Properties

Label 507.2.e.i.22.3
Level $507$
Weight $2$
Character 507.22
Analytic conductor $4.048$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(22,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.22");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 22.3
Root \(0.900969 - 1.56052i\) of defining polynomial
Character \(\chi\) \(=\) 507.22
Dual form 507.2.e.i.484.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.02446 - 1.77441i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-1.09903 - 1.90358i) q^{4} +3.35690 q^{5} +(-1.02446 - 1.77441i) q^{6} +(-1.12349 - 1.94594i) q^{7} -0.405813 q^{8} +(-0.500000 - 0.866025i) q^{9} +(3.43900 - 5.95652i) q^{10} +(-2.46950 + 4.27730i) q^{11} -2.19806 q^{12} -4.60388 q^{14} +(1.67845 - 2.90716i) q^{15} +(1.78232 - 3.08707i) q^{16} +(-0.455927 - 0.789689i) q^{17} -2.04892 q^{18} +(1.90097 + 3.29257i) q^{19} +(-3.68933 - 6.39011i) q^{20} -2.24698 q^{21} +(5.05980 + 8.76383i) q^{22} +(-1.01357 + 1.75556i) q^{23} +(-0.202907 + 0.351445i) q^{24} +6.26875 q^{25} -1.00000 q^{27} +(-2.46950 + 4.27730i) q^{28} +(1.96950 - 3.41127i) q^{29} +(-3.43900 - 5.95652i) q^{30} -8.82908 q^{31} +(-4.05765 - 7.02805i) q^{32} +(2.46950 + 4.27730i) q^{33} -1.86831 q^{34} +(-3.77144 - 6.53232i) q^{35} +(-1.09903 + 1.90358i) q^{36} +(-4.40097 + 7.62270i) q^{37} +7.78986 q^{38} -1.36227 q^{40} +(-3.46950 + 6.00935i) q^{41} +(-2.30194 + 3.98707i) q^{42} +(1.14310 + 1.97991i) q^{43} +10.8562 q^{44} +(-1.67845 - 2.90716i) q^{45} +(2.07673 + 3.59700i) q^{46} +3.80194 q^{47} +(-1.78232 - 3.08707i) q^{48} +(0.975541 - 1.68969i) q^{49} +(6.42208 - 11.1234i) q^{50} -0.911854 q^{51} +0.542877 q^{53} +(-1.02446 + 1.77441i) q^{54} +(-8.28986 + 14.3585i) q^{55} +(0.455927 + 0.789689i) q^{56} +3.80194 q^{57} +(-4.03534 - 6.98942i) q^{58} +(2.35690 + 4.08226i) q^{59} -7.37867 q^{60} +(-1.83997 - 3.18692i) q^{61} +(-9.04503 + 15.6665i) q^{62} +(-1.12349 + 1.94594i) q^{63} -9.49827 q^{64} +10.1196 q^{66} +(0.760553 - 1.31732i) q^{67} +(-1.00216 + 1.73578i) q^{68} +(1.01357 + 1.75556i) q^{69} -15.4547 q^{70} +(-1.18933 - 2.05999i) q^{71} +(0.202907 + 0.351445i) q^{72} +7.41119 q^{73} +(9.01722 + 15.6183i) q^{74} +(3.13437 - 5.42890i) q^{75} +(4.17845 - 7.23728i) q^{76} +11.0978 q^{77} -3.74094 q^{79} +(5.98307 - 10.3630i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(7.10872 + 12.3127i) q^{82} +2.30798 q^{83} +(2.46950 + 4.27730i) q^{84} +(-1.53050 - 2.65090i) q^{85} +4.68425 q^{86} +(-1.96950 - 3.41127i) q^{87} +(1.00216 - 1.73578i) q^{88} +(5.02930 - 8.71101i) q^{89} -6.87800 q^{90} +4.45580 q^{92} +(-4.41454 + 7.64621i) q^{93} +(3.89493 - 6.74621i) q^{94} +(6.38135 + 11.0528i) q^{95} -8.11529 q^{96} +(8.06465 + 13.9684i) q^{97} +(-1.99880 - 3.46203i) q^{98} +4.93900 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 3 q^{3} - 11 q^{4} + 12 q^{5} + 3 q^{6} - 2 q^{7} + 24 q^{8} - 3 q^{9} + q^{10} - 5 q^{11} - 22 q^{12} - 10 q^{14} + 6 q^{15} - 11 q^{16} + q^{17} + 6 q^{18} + 7 q^{19} - 15 q^{20} - 4 q^{21}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02446 1.77441i 0.724402 1.25470i −0.234818 0.972039i \(-0.575449\pi\)
0.959220 0.282661i \(-0.0912172\pi\)
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −1.09903 1.90358i −0.549516 0.951789i
\(5\) 3.35690 1.50125 0.750625 0.660729i \(-0.229753\pi\)
0.750625 + 0.660729i \(0.229753\pi\)
\(6\) −1.02446 1.77441i −0.418234 0.724402i
\(7\) −1.12349 1.94594i −0.424639 0.735497i 0.571747 0.820430i \(-0.306266\pi\)
−0.996387 + 0.0849330i \(0.972932\pi\)
\(8\) −0.405813 −0.143477
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 3.43900 5.95652i 1.08751 1.88362i
\(11\) −2.46950 + 4.27730i −0.744582 + 1.28965i 0.205807 + 0.978593i \(0.434018\pi\)
−0.950390 + 0.311062i \(0.899315\pi\)
\(12\) −2.19806 −0.634526
\(13\) 0 0
\(14\) −4.60388 −1.23044
\(15\) 1.67845 2.90716i 0.433373 0.750625i
\(16\) 1.78232 3.08707i 0.445581 0.771769i
\(17\) −0.455927 0.789689i −0.110579 0.191528i 0.805425 0.592698i \(-0.201937\pi\)
−0.916004 + 0.401170i \(0.868604\pi\)
\(18\) −2.04892 −0.482934
\(19\) 1.90097 + 3.29257i 0.436112 + 0.755368i 0.997386 0.0722619i \(-0.0230218\pi\)
−0.561274 + 0.827630i \(0.689688\pi\)
\(20\) −3.68933 6.39011i −0.824960 1.42887i
\(21\) −2.24698 −0.490331
\(22\) 5.05980 + 8.76383i 1.07875 + 1.86846i
\(23\) −1.01357 + 1.75556i −0.211345 + 0.366060i −0.952136 0.305676i \(-0.901118\pi\)
0.740791 + 0.671736i \(0.234451\pi\)
\(24\) −0.202907 + 0.351445i −0.0414181 + 0.0717383i
\(25\) 6.26875 1.25375
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) −2.46950 + 4.27730i −0.466692 + 0.808334i
\(29\) 1.96950 3.41127i 0.365727 0.633458i −0.623165 0.782090i \(-0.714154\pi\)
0.988893 + 0.148632i \(0.0474870\pi\)
\(30\) −3.43900 5.95652i −0.627873 1.08751i
\(31\) −8.82908 −1.58575 −0.792875 0.609384i \(-0.791417\pi\)
−0.792875 + 0.609384i \(0.791417\pi\)
\(32\) −4.05765 7.02805i −0.717297 1.24240i
\(33\) 2.46950 + 4.27730i 0.429885 + 0.744582i
\(34\) −1.86831 −0.320413
\(35\) −3.77144 6.53232i −0.637489 1.10416i
\(36\) −1.09903 + 1.90358i −0.183172 + 0.317263i
\(37\) −4.40097 + 7.62270i −0.723515 + 1.25316i 0.236068 + 0.971737i \(0.424141\pi\)
−0.959582 + 0.281428i \(0.909192\pi\)
\(38\) 7.78986 1.26368
\(39\) 0 0
\(40\) −1.36227 −0.215394
\(41\) −3.46950 + 6.00935i −0.541845 + 0.938503i 0.456953 + 0.889491i \(0.348941\pi\)
−0.998798 + 0.0490123i \(0.984393\pi\)
\(42\) −2.30194 + 3.98707i −0.355197 + 0.615219i
\(43\) 1.14310 + 1.97991i 0.174322 + 0.301934i 0.939926 0.341377i \(-0.110893\pi\)
−0.765605 + 0.643311i \(0.777560\pi\)
\(44\) 10.8562 1.63664
\(45\) −1.67845 2.90716i −0.250208 0.433373i
\(46\) 2.07673 + 3.59700i 0.306197 + 0.530349i
\(47\) 3.80194 0.554570 0.277285 0.960788i \(-0.410565\pi\)
0.277285 + 0.960788i \(0.410565\pi\)
\(48\) −1.78232 3.08707i −0.257256 0.445581i
\(49\) 0.975541 1.68969i 0.139363 0.241384i
\(50\) 6.42208 11.1234i 0.908219 1.57308i
\(51\) −0.911854 −0.127685
\(52\) 0 0
\(53\) 0.542877 0.0745698 0.0372849 0.999305i \(-0.488129\pi\)
0.0372849 + 0.999305i \(0.488129\pi\)
\(54\) −1.02446 + 1.77441i −0.139411 + 0.241467i
\(55\) −8.28986 + 14.3585i −1.11780 + 1.93609i
\(56\) 0.455927 + 0.789689i 0.0609258 + 0.105527i
\(57\) 3.80194 0.503579
\(58\) −4.03534 6.98942i −0.529867 0.917756i
\(59\) 2.35690 + 4.08226i 0.306842 + 0.531465i 0.977670 0.210148i \(-0.0673944\pi\)
−0.670828 + 0.741613i \(0.734061\pi\)
\(60\) −7.37867 −0.952582
\(61\) −1.83997 3.18692i −0.235584 0.408043i 0.723858 0.689949i \(-0.242367\pi\)
−0.959442 + 0.281905i \(0.909034\pi\)
\(62\) −9.04503 + 15.6665i −1.14872 + 1.98964i
\(63\) −1.12349 + 1.94594i −0.141546 + 0.245166i
\(64\) −9.49827 −1.18728
\(65\) 0 0
\(66\) 10.1196 1.24564
\(67\) 0.760553 1.31732i 0.0929164 0.160936i −0.815821 0.578305i \(-0.803714\pi\)
0.908737 + 0.417369i \(0.137048\pi\)
\(68\) −1.00216 + 1.73578i −0.121529 + 0.210495i
