Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [504,2,Mod(277,504)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(504, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 3, 4, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("504.277");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 504.cq (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.02446026187\) |
Analytic rank: | \(0\) |
Dimension: | \(184\) |
Relative dimension: | \(92\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
277.1 | −1.41195 | − | 0.0799747i | 1.37829 | + | 1.04896i | 1.98721 | + | 0.225841i | 3.10331 | + | 1.79170i | −1.86219 | − | 1.59130i | −1.70224 | − | 2.02544i | −2.78778 | − | 0.477802i | 0.799378 | + | 2.89154i | −4.23843 | − | 2.77797i |
277.2 | −1.41195 | + | 0.0799747i | −1.37829 | − | 1.04896i | 1.98721 | − | 0.225841i | −3.10331 | − | 1.79170i | 2.02997 | + | 1.37085i | −1.70224 | − | 2.02544i | −2.78778 | + | 0.477802i | 0.799378 | + | 2.89154i | 4.52501 | + | 2.28160i |
277.3 | −1.40384 | − | 0.171013i | −1.37821 | + | 1.04907i | 1.94151 | + | 0.480149i | 0.213745 | + | 0.123406i | 2.11418 | − | 1.23703i | −2.18219 | + | 1.49601i | −2.64345 | − | 1.00607i | 0.798909 | − | 2.89167i | −0.278959 | − | 0.209795i |
277.4 | −1.40384 | + | 0.171013i | 1.37821 | − | 1.04907i | 1.94151 | − | 0.480149i | −0.213745 | − | 0.123406i | −1.75537 | + | 1.70841i | −2.18219 | + | 1.49601i | −2.64345 | + | 1.00607i | 0.798909 | − | 2.89167i | 0.321167 | + | 0.136688i |
277.5 | −1.38793 | − | 0.271374i | 1.73202 | + | 0.00998187i | 1.85271 | + | 0.753297i | −1.80782 | − | 1.04374i | −2.40122 | − | 0.483879i | 2.62626 | − | 0.320557i | −2.36702 | − | 1.54830i | 2.99980 | + | 0.0345777i | 2.22588 | + | 1.93924i |
277.6 | −1.38793 | + | 0.271374i | −1.73202 | − | 0.00998187i | 1.85271 | − | 0.753297i | 1.80782 | + | 1.04374i | 2.40664 | − | 0.456171i | 2.62626 | − | 0.320557i | −2.36702 | + | 1.54830i | 2.99980 | + | 0.0345777i | −2.79237 | − | 0.958051i |
277.7 | −1.38729 | − | 0.274643i | −0.170331 | − | 1.72366i | 1.84914 | + | 0.762020i | −2.08943 | − | 1.20633i | −0.237093 | + | 2.43799i | 0.664788 | + | 2.56087i | −2.35601 | − | 1.56500i | −2.94197 | + | 0.587183i | 2.56733 | + | 2.24738i |
277.8 | −1.38729 | + | 0.274643i | 0.170331 | + | 1.72366i | 1.84914 | − | 0.762020i | 2.08943 | + | 1.20633i | −0.709689 | − | 2.34443i | 0.664788 | + | 2.56087i | −2.35601 | + | 1.56500i | −2.94197 | + | 0.587183i | −3.22995 | − | 1.09968i |
277.9 | −1.37280 | − | 0.339745i | −0.0247783 | + | 1.73187i | 1.76915 | + | 0.932801i | −0.736012 | − | 0.424937i | 0.622410 | − | 2.36909i | 1.20653 | − | 2.35463i | −2.11177 | − | 1.88161i | −2.99877 | − | 0.0858258i | 0.866026 | + | 0.833408i |
277.10 | −1.37280 | + | 0.339745i | 0.0247783 | − | 1.73187i | 1.76915 | − | 0.932801i | 0.736012 | + | 0.424937i | 0.554379 | + | 2.38593i | 1.20653 | − | 2.35463i | −2.11177 | + | 1.88161i | −2.99877 | − | 0.0858258i | −1.15477 | − | 0.333296i |
277.11 | −1.28938 | − | 0.580936i | 1.21975 | − | 1.22972i | 1.32503 | + | 1.49810i | 3.55178 | + | 2.05062i | −2.28712 | + | 0.876982i | 2.40176 | + | 1.10974i | −0.838168 | − | 2.70138i | −0.0244139 | − | 2.99990i | −3.38833 | − | 4.70739i |
