Properties

Label 507.2.x.a.137.1
Level $507$
Weight $2$
Character 507.137
Analytic conductor $4.048$
Analytic rank $0$
Dimension $48$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(2,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(156))
 
chi = DirichletCharacter(H, H._module([78, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.x (of order \(156\), degree \(48\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{156}]$

Embedding invariants

Embedding label 137.1
Character \(\chi\) \(=\) 507.137
Dual form 507.2.x.a.470.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.72643 + 0.139372i) q^{3} +(-1.95958 - 0.400051i) q^{4} +(-4.81030 + 1.08337i) q^{7} +(2.96115 - 0.481234i) q^{9} +(3.43884 + 0.417551i) q^{12} +(2.59808 + 2.50000i) q^{13} +(3.67992 + 1.56787i) q^{16} +(2.25610 - 8.41989i) q^{19} +(8.15367 - 2.54079i) q^{21} +(1.19658 - 4.85471i) q^{25} +(-5.04516 + 1.24352i) q^{27} +(9.85957 - 0.198583i) q^{28} +(7.03607 + 4.25345i) q^{31} +(-5.99513 - 0.241596i) q^{36} +(4.62656 + 8.39965i) q^{37} +(-4.83384 - 3.95399i) q^{39} +(-4.32977 + 1.25413i) q^{43} +(-6.57165 - 2.19394i) q^{48} +(15.6411 - 7.42180i) q^{49} +(-4.09101 - 5.93832i) q^{52} +(-2.72151 + 14.8508i) q^{57} +(-0.0861007 - 2.13657i) q^{61} +(-13.7227 + 5.52289i) q^{63} +(-6.58387 - 4.54452i) q^{64} +(8.85871 - 13.4036i) q^{67} +(13.1772 + 5.93059i) q^{73} +(-1.38920 + 8.54811i) q^{75} +(-7.78940 + 15.5969i) q^{76} +(-2.85285 + 2.52741i) q^{79} +(8.53683 - 2.85001i) q^{81} +(-16.9942 + 1.71699i) q^{84} +(-15.2059 - 9.21107i) q^{91} +(-12.7401 - 6.36267i) q^{93} +(-9.83809 - 1.39613i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 10 q^{7} + 6 q^{9} - 8 q^{16} - 14 q^{19} - 18 q^{21} + 20 q^{28} + 14 q^{31} + 2 q^{37} + 24 q^{39} + 6 q^{43} - 18 q^{49} - 28 q^{52} - 12 q^{57} - 24 q^{63} - 32 q^{67} + 34 q^{73} + 30 q^{75}+ \cdots + 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(-1\) \(e\left(\frac{83}{156}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.100522 0.994935i \(-0.467949\pi\)
−0.100522 + 0.994935i \(0.532051\pi\)
\(3\) −1.72643 + 0.139372i −0.996757 + 0.0804666i
\(4\) −1.95958 0.400051i −0.979791 0.200026i
\(5\) 0 0 0.787183 0.616719i \(-0.211538\pi\)
−0.787183 + 0.616719i \(0.788462\pi\)
\(6\) 0 0
\(7\) −4.81030 + 1.08337i −1.81812 + 0.409475i −0.988794 0.149289i \(-0.952302\pi\)
−0.829327 + 0.558763i \(0.811276\pi\)
\(8\) 0 0
\(9\) 2.96115 0.481234i 0.987050 0.160411i
\(10\) 0 0
\(11\) 0 0 0.811378 0.584522i \(-0.198718\pi\)
−0.811378 + 0.584522i \(0.801282\pi\)
\(12\) 3.43884 + 0.417551i 0.992709 + 0.120537i
\(13\) 2.59808 + 2.50000i 0.720577 + 0.693375i
\(14\) 0 0
\(15\) 0 0
\(16\) 3.67992 + 1.56787i 0.919979 + 0.391967i
\(17\) 0 0 0.534466 0.845190i \(-0.320513\pi\)
−0.534466 + 0.845190i \(0.679487\pi\)
\(18\) 0 0
\(19\) 2.25610 8.41989i 0.517585 1.93165i 0.245011 0.969520i \(-0.421209\pi\)
0.272575 0.962135i \(-0.412125\pi\)
\(20\) 0 0
\(21\) 8.15367 2.54079i 1.77928 0.554445i
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) 1.19658 4.85471i 0.239316 0.970942i
\(26\) 0 0
\(27\) −5.04516 + 1.24352i −0.970942 + 0.239316i
\(28\) 9.85957 0.198583i 1.86328 0.0375286i
\(29\) 0 0 −0.632445 0.774605i \(-0.717949\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(30\) 0 0
\(31\) 7.03607 + 4.25345i 1.26371 + 0.763942i 0.980765 0.195192i \(-0.0625332\pi\)
0.282950 + 0.959135i \(0.408687\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −5.99513 0.241596i −0.999189 0.0402659i
\(37\) 4.62656 + 8.39965i 0.760602 + 1.38089i 0.919297 + 0.393566i \(0.128759\pi\)
−0.158695 + 0.987328i \(0.550729\pi\)
\(38\) 0 0
\(39\) −4.83384 3.95399i −0.774034 0.633145i
\(40\) 0 0
\(41\) 0 0 −0.761712 0.647915i \(-0.775641\pi\)
0.761712 + 0.647915i \(0.224359\pi\)
\(42\) 0 0
\(43\) −4.32977 + 1.25413i −0.660284 + 0.191254i −0.591409 0.806372i \(-0.701428\pi\)
−0.0688750 + 0.997625i \(0.521941\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.0603785 0.998176i \(-0.480769\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(48\) −6.57165 2.19394i −0.948536 0.316668i
\(49\) 15.6411 7.42180i 2.23444 1.06026i
\(50\) 0 0
\(51\) 0 0
\(52\) −4.09101 5.93832i −0.567321 0.823496i
\(53\) 0 0 0.885456 0.464723i \(-0.153846\pi\)
−0.885456 + 0.464723i \(0.846154\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −2.72151 + 14.8508i −0.360473 + 1.96704i
\(58\) 0 0
