Properties

Label 507.2.f.d.437.3
Level $507$
Weight $2$
Character 507.437
Analytic conductor $4.048$
Analytic rank $0$
Dimension $8$
CM discriminant -39
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(239,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.56070144.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 16x^{6} - 34x^{5} + 63x^{4} - 74x^{3} + 70x^{2} - 38x + 13 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 437.3
Root \(0.500000 - 0.564882i\) of defining polynomial
Character \(\chi\) \(=\) 507.437
Dual form 507.2.f.d.239.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.06488 - 1.06488i) q^{2} +1.73205 q^{3} -0.267949i q^{4} +(-2.90931 + 2.90931i) q^{5} +(1.84443 - 1.84443i) q^{6} +(1.84443 + 1.84443i) q^{8} +3.00000 q^{9} +6.19615i q^{10} +(0.779548 + 0.779548i) q^{11} -0.464102i q^{12} +(-5.03908 + 5.03908i) q^{15} +4.46410 q^{16} +(3.19465 - 3.19465i) q^{18} +(0.779548 + 0.779548i) q^{20} +1.66025 q^{22} +(3.19465 + 3.19465i) q^{24} -11.9282i q^{25} +5.19615 q^{27} +10.7321i q^{30} +(1.06488 - 1.06488i) q^{32} +(1.35022 + 1.35022i) q^{33} -0.803848i q^{36} -10.7321 q^{40} +(7.16884 - 7.16884i) q^{41} -4.00000i q^{43} +(0.208879 - 0.208879i) q^{44} +(-8.72794 + 8.72794i) q^{45} +(-6.59817 - 6.59817i) q^{47} +7.73205 q^{48} +7.00000i q^{49} +(-12.7021 - 12.7021i) q^{50} +(5.53329 - 5.53329i) q^{54} -4.53590 q^{55} +(-10.8577 - 10.8577i) q^{59} +(1.35022 + 1.35022i) q^{60} -13.8564 q^{61} +6.66025i q^{64} +2.87564 q^{66} +(3.47998 - 3.47998i) q^{71} +(5.53329 + 5.53329i) q^{72} -20.6603i q^{75} +10.3923 q^{79} +(-12.9875 + 12.9875i) q^{80} +9.00000 q^{81} -15.2679i q^{82} +(9.29861 - 9.29861i) q^{83} +(-4.25953 - 4.25953i) q^{86} +2.87564i q^{88} +(12.9875 + 12.9875i) q^{89} +18.5885i q^{90} -14.0526 q^{94} +(1.84443 - 1.84443i) q^{96} +(7.45418 + 7.45418i) q^{98} +(2.33864 + 2.33864i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 24 q^{9} + 8 q^{16} - 56 q^{22} - 72 q^{40} + 48 q^{48} - 64 q^{55} + 120 q^{66} + 72 q^{81} + 40 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06488 1.06488i 0.752986 0.752986i −0.222050 0.975035i \(-0.571275\pi\)
0.975035 + 0.222050i \(0.0712747\pi\)
\(3\) 1.73205 1.00000
\(4\) 0.267949i 0.133975i
\(5\) −2.90931 + 2.90931i −1.30108 + 1.30108i −0.373423 + 0.927661i \(0.621816\pi\)
−0.927661 + 0.373423i \(0.878184\pi\)
\(6\) 1.84443 1.84443i 0.752986 0.752986i
\(7\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(8\) 1.84443 + 1.84443i 0.652105 + 0.652105i
\(9\) 3.00000 1.00000
\(10\) 6.19615i 1.95940i
\(11\) 0.779548 + 0.779548i 0.235043 + 0.235043i 0.814794 0.579751i \(-0.196850\pi\)
−0.579751 + 0.814794i \(0.696850\pi\)
\(12\) 0.464102i 0.133975i
\(13\) 0 0
\(14\) 0 0
\(15\) −5.03908 + 5.03908i −1.30108 + 1.30108i
\(16\) 4.46410 1.11603
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 3.19465 3.19465i 0.752986 0.752986i
\(19\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(20\) 0.779548 + 0.779548i 0.174312 + 0.174312i
\(21\) 0 0
\(22\) 1.66025 0.353967
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 3.19465 + 3.19465i 0.652105 + 0.652105i
\(25\) 11.9282i 2.38564i
\(26\) 0 0
\(27\) 5.19615 1.00000
\(28\) 0 0
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 10.7321i 1.95940i
\(31\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(32\) 1.06488 1.06488i 0.188246 0.188246i
\(33\) 1.35022 + 1.35022i 0.235043 + 0.235043i
\(34\) 0 0
\(35\) 0 0
\(36\) 0.803848i 0.133975i
\(37\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −10.7321 −1.69689
\(41\) 7.16884 7.16884i 1.11959 1.11959i 0.127783 0.991802i \(-0.459214\pi\)
0.991802 0.127783i \(-0.0407861\pi\)
\(42\) 0 0
\(43\) 4.00000i 0.609994i −0.952353 0.304997i \(-0.901344\pi\)
0.952353 0.304997i \(-0.0986555\pi\)
\(44\) 0.208879 0.208879i 0.0314897 0.0314897i
\(45\) −8.72794 + 8.72794i −1.30108 + 1.30108i
\(46\) 0 0
\(47\) −6.59817 6.59817i −0.962443 0.962443i 0.0368772 0.999320i \(-0.488259\pi\)
−0.999320 + 0.0368772i \(0.988259\pi\)
\(48\) 7.73205 1.11603
\(49\) 7.00000i 1.00000i
