Properties

Label 504.8.a.b
Level $504$
Weight $8$
Character orbit 504.a
Self dual yes
Analytic conductor $157.442$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,8,Mod(1,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 504.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(157.442052844\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 160 q^{5} - 343 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 160 q^{5} - 343 q^{7} + 6840 q^{11} - 2900 q^{13} - 16566 q^{17} - 6718 q^{19} + 976 q^{23} - 52525 q^{25} + 61662 q^{29} - 69236 q^{31} - 54880 q^{35} - 533062 q^{37} - 183158 q^{41} + 966864 q^{43} + 190268 q^{47} + 117649 q^{49} + 785010 q^{53} + 1094400 q^{55} - 2893594 q^{59} - 95896 q^{61} - 464000 q^{65} - 991644 q^{67} - 1068160 q^{71} + 2523458 q^{73} - 2346120 q^{77} + 285848 q^{79} - 7094938 q^{83} - 2650560 q^{85} + 252390 q^{89} + 994700 q^{91} - 1074880 q^{95} - 1824794 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 160.000 0 −343.000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 504.8.a.b 1
3.b odd 2 1 56.8.a.b 1
12.b even 2 1 112.8.a.a 1
21.c even 2 1 392.8.a.a 1
24.f even 2 1 448.8.a.h 1
24.h odd 2 1 448.8.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.8.a.b 1 3.b odd 2 1
112.8.a.a 1 12.b even 2 1
392.8.a.a 1 21.c even 2 1
448.8.a.c 1 24.h odd 2 1
448.8.a.h 1 24.f even 2 1
504.8.a.b 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 160 \) acting on \(S_{8}^{\mathrm{new}}(\Gamma_0(504))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 160 \) Copy content Toggle raw display
$7$ \( T + 343 \) Copy content Toggle raw display
$11$ \( T - 6840 \) Copy content Toggle raw display
$13$ \( T + 2900 \) Copy content Toggle raw display
$17$ \( T + 16566 \) Copy content Toggle raw display
$19$ \( T + 6718 \) Copy content Toggle raw display
$23$ \( T - 976 \) Copy content Toggle raw display
$29$ \( T - 61662 \) Copy content Toggle raw display
$31$ \( T + 69236 \) Copy content Toggle raw display
$37$ \( T + 533062 \) Copy content Toggle raw display
$41$ \( T + 183158 \) Copy content Toggle raw display
$43$ \( T - 966864 \) Copy content Toggle raw display
$47$ \( T - 190268 \) Copy content Toggle raw display
$53$ \( T - 785010 \) Copy content Toggle raw display
$59$ \( T + 2893594 \) Copy content Toggle raw display
$61$ \( T + 95896 \) Copy content Toggle raw display
$67$ \( T + 991644 \) Copy content Toggle raw display
$71$ \( T + 1068160 \) Copy content Toggle raw display
$73$ \( T - 2523458 \) Copy content Toggle raw display
$79$ \( T - 285848 \) Copy content Toggle raw display
$83$ \( T + 7094938 \) Copy content Toggle raw display
$89$ \( T - 252390 \) Copy content Toggle raw display
$97$ \( T + 1824794 \) Copy content Toggle raw display
show more
show less