\(59\) 0 0 0.373361 0.927686i \(-0.378205\pi\)
−0.373361 + 0.927686i \(0.621795\pi\)
\(60\) 0 0
\(61\) −0.0861007 2.13657i −0.0110241 0.273559i −0.995295 0.0968928i \(-0.969110\pi\)
0.984271 0.176667i \(-0.0565314\pi\)
\(62\) 0 0
\(63\) −13.7227 + 5.52289i −1.72889 + 0.695819i
\(64\) −6.58387 4.54452i −0.822984 0.568065i
\(65\) 0 0
\(66\) 0 0
\(67\) 8.85871 13.4036i 1.08226 1.63751i 0.381055 0.924552i \(-0.375561\pi\)
0.701208 0.712956i \(-0.252644\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.941967 0.335705i \(-0.108974\pi\)
−0.941967 + 0.335705i \(0.891026\pi\)
\(72\) 0 0
\(73\) 13.1772 + 5.93059i 1.54228 + 0.694123i 0.990198 0.139668i \(-0.0446035\pi\)
0.552080 + 0.833791i \(0.313834\pi\)
\(74\) 0 0
\(75\) −1.38920 + 8.54811i −0.160411 + 0.987050i
\(76\) −7.78940 + 15.5969i −0.893506 + 1.78909i
\(77\) 0 0
\(78\) 0 0
\(79\) −2.85285 + 2.52741i −0.320971 + 0.284355i −0.808187 0.588926i \(-0.799551\pi\)
0.487216 + 0.873282i \(0.338012\pi\)
\(80\) 0 0
\(81\) 8.53683 2.85001i 0.948536 0.316668i
\(82\) 0 0
\(83\) 0 0 0.983620 0.180255i \(-0.0576923\pi\)
−0.983620 + 0.180255i \(0.942308\pi\)
\(84\) −16.9942 + 1.71699i −1.85422 + 0.187339i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(90\) 0 0
\(91\) −15.2059 9.21107i −1.59402 0.965582i
\(92\) 0 0
\(93\) −12.7401 6.36267i −1.32109 0.659778i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −9.83809 1.39613i −0.998907 0.141755i −0.378138 0.925749i \(-0.623436\pi\)
−0.620768 + 0.783994i \(0.713179\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −4.28693 + 9.03450i −0.428693 + 0.903450i
\(101\) 0 0 −0.721202 0.692724i \(-0.756410\pi\)
0.721202 + 0.692724i \(0.243590\pi\)
\(102\) 0 0
\(103\) −9.07441 + 6.26362i −0.894128 + 0.617172i −0.924005 0.382381i \(-0.875104\pi\)
0.0298761 + 0.999554i \(0.490489\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.799443 0.600742i \(-0.794872\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(108\) 10.3839 0.418456i 0.999189 0.0402659i
\(109\) 2.53519 + 4.19371i 0.242827 + 0.401685i 0.953293 0.302046i \(-0.0976698\pi\)
−0.710466 + 0.703731i \(0.751516\pi\)
\(110\) 0 0
\(111\) −9.15813 13.8566i −0.869251 1.31521i
\(112\) −19.4001 3.55519i −1.83313 0.335934i
\(113\) 0 0 −0.996757 0.0804666i \(-0.974359\pi\)
0.996757 + 0.0804666i \(0.0256410\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 8.89638 + 6.15259i 0.822471 + 0.568808i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3.48335 10.4339i 0.316668 0.948536i
\(122\) 0 0
\(123\) 0 0
\(124\) −12.0861 11.1498i −1.08537 1.00128i
\(125\) 0 0
\(126\) 0 0
\(127\) 21.7827 4.44696i 1.93290 0.394604i 0.933553 0.358441i \(-0.116691\pi\)
0.999346 0.0361634i \(-0.0115137\pi\)
\(128\) 0 0
\(129\) 7.30028 2.76863i 0.642753 0.243764i
\(130\) 0 0
\(131\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(132\) 0 0
\(133\) −1.73068 + 42.9463i −0.150069 + 3.72392i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.875918 0.482459i \(-0.839744\pi\)
0.875918 + 0.482459i \(0.160256\pi\)
\(138\) 0 0
\(139\) 9.74136 7.32015i 0.826251 0.620887i −0.101186 0.994868i \(-0.532264\pi\)
0.927437 + 0.373980i \(0.122007\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 11.6513 + 2.87179i 0.970942 + 0.239316i
\(145\) 0 0
\(146\) 0 0
\(147\) −25.9689 + 14.9932i −2.14188 + 1.23662i
\(148\) −5.70583 18.3107i −0.469016 1.50513i
\(149\) 0 0 −0.446798 0.894635i \(-0.647436\pi\)
0.446798 + 0.894635i \(0.352564\pi\)
\(150\) 0 0
\(151\) 9.10501 0.550752i 0.740955 0.0448195i 0.314412 0.949287i \(-0.398193\pi\)
0.426543 + 0.904467i \(0.359731\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 7.89050 + 9.68194i 0.631746 + 0.775176i
\(157\) 2.79222 22.9960i 0.222844 1.83528i −0.267267 0.963623i \(-0.586121\pi\)
0.490111 0.871660i \(-0.336956\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 18.7026 + 0.376691i 1.46490 + 0.0295047i 0.746156 0.665771i \(-0.231897\pi\)
0.718743 + 0.695276i \(0.244718\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.994935 0.100522i \(-0.967949\pi\)
0.994935 + 0.100522i \(0.0320513\pi\)
\(168\) 0 0
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) 0 0
\(171\) 2.62872 26.0183i 0.201024 1.98967i
\(172\) 8.98626 0.725446i 0.685196 0.0553147i
\(173\) 0 0 −0.979791 0.200026i \(-0.935897\pi\)
0.979791 + 0.200026i \(0.0641026\pi\)
\(174\) 0 0
\(175\) −0.496457 + 24.6489i −0.0375286 + 1.86328i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.534466 0.845190i \(-0.679487\pi\)