277.12 | −1.28938 | + | 0.580936i | −1.21975 | + | 1.22972i | 1.32503 | − | 1.49810i | −3.55178 | − | 2.05062i | 0.858341 | − | 2.29418i | 2.40176 | + | 1.10974i | −0.838168 | + | 2.70138i | −0.0244139 | − | 2.99990i | 5.77089 | + | 0.580682i |
277.13 | −1.27676 | − | 0.608187i | −1.55038 | − | 0.772217i | 1.26022 | + | 1.55302i | 2.14506 | + | 1.23845i | 1.50981 | + | 1.92886i | −2.51672 | − | 0.816158i | −0.664465 | − | 2.74927i | 1.80736 | + | 2.39446i | −1.98551 | − | 2.88580i |
277.14 | −1.27676 | + | 0.608187i | 1.55038 | + | 0.772217i | 1.26022 | − | 1.55302i | −2.14506 | − | 1.23845i | −2.44911 | − | 0.0430112i | −2.51672 | − | 0.816158i | −0.664465 | + | 2.74927i | 1.80736 | + | 2.39446i | 3.49193 | + | 0.276602i |
277.15 | −1.23730 | − | 0.684906i | 0.549172 | + | 1.64268i | 1.06181 | + | 1.69486i | −3.35113 | − | 1.93477i | 0.445596 | − | 2.40862i | −2.41512 | + | 1.08036i | −0.152946 | − | 2.82429i | −2.39682 | + | 1.80423i | 2.82120 | + | 4.68910i |
277.16 | −1.23730 | + | 0.684906i | −0.549172 | − | 1.64268i | 1.06181 | − | 1.69486i | 3.35113 | + | 1.93477i | 1.80457 | + | 1.65636i | −2.41512 | + | 1.08036i | −0.152946 | + | 2.82429i | −2.39682 | + | 1.80423i | −5.47148 | − | 0.0986814i |
277.17 | −1.16914 | − | 0.795682i | 0.775861 | − | 1.54856i | 0.733781 | + | 1.86053i | −0.241073 | − | 0.139184i | −2.13925 | + | 1.19315i | −2.22477 | − | 1.43192i | 0.622496 | − | 2.75908i | −1.79608 | − | 2.40294i | 0.171103 | + | 0.354543i |
277.18 | −1.16914 | + | 0.795682i | −0.775861 | + | 1.54856i | 0.733781 | − | 1.86053i | 0.241073 | + | 0.139184i | −0.325070 | − | 2.42782i | −2.22477 | − | 1.43192i | 0.622496 | + | 2.75908i | −1.79608 | − | 2.40294i | −0.392595 | + | 0.0290923i |
277.19 | −1.15465 | − | 0.816568i | −1.68787 | + | 0.388703i | 0.666434 | + | 1.88570i | −1.19505 | − | 0.689965i | 2.26630 | + | 0.929446i | 0.677727 | + | 2.55748i | 0.770303 | − | 2.72151i | 2.69782 | − | 1.31216i | 0.816467 | + | 1.77251i |
277.20 | −1.15465 | + | 0.816568i | 1.68787 | − | 0.388703i | 0.666434 | − | 1.88570i | 1.19505 | + | 0.689965i | −1.63150 | + | 1.82708i | 0.677727 | + | 2.55748i | 0.770303 | + | 2.72151i | 2.69782 | − | 1.31216i | −1.94327 | + | 0.179175i |
See next 80 embeddings (of 184 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
63.h | even | 3 | 1 | inner |
504.cq | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 504.2.cq.a | yes | 184 |
7.c | even | 3 | 1 | 504.2.w.a | ✓ | 184 | |
8.b | even | 2 | 1 | inner | 504.2.cq.a | yes | 184 |
9.c | even | 3 | 1 | 504.2.w.a | ✓ | 184 | |
56.p | even | 6 | 1 | 504.2.w.a | ✓ | 184 | |
63.h | even | 3 | 1 | inner | 504.2.cq.a | yes | 184 |
72.n | even | 6 | 1 | 504.2.w.a | ✓ | 184 | |
504.cq | even | 6 | 1 | inner | 504.2.cq.a | yes | 184 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
504.2.w.a | ✓ | 184 | 7.c | even | 3 | 1 | |
504.2.w.a | ✓ | 184 | 9.c | even | 3 | 1 | |
504.2.w.a | ✓ | 184 | 56.p | even | 6 | 1 | |
504.2.w.a | ✓ | 184 | 72.n | even | 6 | 1 | |
504.2.cq.a | yes | 184 | 1.a | even | 1 | 1 | trivial |
504.2.cq.a | yes | 184 | 8.b | even | 2 | 1 | inner |
504.2.cq.a | yes | 184 | 63.h | even | 3 | 1 | inner |
504.2.cq.a | yes | 184 | 504.cq | even | 6 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(504, [\chi])\).