Properties

Label 507.2.x.a.50.1
Level $507$
Weight $2$
Character 507.50
Analytic conductor $4.048$
Analytic rank $0$
Dimension $48$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(2,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(156))
 
chi = DirichletCharacter(H, H._module([78, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.2");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 507 = 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 507.x (of order \(156\), degree \(48\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.04841538248\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{156}]$

Embedding invariants

Embedding label 50.1
Character \(\chi\) \(=\) 507.50
Dual form 507.2.x.a.71.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.64291 - 0.548485i) q^{3} +(1.44240 + 1.38545i) q^{4} +(0.680973 + 0.0688013i) q^{7} +(2.39833 + 1.80223i) q^{9} +(-1.60985 - 3.06731i) q^{12} +(-2.59808 + 2.50000i) q^{13} +(0.161064 + 3.99676i) q^{16} +(4.01931 - 1.07697i) q^{19} +(-1.08104 - 0.486538i) q^{21} +(4.11492 + 2.84032i) q^{25} +(-2.95175 - 4.27635i) q^{27} +(0.886918 + 1.04269i) q^{28} +(-1.98869 + 10.8519i) q^{31} +(0.962468 + 5.92230i) q^{36} +(3.49870 + 9.81714i) q^{37} +(5.63963 - 2.68228i) q^{39} +(11.5365 - 5.47415i) q^{43} +(1.92755 - 6.65466i) q^{48} +(-6.39954 - 1.30648i) q^{49} +(-7.21110 + 0.00651091i) q^{52} +(-7.19407 - 0.435161i) q^{57} +(11.3705 + 1.84789i) q^{61} +(1.50920 + 1.39228i) q^{63} +(-5.30498 + 5.98809i) q^{64} +(0.261888 - 13.0027i) q^{67} +(-13.1818 - 10.3273i) q^{73} +(-5.20258 - 6.92338i) q^{75} +(7.28955 + 4.01512i) q^{76} +(0.441406 - 0.108797i) q^{79} +(2.50396 + 8.64466i) q^{81} +(-0.885228 - 2.19951i) q^{84} +(-1.94122 + 1.52368i) q^{91} +(9.21937 - 16.7380i) q^{93} +(-16.5921 - 3.73686i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 10 q^{7} + 6 q^{9} - 8 q^{16} - 14 q^{19} - 18 q^{21} + 20 q^{28} + 14 q^{31} + 2 q^{37} + 24 q^{39} + 6 q^{43} - 18 q^{49} - 28 q^{52} - 12 q^{57} - 24 q^{63} - 32 q^{67} + 34 q^{73} + 30 q^{75}+ \cdots + 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/507\mathbb{Z}\right)^\times\).

\(n\) \(170\) \(340\)
\(\chi(n)\) \(-1\) \(e\left(\frac{19}{156}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.927686 0.373361i \(-0.878205\pi\)
0.927686 + 0.373361i \(0.121795\pi\)
\(3\) −1.64291 0.548485i −0.948536 0.316668i
\(4\) 1.44240 + 1.38545i 0.721202 + 0.692724i
\(5\) 0 0 −0.954721 0.297503i \(-0.903846\pi\)
0.954721 + 0.297503i \(0.0961538\pi\)
\(6\) 0 0
\(7\) 0.680973 + 0.0688013i 0.257384 + 0.0260044i 0.228369 0.973575i \(-0.426661\pi\)
0.0290142 + 0.999579i \(0.490763\pi\)
\(8\) 0 0
\(9\) 2.39833 + 1.80223i 0.799443 + 0.600742i
\(10\) 0 0
\(11\) 0 0 0.140502 0.990080i \(-0.455128\pi\)
−0.140502 + 0.990080i \(0.544872\pi\)
\(12\) −1.60985 3.06731i −0.464723 0.885456i
\(13\) −2.59808 + 2.50000i −0.720577 + 0.693375i
\(14\) 0 0
\(15\) 0 0
\(16\) 0.161064 + 3.99676i 0.0402659 + 0.999189i
\(17\) 0 0 0.774605 0.632445i \(-0.217949\pi\)
−0.774605 + 0.632445i \(0.782051\pi\)
\(18\) 0 0
\(19\) 4.01931 1.07697i 0.922092 0.247074i 0.233613 0.972330i \(-0.424945\pi\)
0.688479 + 0.725256i \(0.258279\pi\)
\(20\) 0 0
\(21\) −1.08104 0.486538i −0.235903 0.106171i
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 4.11492 + 2.84032i 0.822984 + 0.568065i
\(26\) 0 0
\(27\) −2.95175 4.27635i −0.568065 0.822984i
\(28\) 0.886918 + 1.04269i 0.167612 + 0.197050i
\(29\) 0 0 0.919979 0.391967i \(-0.128205\pi\)
−0.919979 + 0.391967i \(0.871795\pi\)
\(30\) 0 0
\(31\) −1.98869 + 10.8519i −0.357179 + 1.94906i −0.0451919 + 0.998978i \(0.514390\pi\)
−0.311987 + 0.950086i \(0.600995\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.962468 + 5.92230i 0.160411 + 0.987050i
\(37\) 3.49870 + 9.81714i 0.575182 + 1.61393i 0.773504 + 0.633791i \(0.218502\pi\)
−0.198322 + 0.980137i \(0.563549\pi\)
\(38\) 0 0
\(39\) 5.63963 2.68228i 0.903063 0.429508i
\(40\) 0 0
\(41\) 0 0 −0.446798 0.894635i \(-0.647436\pi\)
0.446798 + 0.894635i \(0.352564\pi\)
\(42\) 0 0
\(43\) 11.5365 5.47415i 1.75930 0.834800i 0.781904 0.623399i \(-0.214249\pi\)
0.977399 0.211401i \(-0.0678026\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.517338 0.855781i \(-0.326923\pi\)
−0.517338 + 0.855781i \(0.673077\pi\)
\(48\) 1.92755 6.65466i 0.278217 0.960518i
\(49\) −6.39954 1.30648i −0.914221 0.186639i
\(50\) 0 0
\(51\) 0 0
\(52\) −7.21110 + 0.00651091i −1.00000 + 0.000902901i