0.534466 + 0.845190i \(0.320513\pi\)
\(180\) 0 0
\(181\) −0.500995 0.0608318i −0.0372387 0.00452160i 0.101896 0.994795i \(-0.467509\pi\)
−0.139135 + 0.990273i \(0.544432\pi\)
\(182\) 0 0
\(183\) 0.446425 + 3.67664i 0.0330007 + 0.271785i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 22.9215 11.4475i 1.66730 0.832681i
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 12.0000 + 6.92820i 0.866025 + 0.500000i
\(193\) 3.80568 16.8977i 0.273939 1.21632i −0.625831 0.779959i \(-0.715240\pi\)
0.899770 0.436365i \(-0.143734\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −33.6191 + 8.28637i −2.40137 + 0.591883i
\(197\) 0 0 0.999797 0.0201371i \(-0.00641026\pi\)
−0.999797 + 0.0201371i \(0.993590\pi\)
\(198\) 0 0
\(199\) −16.2691 21.6503i −1.15329 1.53475i −0.800800 0.598932i \(-0.795592\pi\)
−0.352489 0.935816i \(-0.614665\pi\)
\(200\) 0 0
\(201\) −13.4259 + 24.3751i −0.946989 + 1.71928i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 5.64104 + 13.2732i 0.391136 + 0.920333i
\(209\) 0 0
\(210\) 0 0
\(211\) 4.42351 + 21.6678i 0.304527 + 1.49167i 0.787652 + 0.616120i \(0.211296\pi\)
−0.483125 + 0.875551i \(0.660498\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −38.4536 12.8377i −2.61040 0.871480i
\(218\) 0 0
\(219\) −23.5762 8.40224i −1.59313 0.567771i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 3.81429 + 26.8782i 0.255423 + 1.79990i 0.540451 + 0.841376i \(0.318254\pi\)
−0.285027 + 0.958519i \(0.592003\pi\)
\(224\) 0 0
\(225\) 1.20700 14.9514i 0.0804666 0.996757i
\(226\) 0 0
\(227\) 0 0 0.834256 0.551377i \(-0.185897\pi\)
−0.834256 + 0.551377i \(0.814103\pi\)
\(228\) 11.2741 28.0126i 0.746647 1.85518i
\(229\) 25.6128 15.4835i 1.69254 1.02318i 0.769354 0.638823i \(-0.220578\pi\)
0.923186 0.384353i \(-0.125576\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 −0.822984 0.568065i \(-0.807692\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 4.57301 4.76101i 0.297049 0.309261i
\(238\) 0 0
\(239\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(240\) 0 0
\(241\) −2.19854 + 15.4925i −0.141621 + 0.997959i 0.784338 + 0.620334i \(0.213003\pi\)
−0.925958 + 0.377625i \(0.876741\pi\)
\(242\) 0 0
\(243\) −14.3411 + 6.11015i −0.919979 + 0.391967i
\(244\) −0.686015 + 4.22122i −0.0439176 + 0.270236i
\(245\) 0 0
\(246\) 0 0
\(247\) 26.9112 16.2353i 1.71232 1.03302i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.721202 0.692724i \(-0.243590\pi\)
−0.721202 + 0.692724i \(0.756410\pi\)
\(252\) 29.1001 5.33279i 1.83313 0.335934i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 11.0836 + 11.5392i 0.692724 + 0.721202i
\(257\) 0 0 −0.316668 0.948536i \(-0.602564\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(258\) 0 0
\(259\) −31.3550 35.3925i −1.94831 2.19918i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.987050 0.160411i \(-0.948718\pi\)
0.987050 + 0.160411i \(0.0512821\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −22.7215 + 22.7215i −1.38794 + 1.38794i
\(269\) 0 0 0.428693 0.903450i \(-0.358974\pi\)
−0.428693 + 0.903450i \(0.641026\pi\)
\(270\) 0 0
\(271\) 24.9345 + 16.4797i 1.51466 + 1.00107i 0.988590 + 0.150632i \(0.0481310\pi\)
0.526073 + 0.850439i \(0.323664\pi\)
\(272\) 0 0
\(273\) 27.5358 + 13.7830i 1.66654 + 0.834186i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 33.1777 1.33701i 1.99345 0.0803334i 0.993901 0.110280i \(-0.0351746\pi\)
0.999552 + 0.0299462i \(0.00953358\pi\)
\(278\) 0 0
\(279\) 22.8818 + 9.20911i 1.36989 + 0.551335i
\(280\) 0 0
\(281\) 0 0 −0.983620 0.180255i \(-0.942308\pi\)
0.983620 + 0.180255i \(0.0576923\pi\)
\(282\) 0 0
\(283\) 24.3644 + 7.05724i 1.44831 + 0.419509i 0.906935 0.421270i \(-0.138415\pi\)
0.541379 + 0.840779i \(0.317903\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −7.28777 15.3587i −0.428693 0.903450i
\(290\) 0 0
\(291\) 17.1794 + 1.03916i 1.00707 + 0.0609168i
\(292\) −23.4493 16.8930i −1.37227 0.988591i
\(293\) 0 0 −0.735006 0.678061i \(-0.762821\pi\)
0.735006 + 0.678061i \(0.237179\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 6.14194 16.1950i 0.354605 0.935016i
\(301\) 19.4688 10.7235i 1.12216 0.618092i
\(302\) 0 0
\(303\) 0 0
\(304\) 21.5035 27.4472i 1.23331 1.57421i
\(305\) 0 0
\(306\) 0 0
\(307\) −17.5535 + 29.0371i −1.00183 + 1.65724i −0.287014 + 0.957927i \(0.592662\pi\)
−0.714820 + 0.699309i \(0.753491\pi\)
