Properties

Label 51.4.e.a.13.2
Level $51$
Weight $4$
Character 51.13
Analytic conductor $3.009$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [51,4,Mod(4,51)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(51, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("51.4");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 51.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.00909741029\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 88 x^{14} + 3086 x^{12} + 54880 x^{10} + 516641 x^{8} + 2403800 x^{6} + 4378064 x^{4} + \cdots + 295936 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 13.2
Root \(-4.35402i\) of defining polynomial
Character \(\chi\) \(=\) 51.13
Dual form 51.4.e.a.4.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.35402i q^{2} +(2.12132 + 2.12132i) q^{3} -3.24945 q^{4} +(-11.9082 - 11.9082i) q^{5} +(7.11495 - 7.11495i) q^{6} +(17.4318 - 17.4318i) q^{7} -15.9334i q^{8} +9.00000i q^{9} +(-39.9404 + 39.9404i) q^{10} +(-30.0520 + 30.0520i) q^{11} +(-6.89312 - 6.89312i) q^{12} +55.8783 q^{13} +(-58.4667 - 58.4667i) q^{14} -50.5223i q^{15} -79.4367 q^{16} +(57.3482 + 40.3011i) q^{17} +30.1862 q^{18} +81.6537i q^{19} +(38.6952 + 38.6952i) q^{20} +73.9570 q^{21} +(100.795 + 100.795i) q^{22} +(92.2875 - 92.2875i) q^{23} +(33.7999 - 33.7999i) q^{24} +158.612i q^{25} -187.417i q^{26} +(-19.0919 + 19.0919i) q^{27} +(-56.6438 + 56.6438i) q^{28} +(155.924 + 155.924i) q^{29} -169.453 q^{30} +(-89.6703 - 89.6703i) q^{31} +138.965i q^{32} -127.500 q^{33} +(135.171 - 192.347i) q^{34} -415.164 q^{35} -29.2450i q^{36} +(-147.677 - 147.677i) q^{37} +273.868 q^{38} +(118.536 + 118.536i) q^{39} +(-189.739 + 189.739i) q^{40} +(56.0414 - 56.0414i) q^{41} -248.053i q^{42} +256.206i q^{43} +(97.6522 - 97.6522i) q^{44} +(107.174 - 107.174i) q^{45} +(-309.534 - 309.534i) q^{46} -231.122 q^{47} +(-168.511 - 168.511i) q^{48} -264.737i q^{49} +531.987 q^{50} +(36.1625 + 207.146i) q^{51} -181.574 q^{52} -76.9927i q^{53} +(64.0345 + 64.0345i) q^{54} +715.731 q^{55} +(-277.749 - 277.749i) q^{56} +(-173.214 + 173.214i) q^{57} +(522.973 - 522.973i) q^{58} +633.045i q^{59} +164.170i q^{60} +(133.723 - 133.723i) q^{61} +(-300.756 + 300.756i) q^{62} +(156.886 + 156.886i) q^{63} -169.404 q^{64} +(-665.412 - 665.412i) q^{65} +427.636i q^{66} +681.108 q^{67} +(-186.350 - 130.956i) q^{68} +391.543 q^{69} +1392.47i q^{70} +(-386.843 - 386.843i) q^{71} +143.401 q^{72} +(-510.031 - 510.031i) q^{73} +(-495.312 + 495.312i) q^{74} +(-336.466 + 336.466i) q^{75} -265.330i q^{76} +1047.72i q^{77} +(397.572 - 397.572i) q^{78} +(-257.125 + 257.125i) q^{79} +(945.950 + 945.950i) q^{80} -81.0000 q^{81} +(-187.964 - 187.964i) q^{82} -280.677i q^{83} -240.319 q^{84} +(-203.001 - 1162.83i) q^{85} +859.321 q^{86} +661.531i q^{87} +(478.831 + 478.831i) q^{88} +440.149 q^{89} +(-359.464 - 359.464i) q^{90} +(974.061 - 974.061i) q^{91} +(-299.883 + 299.883i) q^{92} -380.439i q^{93} +775.188i q^{94} +(972.351 - 972.351i) q^{95} +(-294.788 + 294.788i) q^{96} +(-627.434 - 627.434i) q^{97} -887.934 q^{98} +(-270.468 - 270.468i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 48 q^{4} - 32 q^{5} + 12 q^{6} - 8 q^{7} - 20 q^{10} + 96 q^{11} + 120 q^{13} - 288 q^{14} - 200 q^{16} + 16 q^{17} - 72 q^{18} + 384 q^{20} + 168 q^{21} + 4 q^{22} + 208 q^{23} + 312 q^{24} + 904 q^{28}+ \cdots + 864 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.35402i 1.18582i −0.805267 0.592912i \(-0.797978\pi\)