\(53\) 0 0 0.354605 0.935016i \(-0.384615\pi\)
−0.354605 + 0.935016i \(0.615385\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −7.19407 0.435161i −0.952878 0.0576385i
\(58\) 0 0
\(59\) 0 0 −0.678061 0.735006i \(-0.737179\pi\)
0.678061 + 0.735006i \(0.262821\pi\)
\(60\) 0 0
\(61\) 11.3705 + 1.84789i 1.45585 + 0.236598i 0.836261 0.548331i \(-0.184737\pi\)
0.619586 + 0.784929i \(0.287301\pi\)
\(62\) 0 0
\(63\) 1.50920 + 1.39228i 0.190141 + 0.175410i
\(64\) −5.30498 + 5.98809i −0.663123 + 0.748511i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.261888 13.0027i 0.0319948 1.58853i −0.591242 0.806494i \(-0.701362\pi\)
0.623237 0.782033i \(-0.285817\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.551377 0.834256i \(-0.314103\pi\)
−0.551377 + 0.834256i \(0.685897\pi\)
\(72\) 0 0
\(73\) −13.1818 10.3273i −1.54281 1.20872i −0.894258 0.447552i \(-0.852296\pi\)
−0.648557 0.761166i \(-0.724627\pi\)
\(74\) 0 0
\(75\) −5.20258 6.92338i −0.600742 0.799443i
\(76\) 7.28955 + 4.01512i 0.836169 + 0.460565i
\(77\) 0 0
\(78\) 0 0
\(79\) 0.441406 0.108797i 0.0496620 0.0122406i −0.214406 0.976745i \(-0.568782\pi\)
0.264068 + 0.964504i \(0.414936\pi\)
\(80\) 0 0
\(81\) 2.50396 + 8.64466i 0.278217 + 0.960518i
\(82\) 0 0
\(83\) 0 0 −0.0603785 0.998176i \(-0.519231\pi\)
0.0603785 + 0.998176i \(0.480769\pi\)
\(84\) −0.885228 2.19951i −0.0965863 0.239987i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(90\) 0 0
\(91\) −1.94122 + 1.52368i −0.203495 + 0.159725i
\(92\) 0 0
\(93\) 9.21937 16.7380i 0.956004 1.73565i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −16.5921 3.73686i −1.68468 0.379420i −0.731501 0.681841i \(-0.761180\pi\)
−0.953175 + 0.302420i \(0.902205\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 2.00026 + 9.79791i 0.200026 + 0.979791i
\(101\) 0 0 0.0804666 0.996757i \(-0.474359\pi\)
−0.0804666 + 0.996757i \(0.525641\pi\)
\(102\) 0 0
\(103\) −13.1592 14.8537i −1.29661 1.46358i −0.805645 0.592399i \(-0.798181\pi\)
−0.490970 0.871177i \(-0.663357\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.845190 0.534466i \(-0.820513\pi\)
0.845190 + 0.534466i \(0.179487\pi\)
\(108\) 1.66704 10.2577i 0.160411 0.987050i
\(109\) −2.57272 + 0.471469i −0.246422 + 0.0451586i −0.302046 0.953293i \(-0.597670\pi\)
0.0556241 + 0.998452i \(0.482285\pi\)
\(110\) 0 0
\(111\) −0.363501 18.0477i −0.0345020 1.71301i
\(112\) −0.165302 + 2.73276i −0.0156195 + 0.258222i
\(113\) 0 0 0.948536 0.316668i \(-0.102564\pi\)
−0.948536 + 0.316668i \(0.897436\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −10.7366 + 1.31350i −0.992600 + 0.121433i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.5657 3.06039i −0.960518 0.278217i
\(122\) 0 0
\(123\) 0 0
\(124\) −17.9033 + 12.8977i −1.60776 + 1.15824i
\(125\) 0 0
\(126\) 0 0
\(127\) 8.18527 7.86205i 0.726325 0.697644i −0.235327 0.971916i \(-0.575616\pi\)
0.961652 + 0.274272i \(0.0884367\pi\)
\(128\) 0 0
\(129\) −21.9560 + 2.66594i −1.93312 + 0.234723i
\(130\) 0 0
\(131\) 0 0 0.120537 0.992709i \(-0.461538\pi\)
−0.120537 + 0.992709i \(0.538462\pi\)
\(132\) 0 0
\(133\) 2.81113 0.456854i 0.243756 0.0396143i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.941967 0.335705i \(-0.891026\pi\)
0.941967 + 0.335705i \(0.108974\pi\)
\(138\) 0 0
\(139\) 19.0229 12.0294i 1.61351 1.02032i 0.647407 0.762144i \(-0.275853\pi\)
0.966098 0.258175i \(-0.0831210\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −6.81678 + 9.87581i −0.568065 + 0.822984i
\(145\) 0 0
\(146\) 0 0
\(147\) 9.79731 + 5.65648i 0.808069 + 0.466539i
\(148\) −8.55461 + 19.0076i −0.703184 + 1.56241i
\(149\) 0 0 0.875918 0.482459i \(-0.160256\pi\)
−0.875918 + 0.482459i \(0.839744\pi\)
\(150\) 0 0
\(151\) 19.7946 11.9663i 1.61087 0.973802i 0.630602 0.776107i \(-0.282808\pi\)
0.980263 0.197696i \(-0.0633457\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 11.8508 + 3.94448i 0.948822 + 0.315811i
\(157\) 4.68563 2.45921i 0.373954 0.196266i −0.267267 0.963623i \(-0.586121\pi\)
0.641221 + 0.767356i \(0.278428\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0.391770 0.460579i 0.0306858 0.0360754i −0.746156 0.665771i \(-0.768103\pi\)
0.776842 + 0.629696i \(0.216821\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.373361 0.927686i \(-0.378205\pi\)
−0.373361 + 0.927686i \(0.621795\pi\)
\(168\) 0 0
\(169\) 0.500000 12.9904i 0.0384615 0.999260i
\(170\) 0 0
\(171\) 11.5806 + 4.66077i 0.885587 + 0.356418i
\(172\) 24.2245 + 8.08732i 1.84710 + 0.616653i