\(50\) −12.7021 12.7021i −1.79635 1.79635i
\(51\) 0 0
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 5.53329 5.53329i 0.752986 0.752986i
\(55\) −4.53590 −0.611620
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −10.8577 10.8577i −1.41355 1.41355i −0.728392 0.685160i \(-0.759732\pi\)
−0.685160 0.728392i \(-0.740268\pi\)
\(60\) 1.35022 + 1.35022i 0.174312 + 0.174312i
\(61\) −13.8564 −1.77413 −0.887066 0.461644i \(-0.847260\pi\)
−0.887066 + 0.461644i \(0.847260\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 6.66025i 0.832532i
\(65\) 0 0
\(66\) 2.87564 0.353967
\(67\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 3.47998 3.47998i 0.412998 0.412998i −0.469784 0.882782i \(-0.655668\pi\)
0.882782 + 0.469784i \(0.155668\pi\)
\(72\) 5.53329 + 5.53329i 0.652105 + 0.652105i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 20.6603i 2.38564i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 10.3923 1.16923 0.584613 0.811312i \(-0.301246\pi\)
0.584613 + 0.811312i \(0.301246\pi\)
\(80\) −12.9875 + 12.9875i −1.45204 + 1.45204i
\(81\) 9.00000 1.00000
\(82\) 15.2679i 1.68606i
\(83\) 9.29861 9.29861i 1.02065 1.02065i 0.0208726 0.999782i \(-0.493356\pi\)
0.999782 0.0208726i \(-0.00664445\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −4.25953 4.25953i −0.459317 0.459317i
\(87\) 0 0
\(88\) 2.87564i 0.306545i
\(89\) 12.9875 + 12.9875i 1.37667 + 1.37667i 0.850185 + 0.526484i \(0.176490\pi\)
0.526484 + 0.850185i \(0.323510\pi\)
\(90\) 18.5885i 1.95940i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −14.0526 −1.44941
\(95\) 0 0
\(96\) 1.84443 1.84443i 0.188246 0.188246i
\(97\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(98\) 7.45418 + 7.45418i 0.752986 + 0.752986i
\(99\) 2.33864 + 2.33864i 0.235043 + 0.235043i
\(100\) −3.19615 −0.319615
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 16.0000i 1.57653i 0.615338 + 0.788263i \(0.289020\pi\)
−0.615338 + 0.788263i \(0.710980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 1.39230i 0.133975i
\(109\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(110\) −4.83020 + 4.83020i −0.460541 + 0.460541i
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) −23.1244 −2.12877
\(119\) 0 0
\(120\) −18.5885 −1.69689
\(121\) 9.78461i 0.889510i
\(122\) −14.7554 + 14.7554i −1.33590 + 1.33590i
\(123\) 12.4168 12.4168i 1.11959 1.11959i
\(124\) 0 0
\(125\) 20.1563 + 20.1563i 1.80284 + 1.80284i
\(126\) 0 0
\(127\) 17.3205i 1.53695i −0.639882 0.768473i \(-0.721017\pi\)
0.639882 0.768473i \(-0.278983\pi\)
\(128\) 9.22215 + 9.22215i 0.815131 + 0.815131i
\(129\) 6.92820i 0.609994i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0.361790 0.361790i 0.0314897 0.0314897i
\(133\) 0 0
\(134\) 0 0
\(135\) −15.1172 + 15.1172i −1.30108 + 1.30108i
\(136\) 0 0
\(137\) 10.2870 + 10.2870i 0.878881 + 0.878881i 0.993419 0.114538i \(-0.0365388\pi\)
−0.114538 + 0.993419i \(0.536539\pi\)
\(138\) 0 0
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 0 0
\(141\) −11.4284 11.4284i −0.962443 0.962443i
\(142\) 7.41154i 0.621963i
\(143\) 0 0
\(144\) 13.3923 1.11603
\(145\) 0 0
\(146\) 0 0
\(147\) 12.1244i 1.00000i
\(148\) 0 0
\(149\) 0.208879 0.208879i 0.0171121 0.0171121i −0.698499 0.715611i \(-0.746148\pi\)
0.715611 + 0.698499i \(0.246148\pi\)
\(150\) −22.0007 22.0007i −1.79635 1.79635i
\(151\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 11.0666 11.0666i 0.880410 0.880410i
\(159\) 0 0
\(160\) 6.19615i 0.489849i
\(161\) 0 0
\(162\) 9.58394 9.58394i 0.752986 0.752986i
\(163\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(164\) −1.92089 1.92089i −0.149996 0.149996i
\(165\) −7.85641 −0.611620
\(166\) 19.8038i 1.53708i
\(167\) −8.15727 8.15727i −0.631229 0.631229i 0.317148 0.948376i \(-0.397275\pi\)
−0.948376 + 0.317148i \(0.897275\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) −1.07180 −0.0817237
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.47998 + 3.47998i 0.262313 + 0.262313i
\(177\) −18.8061 18.8061i −1.41355 1.41355i
\(178\) 27.6603 2.07322
