Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [507,2,Mod(5,507)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(507, base_ring=CyclotomicField(52))
chi = DirichletCharacter(H, H._module([26, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("507.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 507 = 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 507.s (of order \(52\), degree \(24\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.04841538248\) |
Analytic rank: | \(0\) |
Dimension: | \(1392\) |
Relative dimension: | \(58\) over \(\Q(\zeta_{52})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{52}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −0.504808 | + | 2.75465i | 1.69376 | − | 0.362196i | −5.46324 | − | 2.07193i | 2.58865 | + | 0.156585i | 0.142700 | + | 4.84855i | 0.0295242 | + | 0.0178480i | 5.56770 | − | 9.21011i | 2.73763 | − | 1.22694i | −1.73811 | + | 7.05179i |
5.2 | −0.493960 | + | 2.69545i | −1.66195 | − | 0.487770i | −5.15143 | − | 1.95368i | −2.69150 | − | 0.162806i | 2.13570 | − | 4.23877i | −3.53808 | − | 2.13884i | 4.97528 | − | 8.23013i | 2.52416 | + | 1.62130i | 1.76833 | − | 7.17439i |
5.3 | −0.465956 | + | 2.54264i | −0.218600 | + | 1.71820i | −4.37786 | − | 1.66030i | 1.00192 | + | 0.0606047i | −4.26690 | − | 1.35643i | −1.49633 | − | 0.904565i | 3.58682 | − | 5.93332i | −2.90443 | − | 0.751197i | −0.620944 | + | 2.51927i |
5.4 | −0.450509 | + | 2.45835i | 0.339251 | − | 1.69850i | −3.97049 | − | 1.50581i | −1.53833 | − | 0.0930519i | 4.02267 | + | 1.59919i | 0.917465 | + | 0.554627i | 2.90459 | − | 4.80477i | −2.76982 | − | 1.15244i | 0.921786 | − | 3.73983i |
5.5 | −0.436480 | + | 2.38179i | 1.15819 | + | 1.28787i | −3.61239 | − | 1.37000i | −0.777816 | − | 0.0470492i | −3.57296 | + | 2.19643i | 3.90248 | + | 2.35913i | 2.33436 | − | 3.86150i | −0.317208 | + | 2.98318i | 0.451562 | − | 1.83206i |
5.6 | −0.422557 | + | 2.30582i | 1.72797 | + | 0.118863i | −3.26821 | − | 1.23947i | −4.34895 | − | 0.263063i | −1.00424 | + | 3.93415i | −1.68324 | − | 1.01756i | 1.81349 | − | 2.99989i | 2.97174 | + | 0.410783i | 2.44426 | − | 9.91674i |
5.7 | −0.407325 | + | 2.22270i | −1.46444 | + | 0.924888i | −2.90444 | − | 1.10151i | 3.11001 | + | 0.188121i | −1.45925 | − | 3.63174i | 1.33442 | + | 0.806684i | 1.29330 | − | 2.13939i | 1.28916 | − | 2.70888i | −1.68492 | + | 6.83599i |
5.8 | −0.400794 | + | 2.18706i | 0.580417 | − | 1.63191i | −2.75258 | − | 1.04392i | 0.356016 | + | 0.0215350i | 3.33645 | + | 1.92347i | −1.89154 | − | 1.14347i | 1.08575 | − | 1.79605i | −2.32623 | − | 1.89437i | −0.189788 | + | 0.769999i |
5.9 | −0.392585 | + | 2.14227i | −1.02029 | − | 1.39965i | −2.56516 | − | 0.972837i | −1.56541 | − | 0.0946898i | 3.39897 | − | 1.63625i | 2.97174 | + | 1.79648i | 0.837658 | − | 1.38566i | −0.918027 | + | 2.85609i | 0.817408 | − | 3.31635i |
5.10 | −0.378713 | + | 2.06657i | −1.55175 | − | 0.769460i | −2.25726 | − | 0.856068i | 2.99779 | + | 0.181333i | 2.17781 | − | 2.91540i | −2.77544 | − | 1.67781i | 0.450143 | − | 0.744627i | 1.81586 | + | 2.38802i | −1.51004 | + | 6.12649i |