\(173\) 0 0 −0.721202 0.692724i \(-0.756410\pi\)
0.721202 + 0.692724i \(0.243590\pi\)
\(174\) 0 0
\(175\) 2.60673 + 2.21730i 0.197050 + 0.167612i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.774605 0.632445i \(-0.782051\pi\)
0.774605 + 0.632445i \(0.217949\pi\)
\(180\) 0 0
\(181\) 8.11496 + 15.4618i 0.603180 + 1.14926i 0.975260 + 0.221062i \(0.0709525\pi\)
−0.372080 + 0.928201i \(0.621355\pi\)
\(182\) 0 0
\(183\) −17.6673 9.27249i −1.30600 0.685442i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −1.71584 3.11516i −0.124809 0.226595i
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 12.0000 6.92820i 0.866025 0.500000i
\(193\) 1.46521 + 14.5022i 0.105468 + 1.04389i 0.899770 + 0.436365i \(0.143734\pi\)
−0.794302 + 0.607524i \(0.792163\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −7.42068 10.7507i −0.530048 0.767908i
\(197\) 0 0 −0.647915 0.761712i \(-0.724359\pi\)
0.647915 + 0.761712i \(0.275641\pi\)
\(198\) 0 0
\(199\) 10.8515 + 17.1602i 0.769239 + 1.21645i 0.971481 + 0.237119i \(0.0762031\pi\)
−0.202241 + 0.979336i \(0.564823\pi\)
\(200\) 0 0
\(201\) −7.56202 + 21.2186i −0.533384 + 1.49664i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −10.4103 9.98122i −0.721828 0.692073i
\(209\) 0 0
\(210\) 0 0
\(211\) −2.81244 2.92806i −0.193616 0.201576i 0.617317 0.786714i \(-0.288220\pi\)
−0.810933 + 0.585139i \(0.801040\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.10087 + 7.25305i −0.142616 + 0.492369i
\(218\) 0 0
\(219\) 15.9922 + 24.1969i 1.08065 + 1.63507i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −2.73557 12.1463i −0.183187 0.813375i −0.978346 0.206974i \(-0.933638\pi\)
0.795159 0.606401i \(-0.207387\pi\)
\(224\) 0 0
\(225\) 4.75002 + 14.2280i 0.316668 + 0.948536i
\(226\) 0 0
\(227\) 0 0 0.999797 0.0201371i \(-0.00641026\pi\)
−0.999797 + 0.0201371i \(0.993590\pi\)
\(228\) −9.77387 10.5947i −0.647290 0.701651i
\(229\) −4.75667 25.9563i −0.314330 1.71524i −0.638823 0.769354i \(-0.720578\pi\)
0.324493 0.945888i \(-0.394806\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.663123 0.748511i \(-0.269231\pi\)
−0.663123 + 0.748511i \(0.730769\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −0.784865 0.0633608i −0.0509824 0.00411573i
\(238\) 0 0
\(239\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(240\) 0 0
\(241\) −0.517638 + 2.29838i −0.0333440 + 0.148052i −0.989423 0.145056i \(-0.953664\pi\)
0.956079 + 0.293108i \(0.0946894\pi\)
\(242\) 0 0
\(243\) 0.627684 15.5758i 0.0402659 0.999189i
\(244\) 13.8407 + 18.4187i 0.886063 + 1.17914i
\(245\) 0 0
\(246\) 0 0
\(247\) −7.75004 + 12.8463i −0.493123 + 0.817391i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.0804666 0.996757i \(-0.525641\pi\)
0.0804666 + 0.996757i \(0.474359\pi\)
\(252\) 0.247953 + 4.09915i 0.0156195 + 0.258222i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −15.9481 + 1.28747i −0.996757 + 0.0804666i
\(257\) 0 0 0.960518 0.278217i \(-0.0897436\pi\)
−0.960518 + 0.278217i \(0.910256\pi\)
\(258\) 0 0
\(259\) 1.70709 + 6.92592i 0.106073 + 0.430356i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.799443 0.600742i \(-0.205128\pi\)
−0.799443 + 0.600742i \(0.794872\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 18.3923 18.3923i 1.12349 1.12349i
\(269\) 0 0 −0.200026 0.979791i \(-0.564103\pi\)
0.200026 + 0.979791i \(0.435897\pi\)
\(270\) 0 0
\(271\) −16.7498 0.337359i −1.01748 0.0204931i −0.491403 0.870933i \(-0.663516\pi\)
−0.526073 + 0.850439i \(0.676336\pi\)
\(272\) 0 0
\(273\) 4.02498 1.43854i 0.243603 0.0870647i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −5.26128 + 32.3740i −0.316120 + 1.94516i 0.0103260 + 0.999947i \(0.496713\pi\)
−0.326446 + 0.945216i \(0.605851\pi\)
\(278\) 0 0
\(279\) −24.3272 + 22.4424i −1.45643 + 1.34359i
\(280\) 0 0
\(281\) 0 0 0.0603785 0.998176i \(-0.480769\pi\)
−0.0603785 + 0.998176i \(0.519231\pi\)
\(282\) 0 0
\(283\) 10.5454 + 5.00387i 0.626860 + 0.297449i 0.715498 0.698615i \(-0.246200\pi\)
−0.0886374 + 0.996064i \(0.528251\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 3.40044 16.6564i 0.200026 0.979791i
\(290\) 0 0
\(291\) 25.2098 + 15.2399i 1.47783 + 0.893377i
\(292\) −4.70558 33.1589i −0.275373 1.94048i
\(293\) 0 0 0.811378 0.584522i \(-0.198718\pi\)
−0.811378 + 0.584522i \(0.801282\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 2.08776 17.1942i 0.120537 0.992709i
\(301\) 8.23269 2.93402i 0.474524 0.169114i
\(302\) 0 0
\(303\) 0 0
\(304\) 4.95175 + 15.8907i 0.284002 + 0.911395i