\(69\) 1.01357 + 1.75556i 0.122020 + 0.211345i
\(70\) −15.4547 −1.84719
\(71\) −1.18933 2.05999i −0.141148 0.244475i 0.786781 0.617232i \(-0.211746\pi\)
−0.927929 + 0.372757i \(0.878413\pi\)
\(72\) 0.202907 + 0.351445i 0.0239128 + 0.0414181i
\(73\) 7.41119 0.867414 0.433707 0.901054i \(-0.357205\pi\)
0.433707 + 0.901054i \(0.357205\pi\)
\(74\) 9.01722 + 15.6183i 1.04823 + 1.81559i
\(75\) 3.13437 5.42890i 0.361926 0.626875i
\(76\) 4.17845 7.23728i 0.479301 0.830173i
\(77\) 11.0978 1.26472
\(78\) 0 0
\(79\) −3.74094 −0.420888 −0.210444 0.977606i \(-0.567491\pi\)
−0.210444 + 0.977606i \(0.567491\pi\)
\(80\) 5.98307 10.3630i 0.668928 1.15862i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 7.10872 + 12.3127i 0.785027 + 1.35971i
\(83\) 2.30798 0.253334 0.126667 0.991945i \(-0.459572\pi\)
0.126667 + 0.991945i \(0.459572\pi\)
\(84\) 2.46950 + 4.27730i 0.269445 + 0.466692i
\(85\) −1.53050 2.65090i −0.166006 0.287531i
\(86\) 4.68425 0.505116
\(87\) −1.96950 3.41127i −0.211153 0.365727i
\(88\) 1.00216 1.73578i 0.106830 0.185035i
\(89\) 5.02930 8.71101i 0.533105 0.923365i −0.466147 0.884707i \(-0.654358\pi\)
0.999253 0.0386580i \(-0.0123083\pi\)
\(90\) −6.87800 −0.725005
\(91\) 0 0
\(92\) 4.45580 0.464549
\(93\) −4.41454 + 7.64621i −0.457767 + 0.792875i
\(94\) 3.89493 6.74621i 0.401731 0.695819i
\(95\) 6.38135 + 11.0528i 0.654713 + 1.13400i
\(96\) −8.11529 −0.828264
\(97\) 8.06465 + 13.9684i 0.818841 + 1.41827i 0.906537 + 0.422127i \(0.138716\pi\)
−0.0876961 + 0.996147i \(0.527950\pi\)
\(98\) −1.99880 3.46203i −0.201910 0.349718i
\(99\) 4.93900 0.496388
\(100\) −6.88955 11.9331i −0.688955 1.19331i
\(101\) 4.97434 8.61582i 0.494966 0.857306i −0.505017 0.863109i \(-0.668514\pi\)
0.999983 + 0.00580325i \(0.00184724\pi\)
\(102\) −0.934157 + 1.61801i −0.0924953 + 0.160207i
\(103\) −10.9879 −1.08267 −0.541336 0.840806i \(-0.682081\pi\)
−0.541336 + 0.840806i \(0.682081\pi\)
\(104\) 0 0
\(105\) −7.54288 −0.736109
\(106\) 0.556155 0.963288i 0.0540185 0.0935628i
\(107\) 4.93631 8.54994i 0.477211 0.826554i −0.522448 0.852671i \(-0.674981\pi\)
0.999659 + 0.0261171i \(0.00831428\pi\)
\(108\) 1.09903 + 1.90358i 0.105754 + 0.183172i
\(109\) 20.2446 1.93908 0.969540 0.244934i \(-0.0787662\pi\)
0.969540 + 0.244934i \(0.0787662\pi\)
\(110\) 16.9852 + 29.4193i 1.61948 + 2.80502i
\(111\) 4.40097 + 7.62270i 0.417721 + 0.723515i
\(112\) −8.00969 −0.756844
\(113\) −4.84601 8.39354i −0.455874 0.789598i 0.542864 0.839821i \(-0.317340\pi\)
−0.998738 + 0.0502233i \(0.984007\pi\)
\(114\) 3.89493 6.74621i 0.364793 0.631841i
\(115\) −3.40246 + 5.89324i −0.317281 + 0.549547i
\(116\) −8.65817 −0.803891
\(117\) 0 0
\(118\) 9.65817 0.889107
\(119\) −1.02446 + 1.77441i −0.0939120 + 0.162660i
\(120\) −0.681136 + 1.17976i −0.0621790 + 0.107697i
\(121\) −6.69687 11.5993i −0.608806 1.05448i
\(122\) −7.53989 −0.682630
\(123\) 3.46950 + 6.00935i 0.312834 + 0.541845i
\(124\) 9.70344 + 16.8068i 0.871395 + 1.50930i
\(125\) 4.25906 0.380942
\(126\) 2.30194 + 3.98707i 0.205073 + 0.355197i
\(127\) −6.90581 + 11.9612i −0.612792 + 1.06139i 0.377976 + 0.925815i \(0.376620\pi\)
−0.990768 + 0.135571i \(0.956713\pi\)
\(128\) −1.61529 + 2.79777i −0.142773 + 0.247290i
\(129\) 2.28621 0.201289
\(130\) 0 0
\(131\) 2.99462 0.261641 0.130821 0.991406i \(-0.458239\pi\)
0.130821 + 0.991406i \(0.458239\pi\)
\(132\) 5.42812 9.40177i 0.472457 0.818319i
\(133\) 4.27144 7.39835i 0.370381 0.641518i
\(134\) −1.55831 2.69907i −0.134618 0.233164i
\(135\) −3.35690 −0.288916
\(136\) 0.185021 + 0.320466i 0.0158654 + 0.0274797i
\(137\) −11.5097 19.9354i −0.983339 1.70319i −0.649096 0.760706i \(-0.724853\pi\)
−0.334243 0.942487i \(-0.608481\pi\)
\(138\) 4.15346 0.353566
\(139\) −0.491271 0.850906i −0.0416690 0.0721729i 0.844439 0.535652i \(-0.179934\pi\)
−0.886108 + 0.463479i \(0.846601\pi\)
\(140\) −8.28986 + 14.3585i −0.700621 + 1.21351i
\(141\) 1.90097 3.29257i 0.160090 0.277285i
\(142\) −4.87369 −0.408991
\(143\) 0 0
\(144\) −3.56465 −0.297054
\(145\) 6.61141 11.4513i 0.549048 0.950978i
\(146\) 7.59246 13.1505i 0.628356 1.08835i
\(147\) −0.975541 1.68969i −0.0804613 0.139363i
\(148\) 19.3472 1.59033
\(149\) −5.12953 8.88461i −0.420228 0.727855i 0.575734 0.817637i \(-0.304716\pi\)
−0.995961 + 0.0897817i \(0.971383\pi\)
\(150\) −6.42208 11.1234i −0.524360 0.908219i
\(151\) −20.1685 −1.64129 −0.820646 0.571438i \(-0.806386\pi\)
−0.820646 + 0.571438i \(0.806386\pi\)
\(152\) −0.771438 1.33617i −0.0625719 0.108378i
\(153\) −0.455927 + 0.789689i −0.0368595 + 0.0638425i
\(154\) 11.3693 19.6922i 0.916162 1.58684i
\(155\) −29.6383 −2.38061
\(156\) 0 0
\(157\) 10.4383 0.833070 0.416535 0.909120i \(-0.363244\pi\)
0.416535 + 0.909120i \(0.363244\pi\)
\(158\) −3.83244 + 6.63798i −0.304892 + 0.528089i
\(159\) 0.271438 0.470145i 0.0215265 0.0372849i
\(160\) −13.6211 23.5924i −1.07684 1.86515i
\(161\) 4.55496 0.358981
\(162\) 1.02446 + 1.77441i 0.0804891 + 0.139411i
\(163\) 5.52326 + 9.56657i 0.432615 + 0.749312i 0.997098 0.0761335i \(-0.0242575\pi\)
−0.564482 + 0.825445i \(0.690924\pi\)
\(164\) 15.2524 1.19101
\(165\) 8.28986 + 14.3585i 0.645364 + 1.11780i
\(166\) 2.36443 4.09531i 0.183515 0.317858i
\(167\) −4.05496 + 7.02339i −0.313782 + 0.543487i −0.979178 0.203004i \(-0.934929\pi\)
0.665396 + 0.746491i \(0.268263\pi\)
\(168\) 0.911854 0.0703511
\(169\) 0 0
\(170\) −6.27173 −0.481020
\(171\) 1.90097 3.29257i 0.145371 0.251789i
\(172\) 2.51261 4.35198i 0.191585 0.331835i
\(173\) 9.02811 + 15.6371i 0.686394 + 1.18887i 0.972996 + 0.230820i \(0.0741409\pi\)
−0.286602 + 0.958050i \(0.592526\pi\)
\(174\) −8.07069 −0.611837
\(175\) −7.04288 12.1986i −0.532391 0.922129i
\(176\) 8.80290 + 15.2471i 0.663543 + 1.14929i
\(177\) 4.71379 0.354310
\(178\) −10.3046 17.8481i −0.772364 1.33777i
\(179\) 9.93512 17.2081i 0.742585 1.28620i −0.208729 0.977974i \(-0.566933\pi\)
0.951314 0.308222i \(-0.0997340\pi\)
\(180\) −3.68933 + 6.39011i −0.274987 + 0.476291i
\(181\) −10.0828 −0.749446 −0.374723 0.927137i \(-0.622262\pi\)
−0.374723 + 0.927137i \(0.622262\pi\)
\(182\) 0 0
\(183\) −3.67994 −0.272029
\(184\) 0.411322 0.712430i 0.0303230 0.0525210i
\(185\) −14.7736 + 25.5886i −1.08618 + 1.88131i
\(186\) 9.04503 + 15.6665i 0.663214 + 1.14872i
\(187\) 4.50365 0.329339
\(188\) −4.17845 7.23728i −0.304745 0.527833i
\(189\) 1.12349 + 1.94594i 0.0817219 + 0.141546i
\(190\) 26.1497 1.89710
\(191\) 3.29374 + 5.70493i 0.238327 + 0.412794i 0.960234 0.279196i \(-0.0900678\pi\)
−0.721908 + 0.691990i \(0.756734\pi\)
\(192\) −4.74914 + 8.22574i −0.342739 + 0.593642i
\(193\) −5.43362 + 9.41131i −0.391121 + 0.677441i −0.992598 0.121449i \(-0.961246\pi\)
0.601477 + 0.798890i \(0.294579\pi\)
\(194\) 33.0476 2.37268
\(195\) 0 0
\(196\) −4.28860 −0.306329
\(197\) −4.62080 + 8.00346i −0.329218 + 0.570223i −0.982357 0.187015i \(-0.940119\pi\)
0.653139 + 0.757238i \(0.273452\pi\)