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 2.33864 + 2.33864i 0.174312 + 0.174312i
\(181\) 10.0000i 0.743294i −0.928374 0.371647i \(-0.878793\pi\)
0.928374 0.371647i \(-0.121207\pi\)
\(182\) 0 0
\(183\) −24.0000 −1.77413
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) −1.76798 + 1.76798i −0.128943 + 0.128943i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 11.5359i 0.832532i
\(193\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 1.87564 0.133975
\(197\) −17.2470 + 17.2470i −1.22880 + 1.22880i −0.264379 + 0.964419i \(0.585167\pi\)
−0.964419 + 0.264379i \(0.914833\pi\)
\(198\) 4.98076 0.353967
\(199\) 24.2487i 1.71895i 0.511182 + 0.859473i \(0.329208\pi\)
−0.511182 + 0.859473i \(0.670792\pi\)
\(200\) 22.0007 22.0007i 1.55569 1.55569i
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 41.7128i 2.91335i
\(206\) 17.0381 + 17.0381i 1.18710 + 1.18710i
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 3.46410 0.238479 0.119239 0.992866i \(-0.461954\pi\)
0.119239 + 0.992866i \(0.461954\pi\)
\(212\) 0 0
\(213\) 6.02751 6.02751i 0.412998 0.412998i
\(214\) 0 0
\(215\) 11.6373 + 11.6373i 0.793654 + 0.793654i
\(216\) 9.58394 + 9.58394i 0.652105 + 0.652105i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 1.21539i 0.0819416i
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(224\) 0 0
\(225\) 35.7846i 2.38564i
\(226\) 0 0
\(227\) −20.9359 + 20.9359i −1.38956 + 1.38956i −0.563329 + 0.826232i \(0.690480\pi\)
−0.826232 + 0.563329i \(0.809520\pi\)
\(228\) 0 0
\(229\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 38.3923 2.50444
\(236\) −2.90931 + 2.90931i −0.189380 + 0.189380i
\(237\) 18.0000 1.16923
\(238\) 0 0
\(239\) 18.2354 18.2354i 1.17955 1.17955i 0.199693 0.979858i \(-0.436005\pi\)
0.979858 0.199693i \(-0.0639945\pi\)
\(240\) −22.4950 + 22.4950i −1.45204 + 1.45204i
\(241\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(242\) −10.4195 10.4195i −0.669788 0.669788i
\(243\) 15.5885 1.00000
\(244\) 3.71281i 0.237688i
\(245\) −20.3652 20.3652i −1.30108 1.30108i
\(246\) 26.4449i 1.68606i
\(247\) 0 0
\(248\) 0 0
\(249\) 16.1057 16.1057i 1.02065 1.02065i
\(250\) 42.9282 2.71502
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −18.4443 18.4443i −1.15730 1.15730i
\(255\) 0 0
\(256\) 6.32051 0.395032
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) −7.37772 7.37772i −0.459317 0.459317i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 4.98076i 0.306545i
\(265\) 0 0
\(266\) 0 0
\(267\) 22.4950 + 22.4950i 1.37667 + 1.37667i
\(268\) 0 0
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 32.1962i 1.95940i
\(271\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 21.9090 1.32357
\(275\) 9.29861 9.29861i 0.560727 0.560727i
\(276\) 0 0
\(277\) 22.0000i 1.32185i 0.750451 + 0.660926i \(0.229836\pi\)
−0.750451 + 0.660926i \(0.770164\pi\)
\(278\) −21.2976 + 21.2976i −1.27735 + 1.27735i
\(279\) 0 0
\(280\) 0 0
\(281\) −9.86928 9.86928i −0.588752 0.588752i 0.348542 0.937293i \(-0.386677\pi\)
−0.937293 + 0.348542i \(0.886677\pi\)
\(282\) −24.3397 −1.44941
\(283\) 17.3205i 1.02960i −0.857311 0.514799i \(-0.827867\pi\)
0.857311 0.514799i \(-0.172133\pi\)
\(284\) −0.932458 0.932458i −0.0553312 0.0553312i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 3.19465 3.19465i 0.188246 0.188246i
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −23.0656 23.0656i −1.34751 1.34751i −0.888359 0.459149i \(-0.848154\pi\)
−0.459149 0.888359i \(-0.651846\pi\)
\(294\) 12.9110 + 12.9110i 0.752986 + 0.752986i
\(295\) 63.1769 3.67830
\(296\) 0 0
\(297\) 4.05065 + 4.05065i 0.235043 + 0.235043i
\(298\) 0.444864i 0.0257703i
\(299\) 0 0
\(300\) −5.53590 −0.319615
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 40.3126 40.3126i 2.30829 2.30829i
\(306\) 0 0
\(307\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(308\) 0 0
\(309\) 27.7128i 1.57653i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −34.6410 −1.95803 −0.979013 0.203798i \(-0.934671\pi\)
−0.979013 + 0.203798i \(0.934671\pi\)
\(314\) 2.12976 2.12976i 0.120190 0.120190i
