Properties

Label 5070.2.a.z
Level $5070$
Weight $2$
Character orbit 5070.a
Self dual yes
Analytic conductor $40.484$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5070,2,Mod(1,5070)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5070, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5070.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5070 = 2 \cdot 3 \cdot 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5070.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.4841538248\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 390)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{13}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + ( - \beta - 1) q^{7} - q^{8} + q^{9} + q^{10} - q^{12} + (\beta + 1) q^{14} + q^{15} + q^{16} + ( - \beta - 1) q^{17} - q^{18} + (\beta + 1) q^{19}+ \cdots + ( - 2 \beta - 7) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} - 2 q^{5} + 2 q^{6} - 2 q^{7} - 2 q^{8} + 2 q^{9} + 2 q^{10} - 2 q^{12} + 2 q^{14} + 2 q^{15} + 2 q^{16} - 2 q^{17} - 2 q^{18} + 2 q^{19} - 2 q^{20} + 2 q^{21} + 10 q^{23}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.30278
−1.30278
−1.00000 −1.00000 1.00000 −1.00000 1.00000 −4.60555 −1.00000 1.00000 1.00000
1.2 −1.00000 −1.00000 1.00000 −1.00000 1.00000 2.60555 −1.00000 1.00000 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5070.2.a.z 2
13.b even 2 1 5070.2.a.bf 2
13.d odd 4 2 390.2.b.c 4
39.f even 4 2 1170.2.b.d 4
52.f even 4 2 3120.2.g.q 4
65.f even 4 2 1950.2.f.n 4
65.g odd 4 2 1950.2.b.k 4
65.k even 4 2 1950.2.f.m 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.b.c 4 13.d odd 4 2
1170.2.b.d 4 39.f even 4 2
1950.2.b.k 4 65.g odd 4 2
1950.2.f.m 4 65.k even 4 2
1950.2.f.n 4 65.f even 4 2
3120.2.g.q 4 52.f even 4 2
5070.2.a.z 2 1.a even 1 1 trivial
5070.2.a.bf 2 13.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5070))\):

\( T_{7}^{2} + 2T_{7} - 12 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{17}^{2} + 2T_{17} - 12 \) Copy content Toggle raw display
\( T_{31} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 2T - 12 \) Copy content Toggle raw display
$19$ \( T^{2} - 2T - 12 \) Copy content Toggle raw display
$23$ \( T^{2} - 10T + 12 \) Copy content Toggle raw display
$29$ \( T^{2} - 2T - 12 \) Copy content Toggle raw display
$31$ \( (T + 6)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 4T - 48 \) Copy content Toggle raw display
$41$ \( T^{2} - 8T - 36 \) Copy content Toggle raw display
$43$ \( (T + 8)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 4T - 48 \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 4T - 48 \) Copy content Toggle raw display
$61$ \( T^{2} + 8T - 36 \) Copy content Toggle raw display
$67$ \( T^{2} + 8T - 36 \) Copy content Toggle raw display
$71$ \( T^{2} + 4T - 48 \) Copy content Toggle raw display
$73$ \( T^{2} + 10T + 12 \) Copy content Toggle raw display
$79$ \( T^{2} - 208 \) Copy content Toggle raw display
$83$ \( T^{2} + 20T + 48 \) Copy content Toggle raw display
$89$ \( T^{2} - 16T + 12 \) Copy content Toggle raw display
$97$ \( T^{2} + 10T + 12 \) Copy content Toggle raw display
show more
show less