\(198\) 5.05980 8.76383i 0.359585 0.622819i
\(199\) 0.782323 + 1.35502i 0.0554574 + 0.0960551i 0.892421 0.451203i \(-0.149005\pi\)
−0.836964 + 0.547258i \(0.815672\pi\)
\(200\) −2.54394 −0.179884
\(201\) −0.760553 1.31732i −0.0536453 0.0929164i
\(202\) −10.1920 17.6531i −0.717108 1.24207i
\(203\) −8.85086 −0.621208
\(204\) 1.00216 + 1.73578i 0.0701649 + 0.121529i
\(205\) −11.6468 + 20.1728i −0.813444 + 1.40893i
\(206\) −11.2567 + 19.4971i −0.784289 + 1.35843i
\(207\) 2.02715 0.140896
\(208\) 0 0
\(209\) −18.7778 −1.29889
\(210\) −7.72737 + 13.3842i −0.533239 + 0.923597i
\(211\) −11.6223 + 20.1304i −0.800112 + 1.38583i 0.119430 + 0.992843i \(0.461893\pi\)
−0.919542 + 0.392991i \(0.871440\pi\)
\(212\) −0.596638 1.03341i −0.0409773 0.0709747i
\(213\) −2.37867 −0.162984
\(214\) −10.1141 17.5181i −0.691385 1.19751i
\(215\) 3.83728 + 6.64637i 0.261700 + 0.453278i
\(216\) 0.405813 0.0276121
\(217\) 9.91939 + 17.1809i 0.673372 + 1.16631i
\(218\) 20.7397 35.9223i 1.40467 2.43296i
\(219\) 3.70560 6.41828i 0.250401 0.433707i
\(220\) 36.4432 2.45700
\(221\) 0 0
\(222\) 18.0344 1.21039
\(223\) −5.36927 + 9.29985i −0.359553 + 0.622764i −0.987886 0.155180i \(-0.950404\pi\)
0.628333 + 0.777944i \(0.283738\pi\)
\(224\) −9.11745 + 15.7919i −0.609185 + 1.05514i
\(225\) −3.13437 5.42890i −0.208958 0.361926i
\(226\) −19.8582 −1.32094
\(227\) 3.48792 + 6.04125i 0.231501 + 0.400972i 0.958250 0.285931i \(-0.0923029\pi\)
−0.726749 + 0.686903i \(0.758970\pi\)
\(228\) −4.17845 7.23728i −0.276724 0.479301i
\(229\) −16.8049 −1.11050 −0.555250 0.831683i \(-0.687378\pi\)
−0.555250 + 0.831683i \(0.687378\pi\)
\(230\) 6.97136 + 12.0748i 0.459678 + 0.796186i
\(231\) 5.54892 9.61101i 0.365092 0.632358i
\(232\) −0.799249 + 1.38434i −0.0524733 + 0.0908864i
\(233\) 8.69202 0.569433 0.284717 0.958612i \(-0.408100\pi\)
0.284717 + 0.958612i \(0.408100\pi\)
\(234\) 0 0
\(235\) 12.7627 0.832547
\(236\) 5.18060 8.97307i 0.337229 0.584097i
\(237\) −1.87047 + 3.23975i −0.121500 + 0.210444i
\(238\) 2.09903 + 3.63563i 0.136060 + 0.235663i
\(239\) −22.9191 −1.48252 −0.741258 0.671220i \(-0.765771\pi\)
−0.741258 + 0.671220i \(0.765771\pi\)
\(240\) −5.98307 10.3630i −0.386206 0.668928i
\(241\) −10.9901 19.0354i −0.707933 1.22618i −0.965623 0.259948i \(-0.916295\pi\)
0.257690 0.966228i \(-0.417039\pi\)
\(242\) −27.4426 −1.76408
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −4.04437 + 7.00505i −0.258914 + 0.448452i
\(245\) 3.27479 5.67210i 0.209219 0.362377i
\(246\) 14.2174 0.906471
\(247\) 0 0
\(248\) 3.58296 0.227518
\(249\) 1.15399 1.99877i 0.0731311 0.126667i
\(250\) 4.36323 7.55734i 0.275955 0.477968i
\(251\) −13.3218 23.0741i −0.840868 1.45643i −0.889162 0.457592i \(-0.848712\pi\)
0.0482946 0.998833i \(-0.484621\pi\)
\(252\) 4.93900 0.311128
\(253\) −5.00604 8.67072i −0.314727 0.545123i
\(254\) 14.1494 + 24.5075i 0.887815 + 1.53774i
\(255\) −3.06100 −0.191687
\(256\) −6.18867 10.7191i −0.386792 0.669943i
\(257\) −11.5722 + 20.0436i −0.721853 + 1.25029i 0.238404 + 0.971166i \(0.423376\pi\)
−0.960256 + 0.279119i \(0.909957\pi\)
\(258\) 2.34213 4.05668i 0.145814 0.252558i
\(259\) 19.7778 1.22893
\(260\) 0 0
\(261\) −3.93900 −0.243818
\(262\) 3.06787 5.31370i 0.189533 0.328282i
\(263\) 9.26420 16.0461i 0.571255 0.989443i −0.425182 0.905108i \(-0.639790\pi\)
0.996437 0.0843352i \(-0.0268766\pi\)
\(264\) −1.00216 1.73578i −0.0616784 0.106830i
\(265\) 1.82238 0.111948
\(266\) −8.75182 15.1586i −0.536609 0.929434i
\(267\) −5.02930 8.71101i −0.307788 0.533105i
\(268\) −3.34349 −0.204236
\(269\) −4.87920 8.45102i −0.297490 0.515268i 0.678071 0.734996i \(-0.262816\pi\)
−0.975561 + 0.219729i \(0.929483\pi\)
\(270\) −3.43900 + 5.95652i −0.209291 + 0.362503i
\(271\) 11.4010 19.7471i 0.692560 1.19955i −0.278437 0.960455i \(-0.589816\pi\)
0.970996 0.239094i \(-0.0768503\pi\)
\(272\) −3.25044 −0.197087
\(273\) 0 0
\(274\) −47.1648 −2.84933
\(275\) −15.4807 + 26.8133i −0.933520 + 1.61690i
\(276\) 2.22790 3.85883i 0.134104 0.232274i
\(277\) 11.9852 + 20.7590i 0.720123 + 1.24729i 0.960950 + 0.276721i \(0.0892478\pi\)
−0.240828 + 0.970568i \(0.577419\pi\)
\(278\) −2.01315 −0.120741
\(279\) 4.41454 + 7.64621i 0.264292 + 0.457767i
\(280\) 1.53050 + 2.65090i 0.0914648 + 0.158422i
\(281\) −4.12498 −0.246076 −0.123038 0.992402i \(-0.539264\pi\)
−0.123038 + 0.992402i \(0.539264\pi\)
\(282\) −3.89493 6.74621i −0.231940 0.401731i
\(283\) 7.82789 13.5583i 0.465320 0.805957i −0.533896 0.845550i \(-0.679273\pi\)
0.999216 + 0.0395927i \(0.0126060\pi\)
\(284\) −2.61423 + 4.52798i −0.155126 + 0.268686i
\(285\) 12.7627 0.755998
\(286\) 0 0
\(287\) 15.5918 0.920354
\(288\) −4.05765 + 7.02805i −0.239099 + 0.414132i
\(289\) 8.08426 14.0024i 0.475545 0.823668i
\(290\) −13.5462 23.4628i −0.795462 1.37778i
\(291\) 16.1293 0.945516
\(292\) −8.14513 14.1078i −0.476658 0.825595i
\(293\) −11.2974 19.5677i −0.660001 1.14315i −0.980615 0.195945i \(-0.937223\pi\)
0.320614 0.947210i \(-0.396111\pi\)
\(294\) −3.99761 −0.233145
\(295\) 7.91185 + 13.7037i 0.460646 + 0.797862i
\(296\) 1.78597 3.09339i 0.103807 0.179800i
\(297\) 2.46950 4.27730i 0.143295 0.248194i
\(298\) −21.0200 −1.21765
\(299\) 0 0
\(300\) −13.7791 −0.795537
\(301\) 2.56853 4.44883i 0.148048 0.256426i
\(302\) −20.6618 + 35.7873i −1.18895 + 2.05933i
\(303\) −4.97434 8.61582i −0.285769 0.494966i
\(304\) 13.5526 0.777293
\(305\) −6.17659 10.6982i −0.353670 0.612575i
\(306\) 0.934157 + 1.61801i 0.0534022 + 0.0924953i
\(307\) −6.55496 −0.374111 −0.187056 0.982349i \(-0.559894\pi\)
−0.187056 + 0.982349i \(0.559894\pi\)
\(308\) −12.1969 21.1256i −0.694981 1.20374i
\(309\) −5.49396 + 9.51582i −0.312540 + 0.541336i
\(310\) −30.3632 + 52.5907i −1.72452 + 2.98695i
\(311\) −12.0392 −0.682682 −0.341341 0.939940i \(-0.610881\pi\)
−0.341341 + 0.939940i \(0.610881\pi\)
\(312\) 0 0
\(313\) −33.8950 −1.91586 −0.957929 0.287005i \(-0.907340\pi\)
−0.957929 + 0.287005i \(0.907340\pi\)
\(314\) 10.6936 18.5219i 0.603477 1.04525i
\(315\) −3.77144 + 6.53232i −0.212496 + 0.368055i
\(316\) 4.11141 + 7.12117i 0.231285 + 0.400597i
\(317\) −4.49827 −0.252648 −0.126324 0.991989i \(-0.540318\pi\)
−0.126324 + 0.991989i \(0.540318\pi\)
\(318\) −0.556155 0.963288i −0.0311876 0.0540185i
\(319\) 9.72737 + 16.8483i 0.544628 + 0.943323i
\(320\) −31.8847 −1.78241
\(321\) −4.93631 8.54994i −0.275518 0.477211i
\(322\) 4.66637 8.08238i 0.260046 0.450414i
\(323\) 1.73341 3.00235i 0.0964493 0.167055i
\(324\) 2.19806 0.122115
\(325\) 0 0
\(326\) 22.6334 1.25355
\(327\) 10.1223 17.5323i 0.559764 0.969540i
\(328\) 1.40797 2.43867i 0.0777421 0.134653i
\(329\) −4.27144 7.39835i −0.235492 0.407884i
\(330\) 33.9705 1.87001
\(331\) 5.60656 + 9.71085i 0.308165 + 0.533757i 0.977961 0.208788i \(-0.0669519\pi\)
−0.669796 + 0.742545i \(0.733619\pi\)
\(332\) −2.53654 4.39342i −0.139211 0.241120i
\(333\) 8.80194 0.482343
\(334\) 8.30827 + 14.3904i 0.454609 + 0.787405i
