Properties

Label 504.2.i
Level $504$
Weight $2$
Character orbit 504.i
Rep. character $\chi_{504}(125,\cdot)$
Character field $\Q$
Dimension $32$
Newform subspaces $2$
Sturm bound $192$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.i (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 168 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(192\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(504, [\chi])\).

Total New Old
Modular forms 104 32 72
Cusp forms 88 32 56
Eisenstein series 16 0 16

Trace form

\( 32 q - 4 q^{16} + 28 q^{22} - 32 q^{25} + 4 q^{28} - 44 q^{46} - 16 q^{49} - 4 q^{58} + 96 q^{64} - 24 q^{70} - 16 q^{79} - 76 q^{88}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(504, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
504.2.i.a 504.i 168.i $8$ $4.024$ 8.0.157351936.1 \(\Q(\sqrt{-7}) \) 504.2.i.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta _{1}q^{2}+\beta _{2}q^{4}+(\beta _{2}-\beta _{5})q^{7}+\beta _{3}q^{8}+\cdots\)
504.2.i.b 504.i 168.i $24$ $4.024$ None 504.2.i.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(504, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(504, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 2}\)