\(305\) 0 0
\(306\) 0 0
\(307\) −32.0929 5.88124i −1.83164 0.335660i −0.850056 0.526693i \(-0.823432\pi\)
−0.981584 + 0.191033i \(0.938816\pi\)
\(308\) 0 0
\(309\) 13.4724 + 31.6209i 0.766419 + 1.79885i
\(310\) 0 0
\(311\) 0 0 0.822984 0.568065i \(-0.192308\pi\)
−0.822984 + 0.568065i \(0.807692\pi\)
\(312\) 0 0
\(313\) 18.8900 27.3669i 1.06773 1.54687i 0.252616 0.967567i \(-0.418709\pi\)
0.815111 0.579304i \(-0.196676\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0.787418 + 0.454616i 0.0442957 + 0.0255741i
\(317\) 0 0 0.410413 0.911900i \(-0.365385\pi\)
−0.410413 + 0.911900i \(0.634615\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) −8.36502 + 15.9382i −0.464723 + 0.885456i
\(325\) −17.7917 + 2.90792i −0.986905 + 0.161302i
\(326\) 0 0
\(327\) 4.48536 + 0.636518i 0.248041 + 0.0351995i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.71991 26.9208i 0.149500 1.47970i −0.590468 0.807061i \(-0.701057\pi\)
0.739968 0.672642i \(-0.234841\pi\)
\(332\) 0 0
\(333\) −9.30169 + 29.8502i −0.509730 + 1.63578i
\(334\) 0 0
\(335\) 0 0
\(336\) 1.77046 4.39903i 0.0965863 0.239987i
\(337\) 31.3370i 1.70703i 0.521065 + 0.853517i \(0.325535\pi\)
−0.521065 + 0.853517i \(0.674465\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −8.84217 2.75533i −0.477432 0.148774i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.799443 0.600742i \(-0.794872\pi\)
0.799443 + 0.600742i \(0.205128\pi\)
\(348\) 0 0
\(349\) 0.640299 4.51200i 0.0342744 0.241522i −0.965551 0.260214i \(-0.916207\pi\)
0.999825 + 0.0186925i \(0.00595035\pi\)
\(350\) 0 0
\(351\) 18.3597 + 3.73090i 0.979971 + 0.199141i
\(352\) 0 0
\(353\) 0 0 −0.811378 0.584522i \(-0.801282\pi\)
0.811378 + 0.584522i \(0.198718\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.911900 0.410413i \(-0.865385\pi\)
0.911900 + 0.410413i \(0.134615\pi\)
\(360\) 0 0
\(361\) −1.45953 + 0.842661i −0.0768174 + 0.0443506i
\(362\) 0 0
\(363\) 15.6799 + 10.8231i 0.822984 + 0.568065i
\(364\) −4.91101 0.491699i −0.257407 0.0257720i
\(365\) 0 0
\(366\) 0 0
\(367\) 35.0835 14.9477i 1.83135 0.780264i 0.877792 0.479042i \(-0.159016\pi\)
0.953554 0.301222i \(-0.0973945\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 36.4877 11.3700i 1.89180 0.589509i
\(373\) 29.6280 + 12.6233i 1.53408 + 0.653609i 0.983456 0.181146i \(-0.0579805\pi\)
0.550622 + 0.834755i \(0.314391\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 14.4596 + 28.9528i 0.742740 + 1.48720i 0.868790 + 0.495181i \(0.164898\pi\)
−0.126050 + 0.992024i \(0.540230\pi\)
\(380\) 0 0
\(381\) −17.7599 + 8.42718i −0.909867 + 0.431737i
\(382\) 0 0
\(383\) 0 0 −0.584522 0.811378i \(-0.698718\pi\)
0.584522 + 0.811378i \(0.301282\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 37.5340 + 7.66263i 1.90796 + 0.389513i
\(388\) −18.7553 28.3776i −0.952158 1.44065i
\(389\) 0 0 0.935016 0.354605i \(-0.115385\pi\)
−0.935016 + 0.354605i \(0.884615\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −14.5546 15.7769i −0.730475 0.791822i 0.254026 0.967197i \(-0.418245\pi\)
−0.984502 + 0.175376i \(0.943886\pi\)
\(398\) 0 0
\(399\) −4.86903 0.791294i −0.243756 0.0396143i
\(400\) −10.6893 + 16.9038i −0.534466 + 0.845190i
\(401\) 0 0 −0.735006 0.678061i \(-0.762821\pi\)
0.735006 + 0.678061i \(0.237179\pi\)
\(402\) 0 0
\(403\) −21.9631 33.1659i −1.09406 1.65211i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −21.8179 + 33.0114i −1.07883 + 1.63231i −0.366574 + 0.930389i \(0.619469\pi\)
−0.712254 + 0.701922i \(0.752326\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 1.59810 39.6564i 0.0787327 1.95373i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −37.8510 + 9.32943i −1.85357 + 0.456864i
\(418\) 0 0
\(419\) 0 0 −0.278217 0.960518i \(-0.589744\pi\)
0.278217 + 0.960518i \(0.410256\pi\)
\(420\) 0 0
\(421\) −1.74861 28.9080i −0.0852220 1.40889i −0.749798 0.661667i \(-0.769849\pi\)
0.664576 0.747221i \(-0.268612\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 7.61588 + 2.04067i 0.368558 + 0.0987550i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.482459 0.875918i \(-0.339744\pi\)
−0.482459 + 0.875918i \(0.660256\pi\)
\(432\) 16.6161 12.4862i 0.799443 0.600742i
\(433\) 26.5497 + 1.06992i 1.27590 + 0.0514169i 0.668940 0.743317i \(-0.266748\pi\)
0.606958 + 0.794734i \(0.292389\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −4.36411 2.88433i −0.209003 0.138134i
\(437\) 0 0
\(438\) 0 0
