Properties

Label 504.2.w
Level $504$
Weight $2$
Character orbit 504.w
Rep. character $\chi_{504}(205,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $184$
Newform subspaces $1$
Sturm bound $192$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.w (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 504 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(504, [\chi])\).

Total New Old
Modular forms 200 200 0
Cusp forms 184 184 0
Eisenstein series 16 16 0

Trace form

\( 184 q + q^{2} + q^{4} - 2 q^{6} - 2 q^{7} - 8 q^{8} - 2 q^{9} + 2 q^{10} - 17 q^{12} - 7 q^{14} - 2 q^{15} + q^{16} - 4 q^{17} + 13 q^{18} + 6 q^{20} + 2 q^{22} - 4 q^{23} + 12 q^{24} - 156 q^{25} - 4 q^{26}+ \cdots - 83 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(504, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
504.2.w.a 504.w 504.w $184$ $4.024$ None 504.2.w.a \(1\) \(0\) \(0\) \(-2\) $\mathrm{SU}(2)[C_{6}]$