\(308\) 0 0
\(309\) 14.7934 12.0784i 0.841567 0.687118i
\(310\) 0 0
\(311\) 0 0 −0.239316 0.970942i \(-0.576923\pi\)
0.239316 + 0.970942i \(0.423077\pi\)
\(312\) 0 0
\(313\) −28.5391 7.03426i −1.61313 0.397600i −0.673331 0.739341i \(-0.735137\pi\)
−0.939794 + 0.341741i \(0.888983\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 6.60149 3.81137i 0.371363 0.214406i
\(317\) 0 0 −0.297503 0.954721i \(-0.596154\pi\)
0.297503 + 0.954721i \(0.403846\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −17.8688 + 2.16966i −0.992709 + 0.120537i
\(325\) 15.2456 9.62146i 0.845672 0.533702i
\(326\) 0 0
\(327\) −4.96132 6.88684i −0.274362 0.380843i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.0587411 0.260818i −0.00322870 0.0143358i 0.973923 0.226877i \(-0.0728516\pi\)
−0.977152 + 0.212541i \(0.931826\pi\)
\(332\) 0 0
\(333\) 17.7421 + 22.6462i 0.972263 + 1.24100i
\(334\) 0 0
\(335\) 0 0
\(336\) 33.9884 + 3.43398i 1.85422 + 0.187339i
\(337\) 15.2142i 0.828771i −0.910101 0.414385i \(-0.863997\pi\)
0.910101 0.414385i \(-0.136003\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −40.0278 + 31.3598i −2.16130 + 1.69327i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(348\) 0 0
\(349\) −30.0892 + 21.6765i −1.61064 + 1.16032i −0.734025 + 0.679122i \(0.762361\pi\)
−0.876614 + 0.481193i \(0.840203\pi\)
\(350\) 0 0
\(351\) −16.2165 9.38214i −0.865574 0.500782i
\(352\) 0 0
\(353\) 0 0 0.735006 0.678061i \(-0.237179\pi\)
−0.735006 + 0.678061i \(0.762821\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.954721 0.297503i \(-0.0961538\pi\)
−0.954721 + 0.297503i \(0.903846\pi\)
\(360\) 0 0
\(361\) −49.3500 28.4923i −2.59737 1.49959i
\(362\) 0 0
\(363\) −4.55958 + 18.4989i −0.239316 + 0.970942i
\(364\) 26.1124 + 24.1330i 1.36866 + 1.26491i
\(365\) 0 0
\(366\) 0 0
\(367\) −22.8571 27.9949i −1.19313 1.46132i −0.853758 0.520669i \(-0.825682\pi\)
−0.339373 0.940652i \(-0.610215\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 22.4199 + 17.5649i 1.16242 + 0.910696i
\(373\) −22.6708 + 27.7667i −1.17385 + 1.43770i −0.298367 + 0.954451i \(0.596442\pi\)
−0.875481 + 0.483252i \(0.839455\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 3.14517 + 2.67529i 0.161556 + 0.137421i 0.725040 0.688707i \(-0.241821\pi\)
−0.563484 + 0.826127i \(0.690539\pi\)
\(380\) 0 0
\(381\) −36.9865 + 10.7133i −1.89488 + 0.548858i
\(382\) 0 0
\(383\) 0 0 0.678061 0.735006i \(-0.262821\pi\)
−0.678061 + 0.735006i \(0.737179\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −12.2176 + 5.79731i −0.621054 + 0.294694i
\(388\) 18.7200 + 6.67156i 0.950365 + 0.338697i
\(389\) 0 0 0.464723 0.885456i \(-0.346154\pi\)
−0.464723 + 0.885456i \(0.653846\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −0.525369 + 1.30538i −0.0263675 + 0.0655150i −0.940291 0.340371i \(-0.889447\pi\)
0.913924 + 0.405886i \(0.133037\pi\)
\(398\) 0 0
\(399\) −2.99762 74.3852i −0.150069 3.72392i
\(400\) 12.0148 15.9889i 0.600742 0.799443i
\(401\) 0 0 0.927686 0.373361i \(-0.121795\pi\)
−0.927686 + 0.373361i \(0.878205\pi\)
\(402\) 0 0
\(403\) 7.64661 + 28.6410i 0.380905 + 1.42671i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −10.3325 + 3.68236i −0.510909 + 0.182081i −0.578578 0.815627i \(-0.696392\pi\)
0.0676696 + 0.997708i \(0.478444\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 20.2878 8.64383i 0.999509 0.425851i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −15.7976 + 13.9954i −0.773611 + 0.685360i
\(418\) 0 0
\(419\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(420\) 0 0
\(421\) 36.7760 6.73946i 1.79235 0.328461i 0.821878 0.569663i \(-0.192926\pi\)
0.970475 + 0.241202i \(0.0775416\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 2.72886 + 10.1842i 0.132059 + 0.492850i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.894635 0.446798i \(-0.852564\pi\)
0.894635 + 0.446798i \(0.147436\pi\)
\(432\) −20.5155 3.33409i −0.987050 0.160411i
\(433\) 3.38748 + 7.95071i 0.162792 + 0.382087i 0.981321 0.192379i \(-0.0616202\pi\)
−0.818529 + 0.574466i \(0.805210\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.29021 9.23213i −0.157572 0.442139i
\(437\) 0 0
\(438\) 0 0
\(439\) −18.9544 18.2059i −0.904644 0.868923i 0.0872244 0.996189i \(-0.472200\pi\)
−0.991869 + 0.127266i \(0.959380\pi\)
\(440\) 0 0
\(441\) 42.7440 29.5041i 2.03543 1.40496i
\(442\) 0 0
\(443\) 0 0 0.568065 0.822984i \(-0.307692\pi\)
