Properties

Label 504.8.a.b
Level 504504
Weight 88
Character orbit 504.a
Self dual yes
Analytic conductor 157.442157.442
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,8,Mod(1,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.1");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: N N == 504=23327 504 = 2^{3} \cdot 3^{2} \cdot 7
Weight: k k == 8 8
Character orbit: [χ][\chi] == 504.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 157.442052844157.442052844
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 56)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+160q5343q7+6840q112900q1316566q176718q19+976q2352525q25+61662q2969236q3154880q35533062q37183158q41+966864q43+1824794q97+O(q100) q + 160 q^{5} - 343 q^{7} + 6840 q^{11} - 2900 q^{13} - 16566 q^{17} - 6718 q^{19} + 976 q^{23} - 52525 q^{25} + 61662 q^{29} - 69236 q^{31} - 54880 q^{35} - 533062 q^{37} - 183158 q^{41} + 966864 q^{43}+ \cdots - 1824794 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 160.000 0 −343.000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 504.8.a.b 1
3.b odd 2 1 56.8.a.b 1
12.b even 2 1 112.8.a.a 1
21.c even 2 1 392.8.a.a 1
24.f even 2 1 448.8.a.h 1
24.h odd 2 1 448.8.a.c 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
56.8.a.b 1 3.b odd 2 1
112.8.a.a 1 12.b even 2 1
392.8.a.a 1 21.c even 2 1
448.8.a.c 1 24.h odd 2 1
448.8.a.h 1 24.f even 2 1
504.8.a.b 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T5160 T_{5} - 160 acting on S8new(Γ0(504))S_{8}^{\mathrm{new}}(\Gamma_0(504)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T160 T - 160 Copy content Toggle raw display
77 T+343 T + 343 Copy content Toggle raw display
1111 T6840 T - 6840 Copy content Toggle raw display
1313 T+2900 T + 2900 Copy content Toggle raw display
1717 T+16566 T + 16566 Copy content Toggle raw display
1919 T+6718 T + 6718 Copy content Toggle raw display
2323 T976 T - 976 Copy content Toggle raw display
2929 T61662 T - 61662 Copy content Toggle raw display
3131 T+69236 T + 69236 Copy content Toggle raw display
3737 T+533062 T + 533062 Copy content Toggle raw display
4141 T+183158 T + 183158 Copy content Toggle raw display
4343 T966864 T - 966864 Copy content Toggle raw display
4747 T190268 T - 190268 Copy content Toggle raw display
5353 T785010 T - 785010 Copy content Toggle raw display
5959 T+2893594 T + 2893594 Copy content Toggle raw display
6161 T+95896 T + 95896 Copy content Toggle raw display
6767 T+991644 T + 991644 Copy content Toggle raw display
7171 T+1068160 T + 1068160 Copy content Toggle raw display
7373 T2523458 T - 2523458 Copy content Toggle raw display
7979 T285848 T - 285848 Copy content Toggle raw display
8383 T+7094938 T + 7094938 Copy content Toggle raw display
8989 T252390 T - 252390 Copy content Toggle raw display
9797 T+1824794 T + 1824794 Copy content Toggle raw display
show more
show less