, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
504.2.br.a 504.br 72.l $144$ $4.024$ None 504.2.br.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{2}^{\mathrm{old}}(504, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(504, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 2}\)