−0.568065 + 0.822984i \(0.692308\pi\)
\(444\) 12.4027 + 30.8169i 0.588608 + 1.46251i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 36.5938 + 14.7277i 1.72889 + 0.695819i
\(449\) 0 0 −0.551377 0.834256i \(-0.685897\pi\)
0.551377 + 0.834256i \(0.314103\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −15.6424 + 2.21982i −0.734946 + 0.104296i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.6924 32.8083i 0.546949 1.53471i −0.272850 0.962057i \(-0.587966\pi\)
0.819799 0.572651i \(-0.194085\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.811378 0.584522i \(-0.801282\pi\)
0.811378 + 0.584522i \(0.198718\pi\)
\(462\) 0 0
\(463\) −7.89109 17.5333i −0.366730 0.814841i −0.999190 0.0402476i \(-0.987185\pi\)
0.632460 0.774593i \(-0.282045\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.935016 0.354605i \(-0.115385\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(468\) −14.9718 15.6155i −0.692073 0.721828i
\(469\) −28.0920 + 74.0725i −1.29717 + 3.42035i
\(470\) 0 0
\(471\) −1.61558 + 40.0903i −0.0744422 + 1.84726i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −38.1765 21.0278i −1.75166 0.964821i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.0201371 0.999797i \(-0.506410\pi\)
0.0201371 + 0.999797i \(0.493590\pi\)
\(480\) 0 0
\(481\) −8.97896 + 33.3893i −0.409405 + 1.52242i
\(482\) 0 0
\(483\) 0 0
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) −19.7167 39.4792i −0.893450 1.78897i −0.462964 0.886377i \(-0.653214\pi\)
−0.430486 0.902597i \(-0.641658\pi\)
\(488\) 0 0
\(489\) −32.3413 + 1.95629i −1.46252 + 0.0884663i
\(490\) 0 0
\(491\) 0 0 0.391967 0.919979i \(-0.371795\pi\)
−0.391967 + 0.919979i \(0.628205\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 19.2233 + 26.6840i 0.863152 + 1.19815i
\(497\) 0 0
\(498\) 0 0
\(499\) 5.69250 + 1.77386i 0.254831 + 0.0794087i 0.422257 0.906476i \(-0.361238\pi\)
−0.167426 + 0.985885i \(0.553546\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.200026 0.979791i \(-0.435897\pi\)
−0.200026 + 0.979791i \(0.564103\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −2.67371 22.3574i −0.118744 0.992925i
\(508\) −44.4639 −1.97277
\(509\) 0 0 0.100522 0.994935i \(-0.467949\pi\)
−0.100522 + 0.994935i \(0.532051\pi\)
\(510\) 0 0
\(511\) −69.8114 14.2521i −3.08827 0.630476i
\(512\) 0 0
\(513\) −0.912096 + 45.2852i −0.0402700 + 1.99939i
\(514\) 0 0
\(515\) 0 0
\(516\) −15.4131 + 2.50487i −0.678523 + 0.110271i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.120537 0.992709i \(-0.538462\pi\)
0.120537 + 0.992709i \(0.461538\pi\)
\(522\) 0 0
\(523\) −41.3473 17.6164i −1.80799 0.770313i −0.976743 0.214411i \(-0.931217\pi\)
−0.831248 0.555902i \(-0.812373\pi\)
\(524\) 0 0
\(525\) −2.57827 42.6239i −0.112525 1.86026i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 20.5721 83.4645i 0.891916 3.61864i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 29.0862 + 22.7876i 1.25051 + 0.979714i 0.999933 + 0.0116175i \(0.00369806\pi\)
0.250579 + 0.968096i \(0.419379\pi\)
\(542\) 0 0
\(543\) 0.873414 + 0.0351974i 0.0374818 + 0.00151046i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 5.58773 + 14.7336i 0.238914 + 0.629965i 0.999821 0.0188956i \(-0.00601502\pi\)
−0.760907 + 0.648861i \(0.775246\pi\)
\(548\) 0 0
\(549\) −1.28315 6.28526i −0.0547633 0.268248i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 10.9850 15.2483i 0.467128 0.648422i
\(554\) 0 0
\(555\) 0 0
\(556\) −22.0174 + 10.4474i −0.933746 + 0.443068i
\(557\) 0 0 −0.941967 0.335705i \(-0.891026\pi\)
0.941967 + 0.335705i \(0.108974\pi\)
\(558\) 0 0
\(559\) −14.3844 7.56610i −0.608396 0.320012i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.0804666 0.996757i \(-0.474359\pi\)
−0.0804666 + 0.996757i \(0.525641\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −37.9771 + 22.9579i −1.59489 + 0.964142i
\(568\) 0 0
\(569\) 0 0 0.600742 0.799443i \(-0.294872\pi\)
−0.600742 + 0.799443i \(0.705128\pi\)
\(570\) 0 0
\(571\) 23.0210 + 15.8903i 0.963401 + 0.664988i 0.942293 0.334790i \(-0.108665\pi\)
0.0211080 + 0.999777i \(0.493281\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −21.6828 10.2886i −0.903450 0.428693i
\(577\) 32.9048 + 32.9048i 1.36984 + 1.36984i 0.860655 + 0.509189i \(0.170055\pi\)
0.509189 + 0.860655i \(0.329945\pi\)
\(578\) 0 0
\(579\) −4.21519 + 29.7032i −0.175177 + 1.23442i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(588\) 56.8863 18.9914i 2.34595 0.783194i