\(315\) 0 0
\(316\) 2.78461i 0.156647i
\(317\) −11.8461 + 11.8461i −0.665345 + 0.665345i −0.956635 0.291290i \(-0.905916\pi\)
0.291290 + 0.956635i \(0.405916\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −19.3768 19.3768i −1.08319 1.08319i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 2.41154i 0.133975i
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 26.4449 1.46017
\(329\) 0 0
\(330\) −8.36615 + 8.36615i −0.460541 + 0.460541i
\(331\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(332\) −2.49155 2.49155i −0.136742 0.136742i
\(333\) 0 0
\(334\) −17.3731 −0.950612
\(335\) 0 0
\(336\) 0 0
\(337\) 6.92820i 0.377403i −0.982034 0.188702i \(-0.939572\pi\)
0.982034 0.188702i \(-0.0604279\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 7.37772 7.37772i 0.397780 0.397780i
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.66025 0.0884918
\(353\) −1.76798 + 1.76798i −0.0940998 + 0.0940998i −0.752590 0.658490i \(-0.771196\pi\)
0.658490 + 0.752590i \(0.271196\pi\)
\(354\) −40.0526 −2.12877
\(355\) 20.2487i 1.07469i
\(356\) 3.47998 3.47998i 0.184439 0.184439i
\(357\) 0 0
\(358\) 0 0
\(359\) 26.7545 + 26.7545i 1.41205 + 1.41205i 0.745143 + 0.666905i \(0.232381\pi\)
0.666905 + 0.745143i \(0.267619\pi\)
\(360\) −32.1962 −1.69689
\(361\) 19.0000i 1.00000i
\(362\) −10.6488 10.6488i −0.559690 0.559690i
\(363\) 16.9474i 0.889510i
\(364\) 0 0
\(365\) 0 0
\(366\) −25.5572 + 25.5572i −1.33590 + 1.33590i
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 0 0
\(369\) 21.5065 21.5065i 1.11959 1.11959i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −13.8564 −0.717458 −0.358729 0.933442i \(-0.616790\pi\)
−0.358729 + 0.933442i \(0.616790\pi\)
\(374\) 0 0
\(375\) 34.9118 + 34.9118i 1.80284 + 1.80284i
\(376\) 24.3397i 1.25523i
\(377\) 0 0
\(378\) 0 0
\(379\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(380\) 0 0
\(381\) 30.0000i 1.53695i
\(382\) 0 0
\(383\) −11.9990 + 11.9990i −0.613122 + 0.613122i −0.943758 0.330636i \(-0.892737\pi\)
0.330636 + 0.943758i \(0.392737\pi\)
\(384\) 15.9732 + 15.9732i 0.815131 + 0.815131i
\(385\) 0 0
\(386\) 0 0
\(387\) 12.0000i 0.609994i
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −12.9110 + 12.9110i −0.652105 + 0.652105i
\(393\) 0 0
\(394\) 36.7321i 1.85053i
\(395\) −30.2345 + 30.2345i −1.52126 + 1.52126i
\(396\) 0.626638 0.626638i 0.0314897 0.0314897i
\(397\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(398\) 25.8220 + 25.8220i 1.29434 + 1.29434i
\(399\) 0 0
\(400\) 53.2487i 2.66244i
\(401\) 21.9243 + 21.9243i 1.09485 + 1.09485i 0.995003 + 0.0998435i \(0.0318342\pi\)
0.0998435 + 0.995003i \(0.468166\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) −26.1838 + 26.1838i −1.30108 + 1.30108i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(410\) 44.4192 + 44.4192i 2.19371 + 2.19371i
\(411\) 17.8177 + 17.8177i 0.878881 + 0.878881i
\(412\) 4.28719 0.211215
\(413\) 0 0
\(414\) 0 0
\(415\) 54.1051i 2.65592i
\(416\) 0 0
\(417\) −34.6410 −1.69638
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) 3.68886 3.68886i 0.179571 0.179571i
\(423\) −19.7945 19.7945i −0.962443 0.962443i
\(424\) 0 0
\(425\) 0 0
\(426\) 12.8372i 0.621963i
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 24.7846 1.19522
\(431\) 28.3136 28.3136i 1.36382 1.36382i 0.494824 0.868993i \(-0.335233\pi\)
0.868993 0.494824i \(-0.164767\pi\)
\(432\) 23.1962 1.11603
\(433\) 20.7846i 0.998845i −0.866359 0.499422i \(-0.833546\pi\)
0.866359 0.499422i \(-0.166454\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 40.0000i 1.90910i 0.298057 + 0.954548i \(0.403661\pi\)
−0.298057 + 0.954548i \(0.596339\pi\)
\(440\) −8.36615 8.36615i −0.398841 0.398841i
\(441\) 21.0000i 1.00000i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) −75.5692 −3.58232
\(446\) 0 0
\(447\) 0.361790 0.361790i 0.0171121 0.0171121i
\(448\) 0 0
\(449\) −7.58660 7.58660i −0.358034 0.358034i 0.505054 0.863088i \(-0.331473\pi\)
−0.863088 + 0.505054i \(0.831473\pi\)
\(450\) −38.1064 38.1064i −1.79635 1.79635i
\(451\) 11.1769 0.526300