\(335\) 2.55310 4.42209i 0.139491 0.241605i
\(336\) −4.00484 + 6.93659i −0.218482 + 0.378422i
\(337\) 7.04892 0.383979 0.191989 0.981397i \(-0.438506\pi\)
0.191989 + 0.981397i \(0.438506\pi\)
\(338\) 0 0
\(339\) −9.69202 −0.526398
\(340\) −3.36413 + 5.82685i −0.182446 + 0.316005i
\(341\) 21.8034 37.7646i 1.18072 2.04507i
\(342\) −3.89493 6.74621i −0.210614 0.364793i
\(343\) −20.1129 −1.08599
\(344\) −0.463887 0.803475i −0.0250111 0.0433205i
\(345\) 3.40246 + 5.89324i 0.183182 + 0.317281i
\(346\) 36.9957 1.98890
\(347\) 1.35205 + 2.34182i 0.0725819 + 0.125716i 0.900032 0.435823i \(-0.143543\pi\)
−0.827450 + 0.561539i \(0.810209\pi\)
\(348\) −4.32908 + 7.49819i −0.232063 + 0.401945i
\(349\) 0.207751 0.359835i 0.0111207 0.0192615i −0.860412 0.509600i \(-0.829793\pi\)
0.871532 + 0.490338i \(0.163127\pi\)
\(350\) −28.8605 −1.54266
\(351\) 0 0
\(352\) 40.0814 2.13635
\(353\) 16.0836 27.8576i 0.856044 1.48271i −0.0196301 0.999807i \(-0.506249\pi\)
0.875674 0.482904i \(-0.160418\pi\)
\(354\) 4.82908 8.36422i 0.256663 0.444553i
\(355\) −3.99247 6.91516i −0.211898 0.367018i
\(356\) −22.1094 −1.17180
\(357\) 1.02446 + 1.77441i 0.0542201 + 0.0939120i
\(358\) −20.3562 35.2580i −1.07586 1.86344i
\(359\) 22.3521 1.17970 0.589850 0.807513i \(-0.299187\pi\)
0.589850 + 0.807513i \(0.299187\pi\)
\(360\) 0.681136 + 1.17976i 0.0358990 + 0.0621790i
\(361\) 2.27263 3.93632i 0.119612 0.207175i
\(362\) −10.3294 + 17.8910i −0.542900 + 0.940331i
\(363\) −13.3937 −0.702989
\(364\) 0 0
\(365\) 24.8786 1.30221
\(366\) −3.76995 + 6.52974i −0.197058 + 0.341315i
\(367\) 1.15130 1.99411i 0.0600974 0.104092i −0.834411 0.551142i \(-0.814192\pi\)
0.894509 + 0.447050i \(0.147526\pi\)
\(368\) 3.61303 + 6.25795i 0.188342 + 0.326218i
\(369\) 6.93900 0.361230
\(370\) 30.2699 + 52.4290i 1.57366 + 2.72565i
\(371\) −0.609916 1.05641i −0.0316653 0.0548459i
\(372\) 19.4069 1.00620
\(373\) 9.63802 + 16.6935i 0.499038 + 0.864359i 0.999999 0.00111058i \(-0.000353507\pi\)
−0.500961 + 0.865470i \(0.667020\pi\)
\(374\) 4.61380 7.99134i 0.238574 0.413222i
\(375\) 2.12953 3.68846i 0.109968 0.190471i
\(376\) −1.54288 −0.0795678
\(377\) 0 0
\(378\) 4.60388 0.236798
\(379\) 3.66972 6.35614i 0.188501 0.326493i −0.756250 0.654283i \(-0.772971\pi\)
0.944751 + 0.327790i \(0.106304\pi\)
\(380\) 14.0266 24.2948i 0.719550 1.24630i
\(381\) 6.90581 + 11.9612i 0.353796 + 0.612792i
\(382\) 13.4972 0.690577
\(383\) −9.54503 16.5325i −0.487728 0.844770i 0.512172 0.858883i \(-0.328841\pi\)
−0.999900 + 0.0141126i \(0.995508\pi\)
\(384\) 1.61529 + 2.79777i 0.0824301 + 0.142773i
\(385\) 37.2543 1.89865
\(386\) 11.1330 + 19.2830i 0.566657 + 0.981479i
\(387\) 1.14310 1.97991i 0.0581072 0.100645i
\(388\) 17.7266 30.7034i 0.899932 1.55873i
\(389\) −23.9879 −1.21624 −0.608118 0.793847i \(-0.708075\pi\)
−0.608118 + 0.793847i \(0.708075\pi\)
\(390\) 0 0
\(391\) 1.84846 0.0934807
\(392\) −0.395888 + 0.685697i −0.0199953 + 0.0346329i
\(393\) 1.49731 2.59342i 0.0755294 0.130821i
\(394\) 9.46764 + 16.3984i 0.476973 + 0.826141i
\(395\) −12.5579 −0.631859
\(396\) −5.42812 9.40177i −0.272773 0.472457i
\(397\) 2.20895 + 3.82601i 0.110864 + 0.192022i 0.916119 0.400907i \(-0.131305\pi\)
−0.805255 + 0.592929i \(0.797972\pi\)
\(398\) 3.20583 0.160694
\(399\) −4.27144 7.39835i −0.213839 0.370381i
\(400\) 11.1729 19.3521i 0.558647 0.967605i
\(401\) 10.2044 17.6745i 0.509583 0.882624i −0.490355 0.871523i \(-0.663133\pi\)
0.999938 0.0111015i \(-0.00353378\pi\)
\(402\) −3.11662 −0.155443
\(403\) 0 0
\(404\) −21.8678 −1.08797
\(405\) −1.67845 + 2.90716i −0.0834027 + 0.144458i
\(406\) −9.06734 + 15.7051i −0.450004 + 0.779430i
\(407\) −21.7364 37.6485i −1.07743 1.86617i
\(408\) 0.370042 0.0183198
\(409\) 11.0746 + 19.1817i 0.547602 + 0.948475i 0.998438 + 0.0558682i \(0.0177927\pi\)
−0.450836 + 0.892607i \(0.648874\pi\)
\(410\) 23.8632 + 41.3323i 1.17852 + 2.04126i
\(411\) −23.0194 −1.13546
\(412\) 12.0761 + 20.9164i 0.594945 + 1.03047i
\(413\) 5.29590 9.17276i 0.260594 0.451362i
\(414\) 2.07673 3.59700i 0.102066 0.176783i
\(415\) 7.74764 0.380317
\(416\) 0 0
\(417\) −0.982542 −0.0481153
\(418\) −19.2371 + 33.3196i −0.940915 + 1.62971i
\(419\) −7.37800 + 12.7791i −0.360439 + 0.624299i −0.988033 0.154242i \(-0.950706\pi\)
0.627594 + 0.778541i \(0.284040\pi\)
\(420\) 8.28986 + 14.3585i 0.404504 + 0.700621i
\(421\) 8.47219 0.412909 0.206455 0.978456i \(-0.433807\pi\)
0.206455 + 0.978456i \(0.433807\pi\)
\(422\) 23.8131 + 41.2455i 1.15920 + 2.00780i
\(423\) −1.90097 3.29257i −0.0924283 0.160090i
\(424\) −0.220306 −0.0106990
\(425\) −2.85809 4.95036i −0.138638 0.240128i
\(426\) −2.43685 + 4.22074i −0.118066 + 0.204496i
\(427\) −4.13437 + 7.16095i −0.200076 + 0.346543i
\(428\) −21.7006 −1.04894
\(429\) 0 0
\(430\) 15.7245 0.758305
\(431\) −1.19591 + 2.07137i −0.0576048 + 0.0997744i −0.893390 0.449283i \(-0.851680\pi\)
0.835785 + 0.549057i \(0.185013\pi\)
\(432\) −1.78232 + 3.08707i −0.0857521 + 0.148527i
\(433\) 5.21432 + 9.03147i 0.250584 + 0.434025i 0.963687 0.267035i \(-0.0860439\pi\)
−0.713102 + 0.701060i \(0.752711\pi\)
\(434\) 40.6480 1.95117
\(435\) −6.61141 11.4513i −0.316993 0.549048i
\(436\) −22.2494 38.5371i −1.06555 1.84559i
\(437\) −7.70709 −0.368680
\(438\) −7.59246 13.1505i −0.362782 0.628356i
\(439\) 16.2751 28.1893i 0.776767 1.34540i −0.157028 0.987594i \(-0.550191\pi\)
0.933796 0.357807i \(-0.116475\pi\)
\(440\) 3.36413 5.82685i 0.160379 0.277784i
\(441\) −1.95108 −0.0929087
\(442\) 0 0
\(443\) 9.58211 0.455260 0.227630 0.973748i \(-0.426902\pi\)
0.227630 + 0.973748i \(0.426902\pi\)
\(444\) 9.67360 16.7552i 0.459089 0.795165i
\(445\) 16.8828 29.2419i 0.800324 1.38620i
\(446\) 11.0012 + 19.0546i 0.520922 + 0.902263i
\(447\) −10.2591 −0.485237
\(448\) 10.6712 + 18.4831i 0.504167 + 0.873243i
\(449\) 14.1969 + 24.5897i 0.669992 + 1.16046i 0.977906 + 0.209045i \(0.0670356\pi\)
−0.307914 + 0.951414i \(0.599631\pi\)
\(450\) −12.8442 −0.605479
\(451\) −17.1359 29.6802i −0.806896 1.39759i
\(452\) −10.6518 + 18.4495i −0.501020 + 0.867792i
\(453\) −10.0843 + 17.4665i −0.473800 + 0.820646i
\(454\) 14.2929 0.670800
\(455\) 0 0
\(456\) −1.54288 −0.0722518
\(457\) −2.49784 + 4.32639i −0.116844 + 0.202380i −0.918515 0.395385i \(-0.870611\pi\)
0.801671 + 0.597765i \(0.203944\pi\)
\(458\) −17.2159 + 29.8189i −0.804448 + 1.39335i
\(459\) 0.455927 + 0.789689i 0.0212808 + 0.0368595i
\(460\) 14.9576 0.697404
\(461\) −0.676292 1.17137i −0.0314981 0.0545562i 0.849847 0.527030i \(-0.176694\pi\)
−0.881345 + 0.472474i \(0.843361\pi\)
\(462\) −11.3693 19.6922i −0.528946 0.916162i
\(463\) −3.36467 −0.156369 −0.0781846 0.996939i \(-0.524912\pi\)
−0.0781846 + 0.996939i \(0.524912\pi\)
\(464\) −7.02057 12.1600i −0.325922 0.564513i
\(465\) −14.8192 + 25.6675i −0.687222 + 1.19030i
\(466\) 8.90462 15.4232i 0.412498 0.714468i
\(467\) 6.91079 0.319793 0.159897 0.987134i \(-0.448884\pi\)