5.11 | −0.367556 | + | 2.00569i | 1.27896 | + | 1.16801i | −2.01765 | − | 0.765194i | 1.15023 | + | 0.0695764i | −2.81276 | + | 2.13589i | −2.33236 | − | 1.40996i | 0.166545 | − | 0.275500i | 0.271498 | + | 2.98769i | −0.562324 | + | 2.28144i |
5.12 | −0.320681 | + | 1.74990i | −1.48788 | + | 0.886686i | −1.08928 | − | 0.413111i | −3.06762 | − | 0.185557i | −1.07448 | − | 2.88799i | 1.60183 | + | 0.968339i | −0.768515 | + | 1.27128i | 1.42758 | − | 2.63857i | 1.30844 | − | 5.30853i |
5.13 | −0.315367 | + | 1.72090i | 1.06756 | − | 1.36393i | −0.992015 | − | 0.376222i | 3.73990 | + | 0.226222i | 2.01052 | + | 2.26731i | 2.39720 | + | 1.44916i | −0.849938 | + | 1.40597i | −0.720612 | − | 2.91217i | −1.56875 | + | 6.36465i |
5.14 | −0.308001 | + | 1.68071i | −1.68938 | − | 0.382115i | −0.859883 | − | 0.326111i | −0.599116 | − | 0.0362399i | 1.16255 | − | 2.72165i | 0.705424 | + | 0.426444i | −0.955005 | + | 1.57977i | 2.70798 | + | 1.29107i | 0.245437 | − | 0.995778i |
5.15 | −0.289269 | + | 1.57849i | −1.18129 | + | 1.26671i | −0.537915 | − | 0.204004i | −1.19167 | − | 0.0720827i | −1.65777 | − | 2.23107i | −3.74112 | − | 2.26159i | −1.18280 | + | 1.95659i | −0.209095 | − | 2.99270i | 0.458494 | − | 1.86018i |
5.16 | −0.287822 | + | 1.57060i | 1.61828 | − | 0.617401i | −0.513895 | − | 0.194895i | −0.563686 | − | 0.0340967i | 0.503912 | + | 2.71936i | 2.05136 | + | 1.24009i | −1.19811 | + | 1.98191i | 2.23763 | − | 1.99825i | 0.215793 | − | 0.875508i |
5.17 | −0.259021 | + | 1.41343i | 0.863683 | + | 1.50135i | −0.0606581 | − | 0.0230046i | −2.17786 | − | 0.131736i | −2.34576 | + | 0.831874i | −1.46195 | − | 0.883779i | −1.43857 | + | 2.37968i | −1.50810 | + | 2.59338i | 0.750309 | − | 3.04412i |
5.18 | −0.250240 | + | 1.36552i | 0.0535762 | + | 1.73122i | 0.0680148 | + | 0.0257946i | 1.85720 | + | 0.112340i | −2.37742 | − | 0.360062i | 3.00163 | + | 1.81455i | −1.48864 | + | 2.46251i | −2.99426 | + | 0.185505i | −0.618149 | + | 2.50793i |
5.19 | −0.230989 | + | 1.26047i | −0.545148 | − | 1.64402i | 0.334608 | + | 0.126900i | 2.48769 | + | 0.150478i | 2.19816 | − | 0.307389i | 0.0931907 | + | 0.0563358i | −1.56314 | + | 2.58575i | −2.40563 | + | 1.79247i | −0.764303 | + | 3.10090i |
5.20 | −0.205529 | + | 1.12154i | 0.653740 | − | 1.60394i | 0.654428 | + | 0.248192i | −3.58890 | − | 0.217089i | 1.66452 | + | 1.06285i | −1.80817 | − | 1.09308i | −1.59261 | + | 2.63450i | −2.14525 | − | 2.09712i | 0.981098 | − | 3.98047i |
See next 80 embeddings (of 1392 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
169.j | odd | 52 | 1 | inner |
507.s | even | 52 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 507.2.s.a | ✓ | 1392 |
3.b | odd | 2 | 1 | inner | 507.2.s.a | ✓ | 1392 |
169.j | odd | 52 | 1 | inner | 507.2.s.a | ✓ | 1392 |
507.s | even | 52 | 1 | inner | 507.2.s.a | ✓ | 1392 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
507.2.s.a | ✓ | 1392 | 1.a | even | 1 | 1 | trivial |
507.2.s.a | ✓ | 1392 | 3.b | odd | 2 | 1 | inner |
507.2.s.a | ✓ | 1392 | 169.j | odd | 52 | 1 | inner |
507.2.s.a | ✓ | 1392 | 507.s | even | 52 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(507, [\chi])\).