\(452\) 0 0
\(453\) 0 0
\(454\) 44.5885i 2.09264i
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −17.6648 + 17.6648i −0.822730 + 0.822730i −0.986499 0.163769i \(-0.947635\pi\)
0.163769 + 0.986499i \(0.447635\pi\)
\(462\) 0 0
\(463\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 40.8833 40.8833i 1.88581 1.88581i
\(471\) 3.46410 0.159617
\(472\) 40.0526i 1.84357i
\(473\) 3.11819 3.11819i 0.143375 0.143375i
\(474\) 19.1679 19.1679i 0.880410 0.880410i
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 38.8372i 1.77637i
\(479\) −23.6363 23.6363i −1.07997 1.07997i −0.996511 0.0834585i \(-0.973403\pi\)
−0.0834585 0.996511i \(-0.526597\pi\)
\(480\) 10.7321i 0.489849i
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −2.62178 −0.119172
\(485\) 0 0
\(486\) 16.5999 16.5999i 0.752986 0.752986i
\(487\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(488\) −25.5572 25.5572i −1.15692 1.15692i
\(489\) 0 0
\(490\) −43.3731 −1.95940
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) −3.32707 3.32707i −0.149996 0.149996i
\(493\) 0 0
\(494\) 0 0
\(495\) −13.6077 −0.611620
\(496\) 0 0
\(497\) 0 0
\(498\) 34.3013i 1.53708i
\(499\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) 5.40087 5.40087i 0.241534 0.241534i
\(501\) −14.1288 14.1288i −0.631229 0.631229i
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −4.64102 −0.205912
\(509\) −8.31018 + 8.31018i −0.368342 + 0.368342i −0.866872 0.498530i \(-0.833873\pi\)
0.498530 + 0.866872i \(0.333873\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −11.7137 + 11.7137i −0.517678 + 0.517678i
\(513\) 0 0
\(514\) 0 0
\(515\) −46.5490 46.5490i −2.05119 2.05119i
\(516\) −1.85641 −0.0817237
\(517\) 10.2872i 0.452430i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 44.0000 1.92399 0.961993 0.273075i \(-0.0880406\pi\)
0.961993 + 0.273075i \(0.0880406\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 6.02751 + 6.02751i 0.262313 + 0.262313i
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) −32.5731 32.5731i −1.41355 1.41355i
\(532\) 0 0
\(533\) 0 0
\(534\) 47.9090 2.07322
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.45684 + 5.45684i −0.235043 + 0.235043i
\(540\) 4.05065 + 4.05065i 0.174312 + 0.174312i
\(541\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(542\) 0 0
\(543\) 17.3205i 0.743294i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) 2.75640 2.75640i 0.117748 0.117748i
\(549\) −41.5692 −1.77413
\(550\) 19.8038i 0.844439i
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 23.4274 + 23.4274i 0.995335 + 0.995335i
\(555\) 0 0
\(556\) 5.35898i 0.227272i
\(557\) −2.49155 2.49155i −0.105571 0.105571i 0.652349 0.757919i \(-0.273784\pi\)
−0.757919 + 0.652349i \(0.773784\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −21.0192 −0.886643
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) −3.06222 + 3.06222i −0.128943 + 0.128943i
\(565\) 0 0
\(566\) −18.4443 18.4443i −0.775272 0.775272i
\(567\) 0 0
\(568\) 12.8372 0.538636
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 38.1051i 1.59465i 0.603550 + 0.797325i \(0.293752\pi\)
−0.603550 + 0.797325i \(0.706248\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 19.9808i 0.832532i
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) −18.1030 + 18.1030i −0.752986 + 0.752986i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) −49.1244 −2.02931
\(587\) −29.4549 + 29.4549i −1.21573 + 1.21573i −0.246623 + 0.969111i \(0.579321\pi\)
−0.969111 + 0.246623i \(0.920679\pi\)
\(588\) 3.24871 0.133975
\(589\) 0 0
\(590\) 67.2760 67.2760i 2.76971 2.76971i
\(591\) −29.8727 + 29.8727i −1.22880 + 1.22880i
\(592\) 0 0
\(593\) −27.7429 27.7429i −1.13926 1.13926i −0.988582 0.150683i \(-0.951853\pi\)
−0.150683 0.988582i \(-0.548147\pi\)
\(594\) 8.62693 0.353967
\(595\) 0 0
\(596\) −0.0559690 0.0559690i −0.00229258 0.00229258i
\(597\) 42.0000i 1.71895i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 38.1064 38.1064i 1.55569 1.55569i
\(601\) 48.4974 1.97825 0.989126 0.147074i \(-0.0469854\pi\)