0.159897 + 0.987134i \(0.448884\pi\)
\(468\) 0 0
\(469\) −3.41789 −0.157824
\(470\) 13.0749 22.6463i 0.603099 1.04460i
\(471\) 5.21917 9.03987i 0.240487 0.416535i
\(472\) −0.956459 1.65664i −0.0440246 0.0762529i
\(473\) −11.2916 −0.519188
\(474\) 3.83244 + 6.63798i 0.176030 + 0.304892i
\(475\) 11.9167 + 20.6403i 0.546776 + 0.947043i
\(476\) 4.50365 0.206424
\(477\) −0.271438 0.470145i −0.0124283 0.0215265i
\(478\) −23.4797 + 40.6681i −1.07394 + 1.86011i
\(479\) −1.75786 + 3.04471i −0.0803189 + 0.139116i −0.903387 0.428826i \(-0.858927\pi\)
0.823068 + 0.567943i \(0.192261\pi\)
\(480\) −27.2422 −1.24343
\(481\) 0 0
\(482\) −45.0355 −2.05131
\(483\) 2.27748 3.94471i 0.103629 0.179490i
\(484\) −14.7201 + 25.4960i −0.669097 + 1.15891i
\(485\) 27.0722 + 46.8904i 1.22928 + 2.12918i
\(486\) 2.04892 0.0929408
\(487\) 6.42394 + 11.1266i 0.291096 + 0.504194i 0.974069 0.226250i \(-0.0726467\pi\)
−0.682973 + 0.730444i \(0.739313\pi\)
\(488\) 0.746684 + 1.29329i 0.0338008 + 0.0585447i
\(489\) 11.0465 0.499541
\(490\) −6.70978 11.6217i −0.303117 0.525014i
\(491\) −14.3354 + 24.8297i −0.646948 + 1.12055i 0.336899 + 0.941541i \(0.390622\pi\)
−0.983848 + 0.179007i \(0.942712\pi\)
\(492\) 7.62618 13.2089i 0.343815 0.595504i
\(493\) −3.59179 −0.161766
\(494\) 0 0
\(495\) 16.5797 0.745203
\(496\) −15.7363 + 27.2560i −0.706580 + 1.22383i
\(497\) −2.67241 + 4.62874i −0.119874 + 0.207628i
\(498\) −2.36443 4.09531i −0.105953 0.183515i
\(499\) −33.5555 −1.50215 −0.751076 0.660215i \(-0.770465\pi\)
−0.751076 + 0.660215i \(0.770465\pi\)
\(500\) −4.68084 8.10745i −0.209334 0.362576i
\(501\) 4.05496 + 7.02339i 0.181162 + 0.313782i
\(502\) −54.5907 −2.43650
\(503\) −10.7817 18.6744i −0.480730 0.832650i 0.519025 0.854759i \(-0.326295\pi\)
−0.999756 + 0.0221094i \(0.992962\pi\)
\(504\) 0.455927 0.789689i 0.0203086 0.0351755i
\(505\) 16.6984 28.9224i 0.743067 1.28703i
\(506\) −20.5139 −0.911955
\(507\) 0 0
\(508\) 30.3588 1.34695
\(509\) 4.44504 7.69904i 0.197023 0.341254i −0.750539 0.660826i \(-0.770206\pi\)
0.947562 + 0.319572i \(0.103539\pi\)
\(510\) −3.13587 + 5.43148i −0.138859 + 0.240510i
\(511\) −8.32640 14.4217i −0.368338 0.637980i
\(512\) −31.8213 −1.40632
\(513\) −1.90097 3.29257i −0.0839298 0.145371i
\(514\) 23.7104 + 41.0677i 1.04582 + 1.81142i
\(515\) −36.8853 −1.62536
\(516\) −2.51261 4.35198i −0.110612 0.191585i
\(517\) −9.38889 + 16.2620i −0.412923 + 0.715203i
\(518\) 20.2615 35.0940i 0.890240 1.54194i
\(519\) 18.0562 0.792580
\(520\) 0 0
\(521\) 19.3478 0.847642 0.423821 0.905746i \(-0.360688\pi\)
0.423821 + 0.905746i \(0.360688\pi\)
\(522\) −4.03534 + 6.98942i −0.176622 + 0.305919i
\(523\) 6.29739 10.9074i 0.275366 0.476947i −0.694862 0.719143i \(-0.744534\pi\)
0.970227 + 0.242196i \(0.0778678\pi\)
\(524\) −3.29118 5.70050i −0.143776 0.249027i
\(525\) −14.0858 −0.614753
\(526\) −18.9816 32.8771i −0.827636 1.43351i
\(527\) 4.02542 + 6.97223i 0.175350 + 0.303715i
\(528\) 17.6058 0.766194
\(529\) 9.44534 + 16.3598i 0.410667 + 0.711296i
\(530\) 1.86695 3.23366i 0.0810953 0.140461i
\(531\) 2.35690 4.08226i 0.102281 0.177155i
\(532\) −18.7778 −0.814120
\(533\) 0 0
\(534\) −20.6093 −0.891850
\(535\) 16.5707 28.7013i 0.716413 1.24086i
\(536\) −0.308643 + 0.534585i −0.0133313 + 0.0230905i
\(537\) −9.93512 17.2081i −0.428732 0.742585i
\(538\) −19.9941 −0.862009
\(539\) 4.81820 + 8.34537i 0.207535 + 0.359460i
\(540\) 3.68933 + 6.39011i 0.158764 + 0.274987i
\(541\) 29.0019 1.24689 0.623445 0.781867i \(-0.285733\pi\)
0.623445 + 0.781867i \(0.285733\pi\)
\(542\) −23.3596 40.4601i −1.00338 1.73791i
\(543\) −5.04138 + 8.73193i −0.216347 + 0.374723i
\(544\) −3.69998 + 6.40856i −0.158635 + 0.274765i
\(545\) 67.9590 2.91104
\(546\) 0 0
\(547\) 27.7006 1.18439 0.592197 0.805793i \(-0.298261\pi\)
0.592197 + 0.805793i \(0.298261\pi\)
\(548\) −25.2990 + 43.8192i −1.08072 + 1.87186i
\(549\) −1.83997 + 3.18692i −0.0785280 + 0.136014i
\(550\) 31.7186 + 54.9383i 1.35249 + 2.34258i
\(551\) 14.9758 0.637992
\(552\) −0.411322 0.712430i −0.0175070 0.0303230i
\(553\) 4.20291 + 7.27965i 0.178726 + 0.309562i
\(554\) 49.1135 2.08663
\(555\) 14.7736 + 25.5886i 0.627104 + 1.08618i
\(556\) −1.07984 + 1.87034i −0.0457956 + 0.0793203i
\(557\) −3.40485 + 5.89738i −0.144268 + 0.249880i −0.929100 0.369829i \(-0.879416\pi\)
0.784831 + 0.619709i \(0.212749\pi\)
\(558\) 18.0901 0.765814
\(559\) 0 0
\(560\) −26.8877 −1.13621
\(561\) 2.25182 3.90027i 0.0950721 0.164670i
\(562\) −4.22587 + 7.31943i −0.178258 + 0.308751i
\(563\) 9.62618 + 16.6730i 0.405695 + 0.702684i 0.994402 0.105662i \(-0.0336962\pi\)
−0.588707 + 0.808346i \(0.700363\pi\)
\(564\) −8.35690 −0.351889
\(565\) −16.2676 28.1762i −0.684381 1.18538i
\(566\) −16.0387 27.7798i −0.674157 1.16767i
\(567\) 2.24698 0.0943643
\(568\) 0.482647 + 0.835969i 0.0202514 + 0.0350765i
\(569\) −3.92423 + 6.79697i −0.164512 + 0.284944i −0.936482 0.350716i \(-0.885938\pi\)
0.771970 + 0.635659i \(0.219272\pi\)
\(570\) 13.0749 22.6463i 0.547646 0.948551i
\(571\) 29.8568 1.24947 0.624735 0.780837i \(-0.285207\pi\)
0.624735 + 0.780837i \(0.285207\pi\)
\(572\) 0 0
\(573\) 6.58748 0.275196
\(574\) 15.9731 27.6663i 0.666706 1.15477i
\(575\) −6.35384 + 11.0052i −0.264973 + 0.458947i
\(576\) 4.74914 + 8.22574i 0.197881 + 0.342739i
\(577\) 8.97823 0.373769 0.186884 0.982382i \(-0.440161\pi\)
0.186884 + 0.982382i \(0.440161\pi\)
\(578\) −16.5640 28.6897i −0.688971 1.19333i
\(579\) 5.43362 + 9.41131i 0.225814 + 0.391121i
\(580\) −29.0646 −1.20684
\(581\) −2.59299 4.49119i −0.107575 0.186326i
\(582\) 16.5238 28.6201i 0.684933 1.18634i
\(583\) −1.34063 + 2.32205i −0.0555234 + 0.0961693i
\(584\) −3.00756 −0.124454
\(585\) 0 0
\(586\) −46.2948 −1.91242
\(587\) −11.9269 + 20.6580i −0.492277 + 0.852648i −0.999960 0.00889531i \(-0.997168\pi\)
0.507684 + 0.861543i \(0.330502\pi\)
\(588\) −2.14430 + 3.71404i −0.0884295 + 0.153164i
\(589\) −16.7838 29.0704i −0.691565 1.19783i
\(590\) 32.4215 1.33477
\(591\) 4.62080 + 8.00346i 0.190074 + 0.329218i
\(592\) 15.6879 + 27.1722i 0.644769 + 1.11677i
\(593\) 11.9866 0.492230 0.246115 0.969241i \(-0.420846\pi\)
0.246115 + 0.969241i \(0.420846\pi\)
\(594\) −5.05980 8.76383i −0.207606 0.359585i
\(595\) −3.43900 + 5.95652i −0.140985 + 0.244194i
\(596\) −11.2750 + 19.5289i −0.461843 + 0.799936i
\(597\) 1.56465 0.0640367
\(598\) 0 0
\(599\) 29.1142 1.18958 0.594788 0.803883i \(-0.297236\pi\)
0.594788 + 0.803883i \(0.297236\pi\)
\(600\) −1.27197 + 2.20312i −0.0519280 + 0.0899419i
\(601\) −18.5683 + 32.1612i −0.757417 + 1.31188i 0.186747 + 0.982408i \(0.440205\pi\)
−0.944164 + 0.329476i \(0.893128\pi\)
\(602\) −5.26271 9.11528i −0.214492 0.371511i
\(603\) −1.52111 −0.0619442
\(604\) 22.1658 + 38.3924i 0.901915 + 1.56216i
\(605\) −22.4807 38.9377i −0.913970 1.58304i
\(606\) −20.3840 −0.828045
\(607\) 7.11625 + 12.3257i 0.288840 + 0.500285i 0.973533 0.228546i \(-0.0733972\pi\)