\(589\) 51.6877 49.6467i 2.12975 2.04566i
\(590\) 0 0
\(591\) 0 0
\(592\) 3.85584 + 38.1638i 0.158474 + 1.56852i
\(593\) 0 0 −0.180255 0.983620i \(-0.557692\pi\)
0.180255 + 0.983620i \(0.442308\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 31.1050 + 35.1103i 1.27304 + 1.43697i
\(598\) 0 0
\(599\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(600\) 0 0
\(601\) −48.2574 7.84259i −1.96846 0.319906i −0.996347 0.0853931i \(-0.972785\pi\)
−0.972113 0.234513i \(-0.924651\pi\)
\(602\) 0 0
\(603\) 19.7817 43.9532i 0.805573 1.78991i
\(604\) −18.0623 2.56323i −0.734946 0.104296i
\(605\) 0 0
\(606\) 0 0
\(607\) −16.5635 + 34.9067i −0.672290 + 1.41682i 0.224548 + 0.974463i \(0.427909\pi\)
−0.896838 + 0.442358i \(0.854142\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −7.62078 18.9352i −0.307800 0.764787i −0.999108 0.0422267i \(-0.986555\pi\)
0.691308 0.722560i \(-0.257035\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.927686 0.373361i \(-0.878205\pi\)
0.927686 + 0.373361i \(0.121795\pi\)
\(618\) 0 0
\(619\) 38.9418 + 7.13636i 1.56520 + 0.286834i 0.891796 0.452437i \(-0.149445\pi\)
0.673408 + 0.739271i \(0.264830\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −11.5888 22.1292i −0.463924 0.885875i
\(625\) −22.1364 11.6181i −0.885456 0.464723i
\(626\) 0 0
\(627\) 0 0
\(628\) −14.6712 + 43.9456i −0.585444 + 1.75362i
\(629\) 0 0
\(630\) 0 0
\(631\) −11.6852 10.7799i −0.465181 0.429141i 0.410625 0.911804i \(-0.365311\pi\)
−0.875806 + 0.482663i \(0.839670\pi\)
\(632\) 0 0
\(633\) −10.6568 36.7915i −0.423569 1.46233i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 59.1913 + 19.8204i 2.34524 + 0.785312i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.774605 0.632445i \(-0.782051\pi\)
0.774605 + 0.632445i \(0.217949\pi\)
\(642\) 0 0
\(643\) 32.7457 + 38.4970i 1.29136 + 1.51817i 0.708873 + 0.705337i \(0.249204\pi\)
0.582492 + 0.812837i \(0.302078\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.774605 0.632445i \(-0.217949\pi\)
−0.774605 + 0.632445i \(0.782051\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 68.1769 + 16.8041i 2.67206 + 0.658604i
\(652\) −36.4985 8.22015i −1.42939 0.321926i
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 41.8738 + 11.2200i 1.63365 + 0.437736i
\(658\) 0 0
\(659\) 0 0 −0.845190 0.534466i \(-0.820513\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(660\) 0 0
\(661\) −23.2747 25.2293i −0.905280 0.981307i 0.0946192 0.995514i \(-0.469837\pi\)
−0.999899 + 0.0142068i \(0.995478\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −10.3312 45.8718i −0.399427 1.77351i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −0.455152 5.63806i −0.0175448 0.217331i −0.999589 0.0286787i \(-0.990870\pi\)
0.982044 0.188653i \(-0.0604120\pi\)
\(674\) 0 0
\(675\) 25.9808i 1.00000i
\(676\) 4.21703 25.6557i 0.162193 0.986759i
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 48.8366 3.94250i 1.87418 0.151299i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.975564 0.219715i \(-0.0705128\pi\)
−0.975564 + 0.219715i \(0.929487\pi\)
\(684\) −15.5598 + 49.9333i −0.594946 + 1.90925i
\(685\) 0 0
\(686\) 0 0
\(687\) −42.0608 + 30.3009i −1.60472 + 1.15605i
\(688\) −17.8995 2.17340i −0.682413 0.0828599i
\(689\) 0 0
\(690\) 0 0
\(691\) 25.9637 23.9521i 0.987704 0.911182i −0.00834661 0.999965i \(-0.502657\pi\)
0.996051 + 0.0887833i \(0.0282979\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 10.8337 48.1030i 0.409475 1.81812i
\(701\) 0 0 0.239316 0.970942i \(-0.423077\pi\)
−0.239316 + 0.970942i \(0.576923\pi\)
\(702\) 0 0
\(703\) 81.1621 20.0047i 3.06109 0.754490i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 24.2725 20.6463i 0.911572 0.775387i −0.0633366 0.997992i \(-0.520174\pi\)
0.974909 + 0.222606i \(0.0714562\pi\)
\(710\) 0 0
\(711\) −7.23145 + 8.85692i −0.271201 + 0.332160i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.960518 0.278217i \(-0.0897436\pi\)
−0.960518 + 0.278217i \(0.910256\pi\)
\(720\) 0 0
\(721\) 36.8648 39.9608i 1.37292 1.48822i
\(722\) 0 0
\(723\) 1.63642 27.0532i 0.0608590 1.00612i
\(724\) 0.957405 + 0.319629i 0.0355817 + 0.0118789i
\(725\) 0 0
\(726\) 0 0
\(727\) −25.0260 + 47.6830i −0.928162 + 1.76846i −0.417548 + 0.908655i \(0.637111\pi\)
−0.510614 + 0.859810i \(0.670582\pi\)
\(728\) 0 0