\(439\) 0.652051 8.07710i 0.0311207 0.385499i −0.962383 0.271697i \(-0.912415\pi\)
0.993503 0.113802i \(-0.0363029\pi\)
\(440\) 0 0
\(441\) −12.9936 14.6668i −0.618745 0.698419i
\(442\) 0 0
\(443\) 0 0 −0.748511 0.663123i \(-0.769231\pi\)
0.748511 + 0.663123i \(0.230769\pi\)
\(444\) 24.4798 26.5357i 1.16176 1.25933i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −4.02454 + 3.71273i −0.190141 + 0.175410i
\(449\) 0 0 −0.0201371 0.999797i \(-0.506410\pi\)
0.0201371 + 0.999797i \(0.493590\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −39.0842 + 8.80249i −1.83634 + 0.413577i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −19.8328 + 13.1079i −0.927738 + 0.613161i −0.922154 0.386823i \(-0.873572\pi\)
−0.00558406 + 0.999984i \(0.501777\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.140502 0.990080i \(-0.544872\pi\)
0.140502 + 0.990080i \(0.455128\pi\)
\(462\) 0 0
\(463\) −15.5139 19.8020i −0.720990 0.920276i 0.278200 0.960523i \(-0.410262\pi\)
−0.999190 + 0.0402476i \(0.987185\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 0.992709 0.120537i \(-0.0384615\pi\)
−0.992709 + 0.120537i \(0.961538\pi\)
\(468\) −17.3063 12.9804i −0.799985 0.600020i
\(469\) 1.07294 8.83644i 0.0495437 0.408029i
\(470\) 0 0
\(471\) −9.04692 + 1.47027i −0.416860 + 0.0677464i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 19.5981 + 6.98449i 0.899221 + 0.320470i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.761712 0.647915i \(-0.224359\pi\)
−0.761712 + 0.647915i \(0.775641\pi\)
\(480\) 0 0
\(481\) −33.6327 16.7589i −1.53352 0.764142i
\(482\) 0 0
\(483\) 0 0
\(484\) −11.0000 19.0526i −0.500000 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) −31.4124 + 17.3021i −1.42343 + 0.784032i −0.992946 0.118565i \(-0.962171\pi\)
−0.430486 + 0.902597i \(0.641658\pi\)
\(488\) 0 0
\(489\) −0.896266 + 0.541812i −0.0405305 + 0.0245016i
\(490\) 0 0
\(491\) 0 0 0.999189 0.0402659i \(-0.0128205\pi\)
−0.999189 + 0.0402659i \(0.987179\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −43.6928 6.20046i −1.96187 0.278409i
\(497\) 0 0
\(498\) 0 0
\(499\) −19.4014 + 8.73188i −0.868528 + 0.390893i −0.795151 0.606412i \(-0.792608\pi\)
−0.0733768 + 0.997304i \(0.523378\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.692724 0.721202i \(-0.256410\pi\)
−0.692724 + 0.721202i \(0.743590\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −7.94649 + 21.0678i −0.352916 + 0.935655i
\(508\) 22.6989 1.00710
\(509\) 0 0 −0.927686 0.373361i \(-0.878205\pi\)
0.927686 + 0.373361i \(0.121795\pi\)
\(510\) 0 0
\(511\) −8.26593 7.93953i −0.365663 0.351224i
\(512\) 0 0
\(513\) −16.4695 14.0090i −0.727146 0.618513i
\(514\) 0 0
\(515\) 0 0
\(516\) −35.3630 26.5735i −1.55677 1.16984i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.885456 0.464723i \(-0.846154\pi\)
0.885456 + 0.464723i \(0.153846\pi\)
\(522\) 0 0
\(523\) −1.76126 43.7052i −0.0770145 1.91110i −0.330581 0.943778i \(-0.607245\pi\)
0.253567 0.967318i \(-0.418396\pi\)
\(524\) 0 0
\(525\) −3.06648 5.07258i −0.133832 0.221385i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 4.68774 + 3.23571i 0.203239 + 0.140286i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 43.5890 13.5829i 1.87404 0.583974i 0.879997 0.474979i \(-0.157544\pi\)
0.994042 0.108996i \(-0.0347635\pi\)
\(542\) 0 0
\(543\) −4.85163 29.8533i −0.208203 1.28113i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −5.44792 44.8677i −0.232936 1.91840i −0.372209 0.928149i \(-0.621400\pi\)
0.139273 0.990254i \(-0.455523\pi\)
\(548\) 0 0
\(549\) 23.9399 + 24.9241i 1.02173 + 1.06374i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.308071 0.0437184i 0.0131005 0.00185909i
\(554\) 0 0
\(555\) 0 0
\(556\) 44.1049 + 9.00408i 1.87046 + 0.381858i
\(557\) 0 0 −0.551377 0.834256i \(-0.685897\pi\)
0.551377 + 0.834256i \(0.314103\pi\)
\(558\) 0 0
\(559\) −16.2874 + 43.0636i −0.688884 + 1.82139i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.316668 0.948536i \(-0.602564\pi\)
0.316668 + 0.948536i \(0.397436\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.11036 + 6.05906i 0.0466309 + 0.254456i
\(568\) 0 0
\(569\) 0 0 0.534466 0.845190i \(-0.320513\pi\)
−0.534466 + 0.845190i \(0.679487\pi\)
\(570\) 0 0
\(571\) −11.8609 + 13.3882i −0.496363 + 0.560279i −0.942293 0.334790i \(-0.891335\pi\)
0.445929 + 0.895068i \(0.352873\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −23.5150 + 4.80062i −0.979791 + 0.200026i
\(577\) 15.5006 + 15.5006i 0.645299 + 0.645299i 0.951853 0.306554i \(-0.0991761\pi\)