−0.684693 + 0.728831i \(0.740064\pi\)
\(608\) 15.4269 26.7202i 0.625644 1.08365i
\(609\) −4.42543 + 7.66507i −0.179327 + 0.310604i
\(610\) −25.3106 −1.02480
\(611\) 0 0
\(612\) 2.00431 0.0810195
\(613\) −15.1570 + 26.2526i −0.612184 + 1.06033i 0.378687 + 0.925525i \(0.376376\pi\)
−0.990872 + 0.134810i \(0.956958\pi\)
\(614\) −6.71528 + 11.6312i −0.271007 + 0.469398i
\(615\) 11.6468 + 20.1728i 0.469642 + 0.813444i
\(616\) −4.50365 −0.181457
\(617\) 12.4819 + 21.6192i 0.502501 + 0.870358i 0.999996 + 0.00289086i \(0.000920192\pi\)
−0.497494 + 0.867467i \(0.665746\pi\)
\(618\) 11.2567 + 19.4971i 0.452810 + 0.784289i
\(619\) 35.6122 1.43138 0.715688 0.698420i \(-0.246113\pi\)
0.715688 + 0.698420i \(0.246113\pi\)
\(620\) 32.5734 + 56.4188i 1.30818 + 2.26584i
\(621\) 1.01357 1.75556i 0.0406733 0.0704482i
\(622\) −12.3337 + 21.3626i −0.494536 + 0.856561i
\(623\) −22.6015 −0.905509
\(624\) 0 0
\(625\) −17.0465 −0.681861
\(626\) −34.7240 + 60.1438i −1.38785 + 2.40383i
\(627\) −9.38889 + 16.2620i −0.374956 + 0.649443i
\(628\) −11.4721 19.8702i −0.457785 0.792907i
\(629\) 8.02608 0.320021
\(630\) 7.72737 + 13.3842i 0.307866 + 0.533239i
\(631\) −11.9415 20.6832i −0.475382 0.823385i 0.524221 0.851582i \(-0.324357\pi\)
−0.999602 + 0.0281972i \(0.991023\pi\)
\(632\) 1.51812 0.0603877
\(633\) 11.6223 + 20.1304i 0.461945 + 0.800112i
\(634\) −4.60829 + 7.98180i −0.183019 + 0.316998i
\(635\) −23.1821 + 40.1526i −0.919953 + 1.59341i
\(636\) −1.19328 −0.0473165
\(637\) 0 0
\(638\) 39.8611 1.57812
\(639\) −1.18933 + 2.05999i −0.0470493 + 0.0814918i
\(640\) −5.42237 + 9.39182i −0.214338 + 0.371244i
\(641\) 12.3288 + 21.3542i 0.486960 + 0.843440i 0.999888 0.0149922i \(-0.00477233\pi\)
−0.512927 + 0.858432i \(0.671439\pi\)
\(642\) −20.2282 −0.798343
\(643\) −23.9083 41.4103i −0.942850 1.63306i −0.760000 0.649923i \(-0.774801\pi\)
−0.182850 0.983141i \(-0.558532\pi\)
\(644\) −5.00604 8.67072i −0.197266 0.341674i
\(645\) 7.67456 0.302186
\(646\) −3.55161 6.15156i −0.139736 0.242030i
\(647\) 2.69471 4.66737i 0.105940 0.183493i −0.808182 0.588933i \(-0.799548\pi\)
0.914122 + 0.405440i \(0.132882\pi\)
\(648\) 0.202907 0.351445i 0.00797092 0.0138060i
\(649\) −23.2814 −0.913876
\(650\) 0 0
\(651\) 19.8388 0.777543
\(652\) 12.1405 21.0279i 0.475458 0.823517i
\(653\) 2.51895 4.36295i 0.0985741 0.170735i −0.812521 0.582933i \(-0.801905\pi\)
0.911095 + 0.412197i \(0.135239\pi\)
\(654\) −20.7397 35.9223i −0.810988 1.40467i
\(655\) 10.0526 0.392789
\(656\) 12.3675 + 21.4212i 0.482871 + 0.836358i
\(657\) −3.70560 6.41828i −0.144569 0.250401i
\(658\) −17.5036 −0.682363
\(659\) 21.9906 + 38.0888i 0.856632 + 1.48373i 0.875122 + 0.483902i \(0.160781\pi\)
−0.0184899 + 0.999829i \(0.505886\pi\)
\(660\) 18.2216 31.5608i 0.709276 1.22850i
\(661\) 19.1097 33.0989i 0.743280 1.28740i −0.207714 0.978190i \(-0.566602\pi\)
0.950994 0.309210i \(-0.100064\pi\)
\(662\) 22.9748 0.892940
\(663\) 0 0
\(664\) −0.936608 −0.0363474
\(665\) 14.3388 24.8355i 0.556034 0.963079i
\(666\) 9.01722 15.6183i 0.349410 0.605196i
\(667\) 3.99247 + 6.91516i 0.154589 + 0.267756i
\(668\) 17.8261 0.689713
\(669\) 5.36927 + 9.29985i 0.207588 + 0.359553i
\(670\) −5.23109 9.06051i −0.202094 0.350038i
\(671\) 18.1752 0.701647
\(672\) 9.11745 + 15.7919i 0.351713 + 0.609185i
\(673\) 3.33244 5.77195i 0.128456 0.222492i −0.794623 0.607104i \(-0.792331\pi\)
0.923079 + 0.384611i \(0.125665\pi\)
\(674\) 7.22132 12.5077i 0.278155 0.481779i
\(675\) −6.26875 −0.241284
\(676\) 0 0
\(677\) 4.80194 0.184553 0.0922767 0.995733i \(-0.470586\pi\)
0.0922767 + 0.995733i \(0.470586\pi\)
\(678\) −9.92908 + 17.1977i −0.381324 + 0.660472i
\(679\) 18.1211 31.3867i 0.695424 1.20451i
\(680\) 0.621097 + 1.07577i 0.0238180 + 0.0412539i
\(681\) 6.97584 0.267315
\(682\) −44.6734 77.3766i −1.71063 2.96290i
\(683\) −5.62953 9.75063i −0.215408 0.373098i 0.737991 0.674811i \(-0.235775\pi\)
−0.953399 + 0.301713i \(0.902441\pi\)
\(684\) −8.35690 −0.319534
\(685\) −38.6368 66.9209i −1.47624 2.55692i
\(686\) −20.6048 + 35.6886i −0.786696 + 1.36260i
\(687\) −8.40246 + 14.5535i −0.320574 + 0.555250i
\(688\) 8.14952 0.310698
\(689\) 0 0
\(690\) 13.9427 0.530790
\(691\) 12.3572 21.4033i 0.470090 0.814219i −0.529325 0.848419i \(-0.677555\pi\)
0.999415 + 0.0341997i \(0.0108882\pi\)
\(692\) 19.8443 34.3714i 0.754369 1.30660i
\(693\) −5.54892 9.61101i −0.210786 0.365092i
\(694\) 5.54048 0.210314
\(695\) −1.64914 2.85640i −0.0625556 0.108350i
\(696\) 0.799249 + 1.38434i 0.0302955 + 0.0524733i
\(697\) 6.32736 0.239666
\(698\) −0.425665 0.737273i −0.0161116 0.0279062i
\(699\) 4.34601 7.52751i 0.164381 0.284717i
\(700\) −15.4807 + 26.8133i −0.585115 + 1.01345i
\(701\) 25.8920 0.977927 0.488964 0.872304i \(-0.337375\pi\)
0.488964 + 0.872304i \(0.337375\pi\)
\(702\) 0 0
\(703\) −33.4644 −1.26213
\(704\) 23.4560 40.6270i 0.884031 1.53119i
\(705\) 6.38135 11.0528i 0.240336 0.416274i
\(706\) −32.9540 57.0779i −1.24024 2.14816i
\(707\) −22.3545 −0.840728
\(708\) −5.18060 8.97307i −0.194699 0.337229i
\(709\) −0.0425810 0.0737525i −0.00159916 0.00276983i 0.865225 0.501384i \(-0.167176\pi\)
−0.866824 + 0.498614i \(0.833842\pi\)
\(710\) −16.3605 −0.613998
\(711\) 1.87047 + 3.23975i 0.0701481 + 0.121500i
\(712\) −2.04096 + 3.53504i −0.0764881 + 0.132481i
\(713\) 8.94893 15.5000i 0.335140 0.580479i
\(714\) 4.19806 0.157109
\(715\) 0 0
\(716\) −43.6760 −1.63225
\(717\) −11.4596 + 19.8486i −0.427966 + 0.741258i
\(718\) 22.8988 39.6619i 0.854576 1.48017i
\(719\) −13.5254 23.4267i −0.504413 0.873669i −0.999987 0.00510319i \(-0.998376\pi\)
0.495574 0.868566i \(-0.334958\pi\)
\(720\) −11.9661 −0.445952
\(721\) 12.3448 + 21.3818i 0.459745 + 0.796302i
\(722\) −4.65644 8.06519i −0.173295 0.300155i
\(723\) −21.9801 −0.817451
\(724\) 11.0813 + 19.1933i 0.411832 + 0.713315i
\(725\) 12.3463 21.3844i 0.458530 0.794198i
\(726\) −13.7213 + 23.7660i −0.509246 + 0.882040i
\(727\) −47.1584 −1.74901 −0.874503 0.485019i \(-0.838813\pi\)
−0.874503 + 0.485019i \(0.838813\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 25.4871 44.1449i 0.943320 1.63388i
\(731\) 1.04234 1.80539i 0.0385525 0.0667749i
\(732\) 4.04437 + 7.00505i 0.149484 + 0.258914i
\(733\) −9.68186 −0.357608 −0.178804 0.983885i \(-0.557223\pi\)
−0.178804 + 0.983885i \(0.557223\pi\)
\(734\) −2.35892 4.08577i −0.0870693 0.150809i
\(735\) −3.27479 5.67210i −0.120792 0.209219i
\(736\) 16.4509 0.606388
\(737\) 3.75637 + 6.50623i 0.138368 + 0.239660i
\(738\) 7.10872 12.3127i 0.261676 0.453235i
\(739\) −18.1570 + 31.4488i −0.667915 + 1.15686i 0.310571 + 0.950550i \(0.399480\pi\)
−0.978486 + 0.206313i \(0.933854\pi\)
\(740\) 64.9466 2.38748
\(741\) 0 0
\(742\) −2.49934 −0.0917535
\(743\) 20.8768 36.1597i 0.765896 1.32657i −0.173876 0.984768i \(-0.555629\pi\)
0.939772 0.341803i \(-0.111037\pi\)
\(744\) 1.79148 3.10293i 0.0656788 0.113759i