0.989126 + 0.147074i \(0.0469854\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 28.4665 + 28.4665i 1.15733 + 1.15733i
\(606\) 0 0
\(607\) 32.0000 1.29884 0.649420 0.760430i \(-0.275012\pi\)
0.649420 + 0.760430i \(0.275012\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 85.8564i 3.47622i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(614\) 0 0
\(615\) 72.2487i 2.91335i
\(616\) 0 0
\(617\) −33.1438 + 33.1438i −1.33432 + 1.33432i −0.432855 + 0.901464i \(0.642494\pi\)
−0.901464 + 0.432855i \(0.857506\pi\)
\(618\) 29.5109 + 29.5109i 1.18710 + 1.18710i
\(619\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −57.6410 −2.30564
\(626\) −36.8886 + 36.8886i −1.47437 + 1.47437i
\(627\) 0 0
\(628\) 0.535898i 0.0213847i
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(632\) 19.1679 + 19.1679i 0.762457 + 0.762457i
\(633\) 6.00000 0.238479
\(634\) 25.2295i 1.00199i
\(635\) 50.3908 + 50.3908i 1.99970 + 1.99970i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 10.4399 10.4399i 0.412998 0.412998i
\(640\) −53.6603 −2.12111
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) 0 0
\(645\) 20.1563 + 20.1563i 0.793654 + 0.793654i
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 16.5999 + 16.5999i 0.652105 + 0.652105i
\(649\) 16.9282i 0.664490i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 32.0024 32.0024i 1.24949 1.24949i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 2.10512i 0.0819416i
\(661\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 34.3013 1.33115
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −2.18573 + 2.18573i −0.0845686 + 0.0845686i
\(669\) 0 0
\(670\) 0 0
\(671\) −10.8017 10.8017i −0.416996 0.416996i
\(672\) 0 0
\(673\) 14.0000i 0.539660i 0.962908 + 0.269830i \(0.0869676\pi\)
−0.962908 + 0.269830i \(0.913032\pi\)
\(674\) −7.37772 7.37772i −0.284179 0.284179i
\(675\) 61.9808i 2.38564i
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −36.2620 + 36.2620i −1.38956 + 1.38956i
\(682\) 0 0
\(683\) 4.62132 + 4.62132i 0.176830 + 0.176830i 0.789972 0.613142i \(-0.210095\pi\)
−0.613142 + 0.789972i \(0.710095\pi\)
\(684\) 0 0
\(685\) −59.8564 −2.28700
\(686\) 0 0
\(687\) 0 0
\(688\) 17.8564i 0.680769i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 58.1863 58.1863i 2.20713 2.20713i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −5.19199 + 5.19199i −0.195680 + 0.195680i
\(705\) 66.4974 2.50444
\(706\) 3.76537i 0.141712i
\(707\) 0 0
\(708\) −5.03908 + 5.03908i −0.189380 + 0.189380i
\(709\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(710\) 21.5625 + 21.5625i 0.809226 + 0.809226i
\(711\) 31.1769 1.16923
\(712\) 47.9090i 1.79546i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 31.5847 31.5847i 1.17955 1.17955i
\(718\) 56.9808 2.12650
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −38.9624 + 38.9624i −1.45204 + 1.45204i
\(721\) 0 0
\(722\) −20.2328 20.2328i −0.752986 0.752986i
\(723\) 0 0
\(724\) −2.67949 −0.0995825
\(725\) 0 0
\(726\) −18.0470 18.0470i −0.669788 0.669788i
\(727\) 51.9615i 1.92715i −0.267445 0.963573i \(-0.586179\pi\)
0.267445 0.963573i \(-0.413821\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 6.43078i 0.237688i
\(733\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(734\) −8.51906 + 8.51906i −0.314444 + 0.314444i
\(735\) −35.2735 35.2735i −1.30108 1.30108i
\(736\) 0 0
\(737\) 0 0
\(738\) 45.8038i 1.68606i
\(739\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −38.3917 + 38.3917i −1.40846 + 1.40846i −0.640488 + 0.767968i \(0.721268\pi\)
−0.767968 + 0.640488i \(0.778732\pi\)
\(744\) 0 0
\(745\) 1.21539i 0.0445285i
\(746\) −14.7554 + 14.7554i −0.540235 + 0.540235i
\(747\) 27.8958 27.8958i 1.02065 1.02065i
\(748\) 0 0
\(749\) 0 0
\(750\) 74.3538 2.71502
\(751\) 40.0000i 1.45962i 0.683650 + 0.729810i \(0.260392\pi\)
−0.683650 + 0.729810i \(0.739608\pi\)
\(752\) −29.4549 29.4549i −1.07411 1.07411i
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −41.5692 −1.51086 −0.755429 0.655230i \(-0.772572\pi\)