−0.306554 + 0.951853i \(0.599176\pi\)
\(578\) 0 0
\(579\) 5.54701 24.6294i 0.230526 1.02356i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(588\) 6.29493 + 21.7326i 0.259598 + 0.896238i
\(589\) 3.69405 + 45.7590i 0.152211 + 1.88547i
\(590\) 0 0
\(591\) 0 0
\(592\) −38.6732 + 15.5646i −1.58946 + 0.639702i
\(593\) 0 0 0.998176 0.0603785i \(-0.0192308\pi\)
−0.998176 + 0.0603785i \(0.980769\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −8.41588 34.1446i −0.344439 1.39744i
\(598\) 0 0
\(599\) 0 0 −0.970942 0.239316i \(-0.923077\pi\)
0.970942 + 0.239316i \(0.0769231\pi\)
\(600\) 0 0
\(601\) 7.65049 5.74897i 0.312070 0.234505i −0.433154 0.901320i \(-0.642599\pi\)
0.745223 + 0.666815i \(0.232343\pi\)
\(602\) 0 0
\(603\) 24.0618 30.7127i 0.979874 1.25072i
\(604\) 45.1306 + 10.1642i 1.83634 + 0.413577i
\(605\) 0 0
\(606\) 0 0
\(607\) 7.00386 + 34.3072i 0.284278 + 1.39248i 0.831513 + 0.555506i \(0.187475\pi\)
−0.547235 + 0.836979i \(0.684320\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 10.0519 10.8960i 0.405990 0.440086i −0.498300 0.867005i \(-0.666042\pi\)
0.904290 + 0.426919i \(0.140401\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.735006 0.678061i \(-0.237179\pi\)
−0.735006 + 0.678061i \(0.762821\pi\)
\(618\) 0 0
\(619\) −2.15360 + 35.6032i −0.0865605 + 1.43102i 0.652711 + 0.757607i \(0.273632\pi\)
−0.739271 + 0.673408i \(0.764830\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 11.6287 + 22.1082i 0.465522 + 0.885036i
\(625\) 8.86512 + 23.3754i 0.354605 + 0.935016i
\(626\) 0 0
\(627\) 0 0
\(628\) 10.1657 + 2.94453i 0.405655 + 0.117499i
\(629\) 0 0
\(630\) 0 0
\(631\) −17.4663 + 12.5828i −0.695323 + 0.500915i −0.875806 0.482663i \(-0.839670\pi\)
0.180484 + 0.983578i \(0.442234\pi\)
\(632\) 0 0
\(633\) 3.01459 + 6.35312i 0.119819 + 0.252514i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 19.8927 12.6045i 0.788177 0.499410i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.391967 0.919979i \(-0.371795\pi\)
−0.391967 + 0.919979i \(0.628205\pi\)
\(642\) 0 0
\(643\) 45.3389 + 22.6432i 1.78799 + 0.892959i 0.910871 + 0.412692i \(0.135411\pi\)
0.877122 + 0.480268i \(0.159461\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.391967 0.919979i \(-0.628205\pi\)
0.391967 + 0.919979i \(0.371795\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 7.42974 10.7638i 0.291194 0.421868i
\(652\) 1.20320 0.121564i 0.0471210 0.00476081i
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −13.0022 48.5249i −0.507264 1.89314i
\(658\) 0 0
\(659\) 0 0 −0.632445 0.774605i \(-0.717949\pi\)
0.632445 + 0.774605i \(0.282051\pi\)
\(660\) 0 0
\(661\) 10.4911 14.5628i 0.408058 0.566428i −0.556315 0.830971i \(-0.687785\pi\)
0.964374 + 0.264543i \(0.0852213\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −2.16775 + 21.4557i −0.0838101 + 0.829525i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −6.00393 + 17.9840i −0.231435 + 0.693231i 0.767220 + 0.641384i \(0.221639\pi\)
−0.998655 + 0.0518477i \(0.983489\pi\)
\(674\) 0 0
\(675\) 25.9808i 1.00000i
\(676\) 18.7187 18.0447i 0.719950 0.694026i
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) −11.0417 3.68626i −0.423741 0.141466i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.994935 0.100522i \(-0.967949\pi\)
0.994935 + 0.100522i \(0.0320513\pi\)
\(684\) 10.2466 + 22.7670i 0.391788 + 0.870518i
\(685\) 0 0
\(686\) 0 0
\(687\) −6.42185 + 45.2529i −0.245009 + 1.72651i
\(688\) 23.7370 + 45.2270i 0.904963 + 1.72426i
\(689\) 0 0
\(690\) 0 0
\(691\) 5.64072 + 4.06361i 0.214583 + 0.154587i 0.686681 0.726959i \(-0.259067\pi\)
−0.472098 + 0.881546i \(0.656503\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.688013 + 6.80973i 0.0260044 + 0.257384i
\(701\) 0 0 −0.822984 0.568065i \(-0.807692\pi\)
0.822984 + 0.568065i \(0.192308\pi\)
\(702\) 0 0
\(703\) 24.6351 + 35.6901i 0.929130 + 1.34608i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 23.7109 47.4769i 0.890482 1.78303i 0.370610 0.928788i \(-0.379149\pi\)
0.519872 0.854244i \(-0.325980\pi\)
\(710\) 0 0
\(711\) 1.25471 + 0.534583i 0.0470554 + 0.0200484i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.903450 0.428693i \(-0.141026\pi\)
−0.903450 + 0.428693i \(0.858974\pi\)
\(720\) 0 0
\(721\) −7.93911 11.0203i −0.295668 0.410418i
\(722\) 0 0
\(723\) 2.11106 3.49212i 0.0785112 0.129873i
\(724\) −9.71642 + 33.5450i −0.361108 + 1.24669i
\(725\) 0 0
\(726\) 0 0