\(745\) −17.2193 29.8247i −0.630866 1.09269i
\(746\) 39.4950 1.44602
\(747\) −1.15399 1.99877i −0.0422223 0.0731311i
\(748\) −4.94965 8.57304i −0.180977 0.313462i
\(749\) −22.1836 −0.810571
\(750\) −4.36323 7.55734i −0.159323 0.275955i
\(751\) 11.0963 19.2194i 0.404911 0.701327i −0.589400 0.807841i \(-0.700636\pi\)
0.994311 + 0.106515i \(0.0339691\pi\)
\(752\) 6.77628 11.7369i 0.247106 0.427999i
\(753\) −26.6437 −0.970950
\(754\) 0 0
\(755\) −67.7036 −2.46399
\(756\) 2.46950 4.27730i 0.0898149 0.155564i
\(757\) −4.61865 + 7.99973i −0.167868 + 0.290755i −0.937670 0.347527i \(-0.887021\pi\)
0.769802 + 0.638282i \(0.220355\pi\)
\(758\) −7.51895 13.0232i −0.273101 0.473024i
\(759\) −10.0121 −0.363416
\(760\) −2.58964 4.48538i −0.0939360 0.162702i
\(761\) 3.75086 + 6.49669i 0.135969 + 0.235505i 0.925967 0.377604i \(-0.123252\pi\)
−0.789998 + 0.613109i \(0.789919\pi\)
\(762\) 28.2989 1.02516
\(763\) −22.7446 39.3948i −0.823409 1.42619i
\(764\) 7.23985 12.5398i 0.261929 0.453673i
\(765\) −1.53050 + 2.65090i −0.0553353 + 0.0958436i
\(766\) −39.1140 −1.41325
\(767\) 0 0
\(768\) −12.3773 −0.446629
\(769\) −2.57002 + 4.45141i −0.0926774 + 0.160522i −0.908637 0.417587i \(-0.862876\pi\)
0.815959 + 0.578109i \(0.196209\pi\)
\(770\) 38.1655 66.1045i 1.37539 2.38224i
\(771\) 11.5722 + 20.0436i 0.416762 + 0.721853i
\(772\) 23.8869 0.859708
\(773\) 4.25086 + 7.36271i 0.152893 + 0.264818i 0.932290 0.361712i \(-0.117808\pi\)
−0.779397 + 0.626531i \(0.784474\pi\)
\(774\) −2.34213 4.05668i −0.0841860 0.145814i
\(775\) −55.3473 −1.98813
\(776\) −3.27274 5.66855i −0.117485 0.203489i
\(777\) 9.88889 17.1281i 0.354762 0.614466i
\(778\) −24.5746 + 42.5645i −0.881043 + 1.52601i
\(779\) −26.3817 −0.945221
\(780\) 0 0
\(781\) 11.7482 0.420385
\(782\) 1.89367 3.27994i 0.0677176 0.117290i
\(783\) −1.96950 + 3.41127i −0.0703842 + 0.121909i
\(784\) −3.47746 6.02314i −0.124195 0.215112i
\(785\) 35.0404 1.25065
\(786\) −3.06787 5.31370i −0.109427 0.189533i
\(787\) 3.89277 + 6.74248i 0.138762 + 0.240343i 0.927028 0.374991i \(-0.122354\pi\)
−0.788266 + 0.615335i \(0.789021\pi\)
\(788\) 20.3136 0.723643
\(789\) −9.26420 16.0461i −0.329814 0.571255i
\(790\) −12.8651 + 22.2830i −0.457719 + 0.792793i
\(791\) −10.8889 + 18.8601i −0.387164 + 0.670588i
\(792\) −2.00431 −0.0712201
\(793\) 0 0
\(794\) 9.05190 0.321240
\(795\) 0.911190 1.57823i 0.0323166 0.0559740i
\(796\) 1.71960 2.97843i 0.0609494 0.105568i
\(797\) −10.6920 18.5191i −0.378731 0.655981i 0.612147 0.790744i \(-0.290306\pi\)
−0.990878 + 0.134763i \(0.956973\pi\)
\(798\) −17.5036 −0.619622
\(799\) −1.73341 3.00235i −0.0613235 0.106215i
\(800\) −25.4364 44.0571i −0.899312 1.55765i
\(801\) −10.0586 −0.355403
\(802\) −20.9080 36.2137i −0.738286 1.27875i
\(803\) −18.3019 + 31.6999i −0.645861 + 1.11866i
\(804\) −1.67174 + 2.89554i −0.0589578 + 0.102118i
\(805\) 15.2905 0.538920
\(806\) 0 0
\(807\) −9.75840 −0.343512
\(808\) −2.01865 + 3.49641i −0.0710160 + 0.123003i
\(809\) −1.14310 + 1.97991i −0.0401894 + 0.0696101i −0.885420 0.464791i \(-0.846129\pi\)
0.845231 + 0.534401i \(0.179463\pi\)
\(810\) 3.43900 + 5.95652i 0.120834 + 0.209291i
\(811\) 17.8079 0.625320 0.312660 0.949865i \(-0.398780\pi\)
0.312660 + 0.949865i \(0.398780\pi\)
\(812\) 9.72737 + 16.8483i 0.341364 + 0.591259i
\(813\) −11.4010 19.7471i −0.399849 0.692560i
\(814\) −89.0721 −3.12198
\(815\) 18.5410 + 32.1140i 0.649463 + 1.12490i
\(816\) −1.62522 + 2.81496i −0.0568940 + 0.0985434i
\(817\) −4.34601 + 7.52751i −0.152048 + 0.263354i
\(818\) 45.3818 1.58674
\(819\) 0 0
\(820\) 51.2006 1.78800
\(821\) −6.95271 + 12.0424i −0.242651 + 0.420284i −0.961469 0.274915i \(-0.911350\pi\)
0.718817 + 0.695199i \(0.244684\pi\)
\(822\) −23.5824 + 40.8459i −0.822531 + 1.42466i
\(823\) 3.62415 + 6.27722i 0.126330 + 0.218810i 0.922252 0.386589i \(-0.126347\pi\)
−0.795922 + 0.605399i \(0.793013\pi\)
\(824\) 4.45904 0.155338
\(825\) 15.4807 + 26.8133i 0.538968 + 0.933520i
\(826\) −10.8509 18.7942i −0.377550 0.653935i
\(827\) 54.1191 1.88191 0.940953 0.338536i \(-0.109932\pi\)
0.940953 + 0.338536i \(0.109932\pi\)
\(828\) −2.22790 3.85883i −0.0774248 0.134104i
\(829\) 2.89589 5.01582i 0.100578 0.174207i −0.811345 0.584568i \(-0.801264\pi\)
0.911923 + 0.410361i \(0.134597\pi\)
\(830\) 7.93714 13.7475i 0.275502 0.477184i
\(831\) 23.9705 0.831526
\(832\) 0 0
\(833\) −1.77910 −0.0616422
\(834\) −1.00657 + 1.74344i −0.0348548 + 0.0603703i
\(835\) −13.6121 + 23.5768i −0.471065 + 0.815909i
\(836\) 20.6374 + 35.7450i 0.713758 + 1.23627i
\(837\) 8.82908 0.305178
\(838\) 15.1169 + 26.1833i 0.522205 + 0.904486i
\(839\) 2.64675 + 4.58431i 0.0913760 + 0.158268i 0.908090 0.418774i \(-0.137540\pi\)
−0.816714 + 0.577042i \(0.804207\pi\)
\(840\) 3.06100 0.105614
\(841\) 6.74214 + 11.6777i 0.232487 + 0.402680i
\(842\) 8.67941 15.0332i 0.299112 0.518077i
\(843\) −2.06249 + 3.57234i −0.0710360 + 0.123038i
\(844\) 51.0930 1.75870
\(845\) 0 0
\(846\) −7.78986 −0.267821
\(847\) −15.0477 + 26.0634i −0.517046 + 0.895550i
\(848\) 0.967582 1.67590i 0.0332269 0.0575507i
\(849\) −7.82789 13.5583i −0.268652 0.465320i
\(850\) −11.7120 −0.401718
\(851\) −8.92141 15.4523i −0.305822 0.529699i
\(852\) 2.61423 + 4.52798i 0.0895620 + 0.155126i
\(853\) −13.5961 −0.465522 −0.232761 0.972534i \(-0.574776\pi\)
−0.232761 + 0.972534i \(0.574776\pi\)
\(854\) 8.47099 + 14.6722i 0.289871 + 0.502072i
\(855\) 6.38135 11.0528i 0.218238 0.377999i
\(856\) −2.00322 + 3.46968i −0.0684687 + 0.118591i
\(857\) −23.8323 −0.814097 −0.407048 0.913407i \(-0.633442\pi\)
−0.407048 + 0.913407i \(0.633442\pi\)
\(858\) 0 0
\(859\) −26.9861 −0.920754 −0.460377 0.887723i \(-0.652286\pi\)
−0.460377 + 0.887723i \(0.652286\pi\)
\(860\) 8.43458 14.6091i 0.287617 0.498167i
\(861\) 7.79590 13.5029i 0.265683 0.460177i
\(862\) 2.45031 + 4.24407i 0.0834580 + 0.144553i
\(863\) −27.0291 −0.920080 −0.460040 0.887898i \(-0.652165\pi\)
−0.460040 + 0.887898i \(0.652165\pi\)
\(864\) 4.05765 + 7.02805i 0.138044 + 0.239099i
\(865\) 30.3064 + 52.4922i 1.03045 + 1.78479i
\(866\) 21.3674 0.726095
\(867\) −8.08426 14.0024i −0.274556 0.475545i
\(868\) 21.8034 37.7646i 0.740057 1.28182i
\(869\) 9.23825 16.0011i 0.313386 0.542801i
\(870\) −27.0925 −0.918520
\(871\) 0 0
\(872\) −8.21552 −0.278213
\(873\) 8.06465 13.9684i 0.272947 0.472758i
\(874\) −7.89559 + 13.6756i −0.267072 + 0.462583i
\(875\) −4.78501 8.28788i −0.161763 0.280182i
\(876\) −16.2903 −0.550397
\(877\) −20.4390 35.4014i −0.690176 1.19542i −0.971780 0.235889i \(-0.924200\pi\)
0.281604 0.959531i \(-0.409134\pi\)
\(878\) −33.3463 57.7575i −1.12538 1.94922i
\(879\) −22.5948 −0.762103
\(880\) 29.5504 + 51.1828i 0.996144 + 1.72537i
\(881\) 11.2482 19.4824i 0.378961 0.656379i −0.611951 0.790896i \(-0.709615\pi\)
0.990911 + 0.134517i \(0.0429482\pi\)
\(882\) −1.99880 + 3.46203i −0.0673032 + 0.116573i
\(883\) −4.16315 −0.140101 −0.0700505 0.997543i \(-0.522316\pi\)