0.805267 0.592912i \(-0.202022\pi\)
\(3\) 2.12132 + 2.12132i 0.408248 + 0.408248i
\(4\) −3.24945 −0.406181
\(5\) −11.9082 11.9082i −1.06510 1.06510i −0.997728 0.0673767i \(-0.978537\pi\)
−0.0673767 0.997728i \(-0.521463\pi\)
\(6\) 7.11495 7.11495i 0.484111 0.484111i
\(7\) 17.4318 17.4318i 0.941230 0.941230i −0.0571362 0.998366i \(-0.518197\pi\)
0.998366 + 0.0571362i \(0.0181969\pi\)
\(8\) 15.9334i 0.704166i
\(9\) 9.00000i 0.333333i
\(10\) −39.9404 + 39.9404i −1.26303 + 1.26303i
\(11\) −30.0520 + 30.0520i −0.823728 + 0.823728i −0.986641 0.162913i \(-0.947911\pi\)
0.162913 + 0.986641i \(0.447911\pi\)
\(12\) −6.89312 6.89312i −0.165823 0.165823i
\(13\) 55.8783 1.19214 0.596072 0.802931i \(-0.296727\pi\)
0.596072 + 0.802931i \(0.296727\pi\)
\(14\) −58.4667 58.4667i −1.11613 1.11613i
\(15\) 50.5223i 0.869654i
\(16\) −79.4367 −1.24120
\(17\) 57.3482 + 40.3011i 0.818176 + 0.574968i
\(18\) 30.1862 0.395275
\(19\) 81.6537i 0.985929i 0.870049 + 0.492965i \(0.164087\pi\)
−0.870049 + 0.492965i \(0.835913\pi\)
\(20\) 38.6952 + 38.6952i 0.432625 + 0.432625i
\(21\) 73.9570 0.768511
\(22\) 100.795 + 100.795i 0.976797 + 0.976797i
\(23\) 92.2875 92.2875i 0.836664 0.836664i −0.151754 0.988418i \(-0.548492\pi\)
0.988418 + 0.151754i \(0.0484923\pi\)
\(24\) 33.7999 33.7999i 0.287474 0.287474i
\(25\) 158.612i 1.26889i
\(26\) 187.417i 1.41367i
\(27\) −19.0919 + 19.0919i −0.136083 + 0.136083i
\(28\) −56.6438 + 56.6438i −0.382310 + 0.382310i
\(29\) 155.924 + 155.924i 0.998428 + 0.998428i 0.999999 0.00157095i \(-0.000500049\pi\)
−0.00157095 + 0.999999i \(0.500500\pi\)
\(30\) −169.453 −1.03126
\(31\) −89.6703 89.6703i −0.519525 0.519525i 0.397903 0.917428i \(-0.369738\pi\)
−0.917428 + 0.397903i \(0.869738\pi\)
\(32\) 138.965i 0.767678i
\(33\) −127.500 −0.672571
\(34\) 135.171 192.347i 0.681811 0.970214i
\(35\) −415.164 −2.00502
\(36\) 29.2450i 0.135394i
\(37\) −147.677 147.677i −0.656162 0.656162i 0.298308 0.954470i \(-0.403578\pi\)
−0.954470 + 0.298308i \(0.903578\pi\)
\(38\) 273.868 1.16914
\(39\) 118.536 + 118.536i 0.486690 + 0.486690i
\(40\) −189.739 + 189.739i −0.750010 + 0.750010i
\(41\) 56.0414 56.0414i 0.213468 0.213468i −0.592271 0.805739i \(-0.701768\pi\)
0.805739 + 0.592271i \(0.201768\pi\)
\(42\) 248.053i 0.911320i
\(43\) 256.206i 0.908630i 0.890841 + 0.454315i \(0.150116\pi\)
−0.890841 + 0.454315i \(0.849884\pi\)
\(44\) 97.6522 97.6522i 0.334582 0.334582i
\(45\) 107.174 107.174i 0.355035 0.355035i
\(46\) −309.534 309.534i −0.992137 0.992137i
\(47\) −231.122 −0.717290 −0.358645 0.933474i \(-0.616761\pi\)
−0.358645 + 0.933474i \(0.616761\pi\)
\(48\) −168.511 168.511i −0.506717 0.506717i
\(49\) 264.737i 0.771829i
\(50\) 531.987 1.50469
\(51\) 36.1625 + 207.146i 0.0992894 + 0.568749i
\(52\) −181.574 −0.484226
\(53\) 76.9927i 0.199543i −0.995010 0.0997714i \(-0.968189\pi\)