\(727\) 3.43881 1.30417i 0.127538 0.0483689i −0.290010 0.957024i \(-0.593659\pi\)
0.417548 + 0.908655i \(0.362889\pi\)
\(728\) 0 0
\(729\) −9.57433 + 25.2454i −0.354605 + 0.935016i
\(730\) 0 0
\(731\) 0 0
\(732\) −12.6368 37.8518i −0.467069 1.39904i
\(733\) −46.0062 2.78286i −1.69928 0.102787i −0.817949 0.575291i \(-0.804889\pi\)
−0.881329 + 0.472504i \(0.843350\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 29.8222 + 27.5118i 1.09703 + 1.01204i 0.999859 + 0.0167685i \(0.00533782\pi\)
0.0971693 + 0.995268i \(0.469021\pi\)
\(740\) 0 0
\(741\) 19.7786 16.8546i 0.726587 0.619169i
\(742\) 0 0
\(743\) 0 0 0.0201371 0.999797i \(-0.493590\pi\)
−0.0201371 + 0.999797i \(0.506410\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −23.7306 31.5797i −0.865942 1.15236i −0.987160 0.159734i \(-0.948936\pi\)
0.121218 0.992626i \(-0.461320\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 1.84096 6.87054i 0.0669549 0.249879i
\(757\) 11.5482 + 39.8690i 0.419727 + 1.44906i 0.840457 + 0.541879i \(0.182287\pi\)
−0.420730 + 0.907186i \(0.638226\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.927686 0.373361i \(-0.121795\pi\)
−0.927686 + 0.373361i \(0.878205\pi\)
\(762\) 0 0
\(763\) −1.78439 + 0.144051i −0.0645994 + 0.00521500i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 26.9075 + 6.63211i 0.970942 + 0.239316i
\(769\) −5.76924 + 10.4742i −0.208044 + 0.377710i −0.959339 0.282257i \(-0.908917\pi\)
0.751295 + 0.659967i \(0.229430\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −17.9786 + 22.9480i −0.647063 + 0.825915i
\(773\) 0 0 −0.975564 0.219715i \(-0.929487\pi\)
0.975564 + 0.219715i \(0.0705128\pi\)
\(774\) 0 0
\(775\) −39.0063 + 39.0063i −1.40115 + 1.40115i
\(776\) 0 0
\(777\) 0.994170 12.3150i 0.0356656 0.441798i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 4.19093 25.7878i 0.149676 0.920994i
\(785\) 0 0
\(786\) 0 0
\(787\) 1.11545 + 55.3815i 0.0397613 + 1.97414i 0.178912 + 0.983865i \(0.442742\pi\)
−0.139151 + 0.990271i \(0.544437\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −34.1612 + 23.6254i −1.21310 + 0.838961i
\(794\) 0 0
\(795\) 0 0
\(796\) −8.12239 + 39.7861i −0.287890 + 1.41018i
\(797\) 0 0 −0.960518 0.278217i \(-0.910256\pi\)
0.960518 + 0.278217i \(0.0897436\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −40.3048 + 20.1290i −1.42144 + 0.709896i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.987050 0.160411i \(-0.0512821\pi\)
−0.987050 + 0.160411i \(0.948718\pi\)
\(810\) 0 0
\(811\) −16.0605 51.5400i −0.563961 1.80981i −0.586341 0.810064i \(-0.699432\pi\)
0.0223803 0.999750i \(-0.492876\pi\)
\(812\) 0 0
\(813\) 27.3334 + 9.74125i 0.958623 + 0.341640i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 40.4733 34.4268i 1.41598 1.20444i
\(818\) 0 0
\(819\) −7.40171 + 0.155765i −0.258637 + 0.00544286i
\(820\) 0 0
\(821\) 0 0 0.994935 0.100522i \(-0.0320513\pi\)
−0.994935 + 0.100522i \(0.967949\pi\)
\(822\) 0 0
\(823\) 42.1737 + 24.3490i 1.47008 + 0.848753i 0.999436 0.0335690i \(-0.0106873\pi\)
0.470647 + 0.882322i \(0.344021\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.855781 0.517338i \(-0.173077\pi\)
−0.855781 + 0.517338i \(0.826923\pi\)
\(828\) 0 0
\(829\) −57.3466 + 2.31099i −1.99173 + 0.0802640i −0.999147 0.0412960i \(-0.986851\pi\)
−0.992584 + 0.121560i \(0.961210\pi\)
\(830\) 0 0
\(831\) 26.4005 50.3019i 0.915822 1.74495i
\(832\) −1.18747 28.8200i −0.0411681 0.999152i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 52.2768 23.5279i 1.80695 0.813242i
\(838\) 0 0
\(839\) 0 0 0.647915 0.761712i \(-0.275641\pi\)
−0.647915 + 0.761712i \(0.724359\pi\)
\(840\) 0 0
\(841\) 20.0890 20.9149i 0.692724 0.721202i
\(842\) 0 0
\(843\) 0 0
\(844\) 8.11993i 0.279500i
\(845\) 0 0
\(846\) 0 0
\(847\) −6.98440 2.81098i −0.239987 0.0965863i
\(848\) 0 0
\(849\) −14.5807 14.0049i −0.500407 0.480648i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −14.0506 31.2191i −0.481083 1.06892i −0.979400 0.201928i \(-0.935279\pi\)
0.498317 0.866995i \(-0.333952\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.464723 0.885456i \(-0.653846\pi\)
0.464723 + 0.885456i \(0.346154\pi\)
\(858\) 0 0
\(859\) −30.2494 15.8761i −1.03210 0.541686i −0.138409 0.990375i \(-0.544199\pi\)
−0.893688 + 0.448689i \(0.851891\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.517338 0.855781i \(-0.673077\pi\)
0.517338 + 0.855781i \(0.326923\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −14.7224 + 25.5000i −0.500000 + 0.866025i