−0.0700505 + 0.997543i \(0.522316\pi\)
\(884\) 0 0
\(885\) 15.8237 0.531908
\(886\) 9.81647 17.0026i 0.329791 0.571214i
\(887\) 13.1501 22.7766i 0.441537 0.764765i −0.556266 0.831004i \(-0.687767\pi\)
0.997804 + 0.0662389i \(0.0211000\pi\)
\(888\) −1.78597 3.09339i −0.0599333 0.103807i
\(889\) 31.0344 1.04086
\(890\) −34.5916 59.9143i −1.15951 2.00833i
\(891\) −2.46950 4.27730i −0.0827314 0.143295i
\(892\) 23.6040 0.790320
\(893\) 7.22737 + 12.5182i 0.241855 + 0.418904i
\(894\) −10.5100 + 18.2038i −0.351506 + 0.608827i
\(895\) 33.3512 57.7659i 1.11481 1.93090i
\(896\) 7.25906 0.242508
\(897\) 0 0
\(898\) 58.1764 1.94137
\(899\) −17.3889 + 30.1184i −0.579952 + 1.00451i
\(900\) −6.88955 + 11.9331i −0.229652 + 0.397768i
\(901\) −0.247512 0.428703i −0.00824582 0.0142822i
\(902\) −70.2199 −2.33807
\(903\) −2.56853 4.44883i −0.0854754 0.148048i
\(904\) 1.96658 + 3.40621i 0.0654073 + 0.113289i
\(905\) −33.8468 −1.12511
\(906\) 20.6618 + 35.7873i 0.686443 + 1.18895i
\(907\) 28.9557 50.1527i 0.961458 1.66529i 0.242613 0.970123i \(-0.421995\pi\)
0.718845 0.695171i \(-0.244671\pi\)
\(908\) 7.66666 13.2790i 0.254427 0.440681i
\(909\) −9.94869 −0.329977
\(910\) 0 0
\(911\) −0.286799 −0.00950208 −0.00475104 0.999989i \(-0.501512\pi\)
−0.00475104 + 0.999989i \(0.501512\pi\)
\(912\) 6.77628 11.7369i 0.224385 0.388646i
\(913\) −5.69955 + 9.87192i −0.188628 + 0.326713i
\(914\) 5.11788 + 8.86442i 0.169284 + 0.293209i
\(915\) −12.3532 −0.408383
\(916\) 18.4691 + 31.9895i 0.610237 + 1.05696i
\(917\) −3.36443 5.82736i −0.111103 0.192436i
\(918\) 1.86831 0.0616635
\(919\) 15.5620 + 26.9541i 0.513342 + 0.889134i 0.999880 + 0.0154747i \(0.00492596\pi\)
−0.486539 + 0.873659i \(0.661741\pi\)
\(920\) 1.38076 2.39155i 0.0455224 0.0788472i
\(921\) −3.27748 + 5.67676i −0.107997 + 0.187056i
\(922\) −2.77133 −0.0912690
\(923\) 0 0
\(924\) −24.3937 −0.802495
\(925\) −27.5886 + 47.7848i −0.907107 + 1.57115i
\(926\) −3.44696 + 5.97031i −0.113274 + 0.196197i
\(927\) 5.49396 + 9.51582i 0.180445 + 0.312540i
\(928\) −31.9661 −1.04934
\(929\) −3.81336 6.60493i −0.125112 0.216701i 0.796665 0.604422i \(-0.206596\pi\)
−0.921777 + 0.387721i \(0.873262\pi\)
\(930\) 30.3632 + 52.5907i 0.995650 + 1.72452i
\(931\) 7.41789 0.243112
\(932\) −9.55280 16.5459i −0.312912 0.541980i
\(933\) −6.01961 + 10.4263i −0.197073 + 0.341341i
\(934\) 7.07982 12.2626i 0.231659 0.401245i
\(935\) 15.1183 0.494421
\(936\) 0 0
\(937\) −5.67324 −0.185337 −0.0926683 0.995697i \(-0.529540\pi\)
−0.0926683 + 0.995697i \(0.529540\pi\)
\(938\) −3.50149 + 6.06476i −0.114328 + 0.198021i
\(939\) −16.9475 + 29.3539i −0.553061 + 0.957929i
\(940\) −14.0266 24.2948i −0.457498 0.792409i
\(941\) 41.5394 1.35415 0.677073 0.735916i \(-0.263248\pi\)
0.677073 + 0.735916i \(0.263248\pi\)
\(942\) −10.6936 18.5219i −0.348418 0.603477i
\(943\) −7.03319 12.1818i −0.229032 0.396695i
\(944\) 16.8030 0.546891
\(945\) 3.77144 + 6.53232i 0.122685 + 0.212496i
\(946\) −11.5678 + 20.0360i −0.376100 + 0.651425i
\(947\) 23.6555 40.9725i 0.768700 1.33143i −0.169568 0.985518i \(-0.554237\pi\)
0.938268 0.345909i \(-0.112429\pi\)
\(948\) 8.22282 0.267065
\(949\) 0 0
\(950\) 48.8327 1.58434
\(951\) −2.24914 + 3.89562i −0.0729332 + 0.126324i
\(952\) 0.415739 0.720081i 0.0134742 0.0233380i
\(953\) 17.1717 + 29.7423i 0.556247 + 0.963449i 0.997805 + 0.0662159i \(0.0210926\pi\)
−0.441558 + 0.897233i \(0.645574\pi\)
\(954\) −1.11231 −0.0360123
\(955\) 11.0567 + 19.1508i 0.357788 + 0.619707i
\(956\) 25.1889 + 43.6284i 0.814666 + 1.41104i
\(957\) 19.4547 0.628882
\(958\) 3.60172 + 6.23836i 0.116366 + 0.201552i
\(959\) −25.8620 + 44.7944i −0.835129 + 1.44649i
\(960\) −15.9424 + 27.6130i −0.514537 + 0.891205i
\(961\) 46.9527 1.51460
\(962\) 0 0
\(963\) −9.87263 −0.318141
\(964\) −24.1569 + 41.8409i −0.778040 + 1.34761i
\(965\) −18.2401 + 31.5928i −0.587170 + 1.01701i
\(966\) −4.66637 8.08238i −0.150138 0.260046i
\(967\) 48.5096 1.55996 0.779982 0.625802i \(-0.215228\pi\)
0.779982 + 0.625802i \(0.215228\pi\)
\(968\) 2.71768 + 4.70715i 0.0873494 + 0.151294i
\(969\) −1.73341 3.00235i −0.0556850 0.0964493i
\(970\) 110.937 3.56198
\(971\) −20.7325 35.9098i −0.665338 1.15240i −0.979194 0.202928i \(-0.934954\pi\)
0.313856 0.949471i \(-0.398379\pi\)
\(972\) 1.09903 1.90358i 0.0352514 0.0610573i
\(973\) −1.10388 + 1.91197i −0.0353886 + 0.0612949i
\(974\) 26.3242 0.843483
\(975\) 0 0
\(976\) −13.1177 −0.419887
\(977\) 1.04838 1.81586i 0.0335408 0.0580944i −0.848768 0.528766i \(-0.822655\pi\)
0.882309 + 0.470671i \(0.155988\pi\)
\(978\) 11.3167 19.6011i 0.361868 0.626774i
\(979\) 24.8397 + 43.0237i 0.793881 + 1.37504i
\(980\) −14.3964 −0.459876
\(981\) −10.1223 17.5323i −0.323180 0.559764i
\(982\) 29.3721 + 50.8740i 0.937301 + 1.62345i
\(983\) 25.2336 0.804826 0.402413 0.915458i \(-0.368172\pi\)
0.402413 + 0.915458i \(0.368172\pi\)
\(984\) −1.40797 2.43867i −0.0448844 0.0777421i
\(985\) −15.5115 + 26.8668i −0.494239 + 0.856047i
\(986\) −3.67964 + 6.37333i −0.117184 + 0.202968i
\(987\) −8.54288 −0.271923
\(988\) 0 0
\(989\) −4.63448 −0.147368
\(990\) 16.9852 29.4193i 0.539826 0.935006i
\(991\) −6.02446 + 10.4347i −0.191373 + 0.331468i −0.945706 0.325025i \(-0.894627\pi\)
0.754332 + 0.656493i \(0.227961\pi\)
\(992\) 35.8253 + 62.0512i 1.13745 + 1.97013i
\(993\) 11.2131 0.355838
\(994\) 5.47554 + 9.48392i 0.173674 + 0.300812i
\(995\) 2.62618 + 4.54867i 0.0832554 + 0.144203i
\(996\) −5.07308 −0.160747
\(997\) 0.717013 + 1.24190i 0.0227080 + 0.0393314i 0.877156 0.480205i \(-0.159438\pi\)
−0.854448 + 0.519537i \(0.826105\pi\)
\(998\) −34.3763 + 59.5415i −1.08816 + 1.88475i
\(999\) 4.40097 7.62270i 0.139240 0.241172i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 507.2.e.i.22.3 6
13.2 odd 12 507.2.j.i.361.4 12
13.3 even 3 inner 507.2.e.i.484.3 6
13.4 even 6 507.2.a.i.1.3 3
13.5 odd 4 507.2.j.i.316.3 12
13.6 odd 12 507.2.b.f.337.4 6
13.7 odd 12 507.2.b.f.337.3 6
13.8 odd 4 507.2.j.i.316.4 12
13.9 even 3 507.2.a.l.1.1 yes 3
13.10 even 6 507.2.e.l.484.1 6
13.11 odd 12 507.2.j.i.361.3 12
13.12 even 2 507.2.e.l.22.1 6
39.17 odd 6 1521.2.a.s.1.1 3
39.20 even 12 1521.2.b.k.1351.4 6
39.32 even 12 1521.2.b.k.1351.3 6
39.35 odd 6 1521.2.a.n.1.3 3
52.35 odd 6 8112.2.a.cp.1.2 3
52.43 odd 6 8112.2.a.cg.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
507.2.a.i.1.3 3 13.4 even 6
507.2.a.l.1.1 yes 3 13.9 even 3
507.2.b.f.337.3 6 13.7 odd 12
507.2.b.f.337.4 6 13.6 odd 12
507.2.e.i.22.3 6 1.1 even 1 trivial
507.2.e.i.484.3 6 13.3 even 3 inner
507.2.e.l.22.1 6 13.12 even 2
507.2.e.l.484.1 6 13.10 even 6
507.2.j.i.316.3 12 13.5 odd 4
507.2.j.i.316.4 12 13.8 odd 4
507.2.j.i.361.3 12 13.11 odd 12
507.2.j.i.361.4 12 13.2 odd 12
1521.2.a.n.1.3 3 39.35 odd 6
1521.2.a.s.1.1 3 39.17 odd 6
1521.2.b.k.1351.3 6 39.32 even 12
1521.2.b.k.1351.4 6 39.20 even 12
8112.2.a.cg.1.2 3 52.43 odd 6
8112.2.a.cp.1.2 3 52.35 odd 6