\(729\) 23.9073 12.5475i 0.885456 0.464723i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.596039 7.38327i 0.0220303 0.272894i
\(733\) −8.86492 + 48.3743i −0.327433 + 1.78674i 0.247858 + 0.968796i \(0.420273\pi\)
−0.575291 + 0.817949i \(0.695111\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 11.9054 4.79152i 0.437948 0.176259i −0.143837 0.989601i \(-0.545944\pi\)
0.581785 + 0.813343i \(0.302354\pi\)
\(740\) 0 0
\(741\) −44.1978 + 31.7798i −1.62365 + 1.16746i
\(742\) 0 0
\(743\) 0 0 0.551377 0.834256i \(-0.314103\pi\)
−0.551377 + 0.834256i \(0.685897\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 7.94567 48.8917i 0.289942 1.78408i −0.277558 0.960709i \(-0.589525\pi\)
0.567500 0.823373i \(-0.307911\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −49.4962 + 13.2625i −1.80016 + 0.482351i
\(757\) 29.2714 9.77223i 1.06389 0.355178i 0.269759 0.962928i \(-0.413056\pi\)
0.794128 + 0.607750i \(0.207928\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.100522 0.994935i \(-0.532051\pi\)
0.100522 + 0.994935i \(0.467949\pi\)
\(762\) 0 0
\(763\) −16.7383 17.4265i −0.605969 0.630880i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −20.7433 18.3770i −0.748511 0.663123i
\(769\) −43.3602 21.6549i −1.56361 0.780897i −0.564597 0.825367i \(-0.690968\pi\)
−0.999011 + 0.0444702i \(0.985840\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −14.2175 + 31.5900i −0.511699 + 1.13695i
\(773\) 0 0 −0.990080 0.140502i \(-0.955128\pi\)
0.990080 + 0.140502i \(0.0448718\pi\)
\(774\) 0 0
\(775\) 29.0685 29.0685i 1.04417 1.04417i
\(776\) 0 0
\(777\) 59.0651 + 56.7328i 2.11895 + 2.03528i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 69.1944 2.78844i 2.47123 0.0995870i
\(785\) 0 0
\(786\) 0 0
\(787\) 30.3025 + 45.8489i 1.08017 + 1.63434i 0.708071 + 0.706141i \(0.249566\pi\)
0.372095 + 0.928195i \(0.378640\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 5.11772 5.76622i 0.181736 0.204764i
\(794\) 0 0
\(795\) 0 0
\(796\) 23.2195 + 48.9340i 0.822992 + 1.73442i
\(797\) 0 0 0.316668 0.948536i \(-0.397436\pi\)
−0.316668 + 0.948536i \(0.602564\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 36.0604 42.3939i 1.27175 1.49512i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.0402659 0.999189i \(-0.487179\pi\)
−0.0402659 + 0.999189i \(0.512821\pi\)
\(810\) 0 0
\(811\) 25.3874 32.4047i 0.891473 1.13788i −0.0982894 0.995158i \(-0.531337\pi\)
0.989763 0.142724i \(-0.0455860\pi\)
\(812\) 0 0
\(813\) −45.3446 24.9760i −1.59030 0.875946i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.791258 + 39.2857i 0.0276826 + 1.37443i
\(818\) 0 0
\(819\) −49.4597 19.9577i −1.72826 0.697380i
\(820\) 0 0
\(821\) 0 0 −0.975564 0.219715i \(-0.929487\pi\)
0.975564 + 0.219715i \(0.0705128\pi\)
\(822\) 0 0
\(823\) 49.5536 28.6098i 1.72733 0.997274i 0.826772 0.562537i \(-0.190175\pi\)
0.900557 0.434737i \(-0.143159\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.998176 0.0603785i \(-0.0192308\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(828\) 0 0
\(829\) 6.25737 14.6866i 0.217328 0.510086i −0.775257 0.631646i \(-0.782379\pi\)
0.992584 + 0.121560i \(0.0387897\pi\)
\(830\) 0 0
\(831\) −57.0927 + 6.93231i −1.98052 + 0.240479i
\(832\) −5.74410 28.2667i −0.199141 0.979971i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −40.7873 12.7099i −1.40982 0.439317i
\(838\) 0 0
\(839\) 0 0 −0.999797 0.0201371i \(-0.993590\pi\)
0.999797 + 0.0201371i \(0.00641026\pi\)
\(840\) 0 0
\(841\) −5.80075 + 28.4139i −0.200026 + 0.979791i
\(842\) 0 0
\(843\) 0 0
\(844\) 44.2294i 1.52244i
\(845\) 0 0
\(846\) 0 0
\(847\) −5.45218 + 53.9639i −0.187339 + 1.85422i
\(848\) 0 0
\(849\) −43.0471 8.78814i −1.47737 0.301608i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 4.53031 14.5383i 0.155115 0.497781i −0.844151 0.536106i \(-0.819895\pi\)
0.999265 + 0.0383254i \(0.0122023\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.992709 0.120537i \(-0.961538\pi\)
0.992709 + 0.120537i \(0.0384615\pi\)
\(858\) 0 0
\(859\) −2.62414 21.6117i −0.0895345 0.737383i −0.966471 0.256776i \(-0.917340\pi\)
0.876936 0.480607i \(-0.159583\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.0603785 0.998176i \(-0.519231\pi\)
0.0603785 + 0.998176i \(0.480769\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 14.7224 + 25.5000i 0.500000 + 0.866025i
\(868\) 70.2172 + 40.5399i 2.38333 + 1.37602i
\(869\) 0 0
\(870\) 0 0