\(868\) −13.0790 + 7.55118i −0.443931 + 0.256304i
\(869\) 0 0
\(870\) 0 0
\(871\) 31.8262 + 34.4366i 1.07839 + 1.16684i
\(872\) 0 0
\(873\) −33.0587 38.8650i −1.11887 1.31538i
\(874\) 0 0
\(875\) 0 0
\(876\) −10.4563 + 57.0581i −0.353285 + 1.92781i
\(877\) −3.72653 + 10.4564i −0.125836 + 0.353089i −0.988193 0.153211i \(-0.951038\pi\)
0.862357 + 0.506300i \(0.168987\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.160411 0.987050i \(-0.551282\pi\)
0.160411 + 0.987050i \(0.448718\pi\)
\(882\) 0 0
\(883\) 40.2610 + 4.88857i 1.35489 + 0.164514i 0.765553 0.643373i \(-0.222466\pi\)
0.589338 + 0.807887i \(0.299389\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.692724 0.721202i \(-0.743590\pi\)
0.692724 + 0.721202i \(0.256410\pi\)
\(888\) 0 0
\(889\) 6.11486 4.79069i 0.205086 0.160675i
\(890\) 0 0
\(891\) 0 0
\(892\) 12.8823 21.3098i 0.431330 0.713506i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −12.8608 + 27.1035i −0.428693 + 0.903450i
\(901\) 0 0
\(902\) 0 0
\(903\) −15.1349 + 0.304833i −0.503657 + 0.0101442i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −31.9527 + 50.5291i −1.06097 + 1.67779i −0.427525 + 0.904004i \(0.640614\pi\)
−0.633446 + 0.773787i \(0.718360\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.748511 0.663123i \(-0.230769\pi\)
−0.748511 + 0.663123i \(0.769231\pi\)
\(912\) 0.580529 28.8230i 0.0192232 0.954426i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 29.1001 44.0296i 0.961494 1.45478i
\(917\) 0 0
\(918\) 0 0
\(919\) 2.43632 60.4566i 0.0803667 1.99428i −0.0237804 0.999717i \(-0.507570\pi\)
0.104147 0.994562i \(-0.466789\pi\)
\(920\) 0 0
\(921\) 49.5001 + 27.2649i 1.63108 + 0.898408i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −13.4870 + 50.3342i −0.443450 + 1.65498i
\(926\) 0 0
\(927\) −4.79041 59.3398i −0.157338 1.94898i
\(928\) 0 0
\(929\) 0 0 −0.373361 0.927686i \(-0.621795\pi\)
0.373361 + 0.927686i \(0.378205\pi\)
\(930\) 0 0
\(931\) −27.1288 + 1.64099i −0.889109 + 0.0537812i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 31.5471 + 7.77567i 1.03060 + 0.254020i 0.718131 0.695908i \(-0.244998\pi\)
0.312469 + 0.949928i \(0.398844\pi\)
\(938\) 0 0
\(939\) −46.0450 + 34.6006i −1.50262 + 1.12915i
\(940\) 0 0
\(941\) 0 0 0.616719 0.787183i \(-0.288462\pi\)
−0.616719 + 0.787183i \(0.711538\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.999797 0.0201371i \(-0.993590\pi\)
0.999797 + 0.0201371i \(0.00641026\pi\)
\(948\) −1.04431 1.17878i −0.0339176 0.0382850i
\(949\) 60.0656 6.12345i 1.94981 0.198775i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.160411 0.987050i \(-0.448718\pi\)
−0.160411 + 0.987050i \(0.551282\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −84.8240 32.1695i −2.73626 1.03773i
\(962\) 0 0
\(963\) 0 0
\(964\) −3.93093 + 2.59803i −0.126607 + 0.0836770i
\(965\) 0 0
\(966\) 0 0
\(967\) 34.2740 + 20.7194i 1.10218 + 0.666290i 0.946883 0.321578i \(-0.104213\pi\)
0.155295 + 0.987868i \(0.450367\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.428693 0.903450i \(-0.641026\pi\)
0.428693 + 0.903450i \(0.358974\pi\)
\(972\) 22.4849 21.5970i 0.721202 0.692724i
\(973\) 13.7817 6.88288i 0.441823 0.220655i
\(974\) 0 0
\(975\) 30.8251 + 4.98101i 0.987195 + 0.159520i
\(976\) −5.55419 + 45.7429i −0.177785 + 1.46419i
\(977\) 0 0 0.941967 0.335705i \(-0.108974\pi\)
−0.941967 + 0.335705i \(0.891026\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −7.01993 3.50589i −0.224129 0.111935i
\(982\) 0 0
\(983\) 0 0 −0.983620 0.180255i \(-0.942308\pi\)
0.983620 + 0.180255i \(0.0576923\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −28.9766 + 7.79230i −0.921868 + 0.247906i
\(989\) 0 0
\(990\) 0 0
\(991\) −25.0043 43.3087i −0.794288 1.37575i −0.923291 0.384102i \(-0.874511\pi\)
0.129003 0.991644i \(-0.458822\pi\)
\(992\) 0 0
\(993\) −19.2343 + 42.7368i −0.610381 + 1.35621i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 32.9167 + 40.3156i 1.04248 + 1.27681i 0.959936 + 0.280221i \(0.0904077\pi\)
0.0825460 + 0.996587i \(0.473695\pi\)
\(998\) 0 0
\(999\) 31.6542 43.9394i 1.00150 1.39018i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 507.2.x.a.50.1 48
3.2 odd 2 CM 507.2.x.a.50.1 48
169.71 odd 156 inner 507.2.x.a.71.1 yes 48
507.71 even 156 inner 507.2.x.a.71.1 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
507.2.x.a.50.1 48 1.1 even 1 trivial
507.2.x.a.50.1 48 3.2 odd 2 CM
507.2.x.a.71.1 yes 48 169.71 odd 156 inner
507.2.x.a.71.1 yes 48 507.71 even 156 inner