−0.755429 + 0.655230i \(0.772572\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 19.2239 + 19.2239i 0.696864 + 0.696864i 0.963733 0.266869i \(-0.0859890\pi\)
−0.266869 + 0.963733i \(0.585989\pi\)
\(762\) −31.9465 31.9465i −1.15730 1.15730i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 25.5551i 0.923345i
\(767\) 0 0
\(768\) 10.9474 0.395032
\(769\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.14570 9.14570i 0.328948 0.328948i −0.523238 0.852186i \(-0.675276\pi\)
0.852186 + 0.523238i \(0.175276\pi\)
\(774\) −12.7786 12.7786i −0.459317 0.459317i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 5.42563 0.194144
\(782\) 0 0
\(783\) 0 0
\(784\) 31.2487i 1.11603i
\(785\) −5.81863 + 5.81863i −0.207676 + 0.207676i
\(786\) 0 0
\(787\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) 4.62132 + 4.62132i 0.164628 + 0.164628i
\(789\) 0 0
\(790\) 64.3923i 2.29098i
\(791\) 0 0
\(792\) 8.62693i 0.306545i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 6.49742 0.230295
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −12.7021 12.7021i −0.449088 0.449088i
\(801\) 38.9624 + 38.9624i 1.37667 + 1.37667i
\(802\) 46.6936 1.64881
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(810\) 55.7654i 1.95940i
\(811\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 11.1769 0.390315
\(821\) 40.5215 40.5215i 1.41421 1.41421i 0.705552 0.708658i \(-0.250699\pi\)
0.708658 0.705552i \(-0.249301\pi\)
\(822\) 37.9474 1.32357
\(823\) 56.0000i 1.95204i −0.217687 0.976019i \(-0.569851\pi\)
0.217687 0.976019i \(-0.430149\pi\)
\(824\) −29.5109 + 29.5109i −1.02806 + 1.02806i
\(825\) 16.1057 16.1057i 0.560727 0.560727i
\(826\) 0 0
\(827\) 35.6913 + 35.6913i 1.24111 + 1.24111i 0.959542 + 0.281566i \(0.0908540\pi\)
0.281566 + 0.959542i \(0.409146\pi\)
\(828\) 0 0
\(829\) 27.7128i 0.962506i 0.876582 + 0.481253i \(0.159818\pi\)
−0.876582 + 0.481253i \(0.840182\pi\)
\(830\) 57.6156 + 57.6156i 1.99987 + 1.99987i
\(831\) 38.1051i 1.32185i
\(832\) 0 0
\(833\) 0 0
\(834\) −36.8886 + 36.8886i −1.27735 + 1.27735i
\(835\) 47.4641 1.64256
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 31.4318 + 31.4318i 1.08515 + 1.08515i 0.996020 + 0.0891249i \(0.0284070\pi\)
0.0891249 + 0.996020i \(0.471593\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) −17.0941 17.0941i −0.588752 0.588752i
\(844\) 0.928203i 0.0319501i
\(845\) 0 0
\(846\) −42.1577 −1.44941
\(847\) 0 0
\(848\) 0 0
\(849\) 30.0000i 1.02960i
\(850\) 0 0
\(851\) 0 0
\(852\) −1.61507 1.61507i −0.0553312 0.0553312i
\(853\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 10.3923 0.354581 0.177290 0.984159i \(-0.443267\pi\)
0.177290 + 0.984159i \(0.443267\pi\)
\(860\) 3.11819 3.11819i 0.106329 0.106329i
\(861\) 0 0
\(862\) 60.3013i 2.05387i
\(863\) 33.7144 33.7144i 1.14765 1.14765i 0.160640 0.987013i \(-0.448644\pi\)
0.987013 0.160640i \(-0.0513559\pi\)
\(864\) 5.53329 5.53329i 0.188246 0.188246i
\(865\) 0 0
\(866\) −22.1332 22.1332i −0.752116 0.752116i
\(867\) −29.4449 −1.00000
\(868\) 0 0
\(869\) 8.10130 + 8.10130i 0.274818 + 0.274818i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(878\) 42.5953 + 42.5953i 1.43752 + 1.43752i
\(879\) −39.9508 39.9508i −1.34751 1.34751i
\(880\) −20.2487 −0.682584
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 22.3625 + 22.3625i 0.752986 + 0.752986i
\(883\) 51.9615i 1.74864i −0.485346 0.874322i \(-0.661306\pi\)
0.485346 0.874322i \(-0.338694\pi\)
\(884\) 0 0
\(885\) 109.426 3.67830
\(886\) 0 0
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −80.4723 + 80.4723i −2.69744 + 2.69744i
\(891\) 7.01593 + 7.01593i 0.235043 + 0.235043i
\(892\) 0 0
\(893\) 0 0
\(894\) 0.770527i 0.0257703i
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −16.1577 −0.539189
\(899\) 0 0
\(900\) −9.58846 −0.319615
\(901\) 0 0
\(902\) 11.9021 11.9021i 0.396297 0.396297i
\(903\) 0 0
\(904\) 0 0
\(905\) 29.0931 + 29.0931i 0.967088 + 0.967088i
\(906\) 0 0
\(907\) 17.3205i 0.575118i −0.957763 0.287559i \(-0.907156\pi\)
0.957763 0.287559i \(-0.0928437\pi\)
\(908\) 5.60975 + 5.60975i 0.186166 + 0.186166i