\(871\) 56.5246 12.6768i 1.91526 0.429536i
\(872\) 0 0
\(873\) −29.8039 + 0.600285i −1.00871 + 0.0203166i
\(874\) 0 0
\(875\) 0 0
\(876\) 42.8381 + 25.8966i 1.44737 + 0.874963i
\(877\) 8.69989 15.7949i 0.293774 0.533356i −0.687448 0.726233i \(-0.741269\pi\)
0.981223 + 0.192878i \(0.0617821\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.999189 0.0402659i \(-0.987179\pi\)
0.999189 + 0.0402659i \(0.0128205\pi\)
\(882\) 0 0
\(883\) 35.7513 + 13.5587i 1.20313 + 0.456286i 0.873033 0.487661i \(-0.162150\pi\)
0.330095 + 0.943948i \(0.392919\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.200026 0.979791i \(-0.564103\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(888\) 0 0
\(889\) −99.9633 + 44.9898i −3.35266 + 1.50891i
\(890\) 0 0
\(891\) 0 0
\(892\) 3.27825 54.1959i 0.109764 1.81461i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −8.34652 + 28.8155i −0.278217 + 0.960518i
\(901\) 0 0
\(902\) 0 0
\(903\) −32.1170 + 21.2268i −1.06879 + 0.706384i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −29.8057 + 39.6642i −0.989683 + 1.31703i −0.0415568 + 0.999136i \(0.513232\pi\)
−0.948127 + 0.317893i \(0.897025\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 −0.568065 0.822984i \(-0.692308\pi\)
0.568065 + 0.822984i \(0.307692\pi\)
\(912\) −33.2991 + 50.3828i −1.10264 + 1.66834i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −56.3845 + 20.0947i −1.86300 + 0.663947i
\(917\) 0 0
\(918\) 0 0
\(919\) 39.2973 16.7430i 1.29630 0.552301i 0.369978 0.929040i \(-0.379365\pi\)
0.926319 + 0.376740i \(0.122955\pi\)
\(920\) 0 0
\(921\) 26.2581 52.5771i 0.865233 1.73248i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 46.3139 12.4098i 1.52279 0.408031i
\(926\) 0 0
\(927\) −23.8564 + 22.9144i −0.783548 + 0.752608i
\(928\) 0 0
\(929\) 0 0 0.994935 0.100522i \(-0.0320513\pi\)
−0.994935 + 0.100522i \(0.967949\pi\)
\(930\) 0 0
\(931\) −27.2028 148.441i −0.891535 4.86495i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −3.48523 3.08765i −0.113858 0.100869i 0.604273 0.796777i \(-0.293464\pi\)
−0.718131 + 0.695908i \(0.755002\pi\)
\(938\) 0 0
\(939\) 50.2513 + 8.16662i 1.63989 + 0.266508i
\(940\) 0 0
\(941\) 0 0 0.410413 0.911900i \(-0.365385\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.834256 0.551377i \(-0.814103\pi\)
0.834256 + 0.551377i \(0.185897\pi\)
\(948\) −10.8658 + 7.50015i −0.352906 + 0.243593i
\(949\) 19.4090 + 48.3512i 0.630042 + 1.56955i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.999189 0.0402659i \(-0.0128205\pi\)
−0.999189 + 0.0402659i \(0.987179\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 17.0080 + 32.4060i 0.548644 + 1.04535i
\(962\) 0 0
\(963\) 0 0
\(964\) 10.5060 29.4793i 0.338376 0.949464i
\(965\) 0 0
\(966\) 0 0
\(967\) −59.8804 3.62210i −1.92562 0.116479i −0.946883 0.321578i \(-0.895787\pi\)
−0.978741 + 0.205100i \(0.934248\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.278217 0.960518i \(-0.589744\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(972\) 30.5468 6.23618i 0.979791 0.200026i
\(973\) −38.9284 + 45.7656i −1.24799 + 1.46718i
\(974\) 0 0
\(975\) −24.9795 + 18.7356i −0.799985 + 0.600020i
\(976\) 3.03301 7.99739i 0.0970842 0.255990i
\(977\) 0 0 0.875918 0.482459i \(-0.160256\pi\)
−0.875918 + 0.482459i \(0.839744\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 9.52523 + 11.1982i 0.304117 + 0.357531i
\(982\) 0 0
\(983\) 0 0 0.517338 0.855781i \(-0.326923\pi\)
−0.517338 + 0.855781i \(0.673077\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −59.2297 + 21.0484i −1.88435 + 0.669640i
\(989\) 0 0
\(990\) 0 0
\(991\) −13.2521 + 22.9534i −0.420968 + 0.729138i −0.996034 0.0889688i \(-0.971643\pi\)
0.575066 + 0.818107i \(0.304976\pi\)
\(992\) 0 0
\(993\) 0.137763 + 0.442098i 0.00437179 + 0.0140296i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −52.9716 33.4972i −1.67763 1.06087i −0.904343 0.426807i \(-0.859638\pi\)
−0.773284 0.634060i \(-0.781387\pi\)
\(998\) 0 0
\(999\) −33.7869 36.6243i −1.06897 1.15874i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 507.2.x.a.137.1 48
3.2 odd 2 CM 507.2.x.a.137.1 48
169.132 odd 156 inner 507.2.x.a.470.1 yes 48
507.470 even 156 inner 507.2.x.a.470.1 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
507.2.x.a.137.1 48 1.1 even 1 trivial
507.2.x.a.137.1 48 3.2 odd 2 CM
507.2.x.a.470.1 yes 48 169.132 odd 156 inner
507.2.x.a.470.1 yes 48 507.470 even 156 inner