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 14.4974 0.479795
\(914\) 0 0
\(915\) 69.8235 69.8235i 2.30829 2.30829i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −58.8897 −1.94259 −0.971296 0.237872i \(-0.923550\pi\)
−0.971296 + 0.237872i \(0.923550\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 37.6218i 1.23901i
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 48.0000i 1.57653i
\(928\) 0 0
\(929\) −42.0806 + 42.0806i −1.38062 + 1.38062i −0.537103 + 0.843517i \(0.680481\pi\)
−0.843517 + 0.537103i \(0.819519\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −34.6410 −1.13167 −0.565836 0.824518i \(-0.691447\pi\)
−0.565836 + 0.824518i \(0.691447\pi\)
\(938\) 0 0
\(939\) −60.0000 −1.95803
\(940\) 10.2872i 0.335531i
\(941\) 14.9643 14.9643i 0.487823 0.487823i −0.419796 0.907619i \(-0.637898\pi\)
0.907619 + 0.419796i \(0.137898\pi\)
\(942\) 3.68886 3.68886i 0.120190 0.120190i
\(943\) 0 0
\(944\) −48.4699 48.4699i −1.57756 1.57756i
\(945\) 0 0
\(946\) 6.64102i 0.215918i
\(947\) −14.6995 14.6995i −0.477669 0.477669i 0.426717 0.904385i \(-0.359670\pi\)
−0.904385 + 0.426717i \(0.859670\pi\)
\(948\) 4.82309i 0.156647i
\(949\) 0 0
\(950\) 0 0
\(951\) −20.5181 + 20.5181i −0.665345 + 0.665345i
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −4.88617 4.88617i −0.158030 0.158030i
\(957\) 0 0
\(958\) −50.3397 −1.62640
\(959\) 0 0
\(960\) −33.5615 33.5615i −1.08319 1.08319i
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(968\) 18.0470 18.0470i 0.580054 0.580054i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 4.17691i 0.133975i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −61.8564 −1.97998
\(977\) 25.0425 25.0425i 0.801180 0.801180i −0.182100 0.983280i \(-0.558289\pi\)
0.983280 + 0.182100i \(0.0582895\pi\)
\(978\) 0 0
\(979\) 20.2487i 0.647152i
\(980\) −5.45684 + 5.45684i −0.174312 + 0.174312i
\(981\) 0 0
\(982\) 0 0
\(983\) 8.88085 + 8.88085i 0.283255 + 0.283255i 0.834406 0.551151i \(-0.185811\pi\)
−0.551151 + 0.834406i \(0.685811\pi\)
\(984\) 45.8038 1.46017
\(985\) 100.354i 3.19754i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) −14.4906 + 14.4906i −0.460541 + 0.460541i
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −70.5471 70.5471i −2.23649 2.23649i
\(996\) −4.31550 4.31550i −0.136742 0.136742i
\(997\) 58.0000 1.83688 0.918439 0.395562i \(-0.129450\pi\)
0.918439 + 0.395562i \(0.129450\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 507.2.f.d.437.3 yes 8
3.2 odd 2 inner 507.2.f.d.437.2 yes 8
13.2 odd 12 507.2.k.g.188.2 8
13.3 even 3 507.2.k.h.488.2 8
13.4 even 6 507.2.k.g.89.2 8
13.5 odd 4 inner 507.2.f.d.239.2 8
13.6 odd 12 507.2.k.h.80.1 8
13.7 odd 12 507.2.k.h.80.2 8
13.8 odd 4 inner 507.2.f.d.239.3 yes 8
13.9 even 3 507.2.k.g.89.1 8
13.10 even 6 507.2.k.h.488.1 8
13.11 odd 12 507.2.k.g.188.1 8
13.12 even 2 inner 507.2.f.d.437.2 yes 8
39.2 even 12 507.2.k.g.188.1 8
39.5 even 4 inner 507.2.f.d.239.3 yes 8
39.8 even 4 inner 507.2.f.d.239.2 8
39.11 even 12 507.2.k.g.188.2 8
39.17 odd 6 507.2.k.g.89.1 8
39.20 even 12 507.2.k.h.80.1 8
39.23 odd 6 507.2.k.h.488.2 8
39.29 odd 6 507.2.k.h.488.1 8
39.32 even 12 507.2.k.h.80.2 8
39.35 odd 6 507.2.k.g.89.2 8
39.38 odd 2 CM 507.2.f.d.437.3 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
507.2.f.d.239.2 8 13.5 odd 4 inner
507.2.f.d.239.2 8 39.8 even 4 inner
507.2.f.d.239.3 yes 8 13.8 odd 4 inner
507.2.f.d.239.3 yes 8 39.5 even 4 inner
507.2.f.d.437.2 yes 8 3.2 odd 2 inner
507.2.f.d.437.2 yes 8 13.12 even 2 inner
507.2.f.d.437.3 yes 8 1.1 even 1 trivial
507.2.f.d.437.3 yes 8 39.38 odd 2 CM
507.2.k.g.89.1 8 13.9 even 3
507.2.k.g.89.1 8 39.17 odd 6
507.2.k.g.89.2 8 13.4 even 6
507.2.k.g.89.2 8 39.35 odd 6
507.2.k.g.188.1 8 13.11 odd 12
507.2.k.g.188.1 8 39.2 even 12
507.2.k.g.188.2 8 13.2 odd 12
507.2.k.g.188.2 8 39.11 even 12
507.2.k.h.80.1 8 13.6 odd 12
507.2.k.h.80.1 8 39.20 even 12
507.2.k.h.80.2 8 13.7 odd 12
507.2.k.h.80.2 8 39.32 even 12
507.2.k.h.488.1 8 13.10 even 6
507.2.k.h.488.1 8 39.29 odd 6
507.2.k.h.488.2 8 13.3 even 3
507.2.k.h.488.2 8 39.23 odd 6