0.995010 0.0997714i \(-0.0318111\pi\)
\(54\) 64.0345 + 64.0345i 0.161370 + 0.161370i
\(55\) 715.731 1.75471
\(56\) −277.749 277.749i −0.662782 0.662782i
\(57\) −173.214 + 173.214i −0.402504 + 0.402504i
\(58\) 522.973 522.973i 1.18396 1.18396i
\(59\) 633.045i 1.39687i 0.715673 + 0.698436i \(0.246120\pi\)
−0.715673 + 0.698436i \(0.753880\pi\)
\(60\) 164.170i 0.353237i
\(61\) 133.723 133.723i 0.280680 0.280680i −0.552700 0.833380i \(-0.686402\pi\)
0.833380 + 0.552700i \(0.186402\pi\)
\(62\) −300.756 + 300.756i −0.616065 + 0.616065i
\(63\) 156.886 + 156.886i 0.313743 + 0.313743i
\(64\) −169.404 −0.330866
\(65\) −665.412 665.412i −1.26976 1.26976i
\(66\) 427.636i 0.797551i
\(67\) 681.108 1.24195 0.620975 0.783831i \(-0.286737\pi\)
0.620975 + 0.783831i \(0.286737\pi\)
\(68\) −186.350 130.956i −0.332327 0.233541i
\(69\) 391.543 0.683133
\(70\) 1392.47i 2.37760i
\(71\) −386.843 386.843i −0.646617 0.646617i 0.305557 0.952174i \(-0.401157\pi\)
−0.952174 + 0.305557i \(0.901157\pi\)
\(72\) 143.401 0.234722
\(73\) −510.031 510.031i −0.817734 0.817734i 0.168045 0.985779i \(-0.446255\pi\)
−0.985779 + 0.168045i \(0.946255\pi\)
\(74\) −495.312 + 495.312i −0.778093 + 0.778093i
\(75\) −336.466 + 336.466i −0.518024 + 0.518024i
\(76\) 265.330i 0.400466i
\(77\) 1047.72i 1.55064i
\(78\) 397.572 397.572i 0.577130 0.577130i
\(79\) −257.125 + 257.125i −0.366188 + 0.366188i −0.866085 0.499897i \(-0.833371\pi\)
0.499897 + 0.866085i \(0.333371\pi\)
\(80\) 945.950 + 945.950i 1.32201 + 1.32201i
\(81\) −81.0000 −0.111111
\(82\) −187.964 187.964i −0.253136 0.253136i
\(83\) 280.677i 0.371185i −0.982627 0.185592i \(-0.940580\pi\)
0.982627 0.185592i \(-0.0594204\pi\)
\(84\) −240.319 −0.312155
\(85\) −203.001 1162.83i −0.259042 1.48384i
\(86\) 859.321 1.07748
\(87\) 661.531i 0.815213i
\(88\) 478.831 + 478.831i 0.580041 + 0.580041i
\(89\) 440.149 0.524221 0.262111 0.965038i \(-0.415581\pi\)
0.262111 + 0.965038i \(0.415581\pi\)
\(90\) −359.464 359.464i −0.421009 0.421009i
\(91\) 974.061 974.061i 1.12208 1.12208i
\(92\) −299.883 + 299.883i −0.339837 + 0.339837i
\(93\) 380.439i 0.424190i
\(94\) 775.188i 0.850580i
\(95\) 972.351 972.351i 1.05012 1.05012i
\(96\) −294.788 + 294.788i −0.313403 + 0.313403i
\(97\) −627.434 627.434i −0.656766 0.656766i 0.297848 0.954613i \(-0.403731\pi\)
−0.954613 + 0.297848i \(0.903731\pi\)
\(98\) −887.934 −0.915254
\(99\) −270.468 270.468i −0.274576 0.274576i
\(100\) 515.401i 0.515401i
\(101\) −579.381 −0.570798 −0.285399 0.958409i \(-0.592126\pi\)
−0.285399 + 0.958409i \(0.592126\pi\)
\(102\) 694.770 121.290i 0.674436 0.117740i
\(103\) −104.665 −0.100126 −0.0500628 0.998746i \(-0.515942\pi\)
−0.0500628 + 0.998746i \(0.515942\pi\)
\(104\) 890.334i 0.839466i
\(105\) −880.697 880.697i −0.818545 0.818545i
\(106\) −258.235 −0.236623
\(107\) 1210.68 + 1210.68i 1.09384 + 1.09384i 0.995115 + 0.0987257i \(0.0314766\pi\)
0.0987257 + 0.995115i \(0.468523\pi\)
\(108\) 62.0381 62.0381i 0.0552742 0.0552742i
\(109\) 6.84383 6.84383i 0.00601394 0.00601394i −0.704093 0.710107i \(-0.748646\pi\)
0.710107 + 0.704093i \(0.248646\pi\)
\(110\) 2400.58i 2.08078i
\(111\) 626.541i 0.535754i
\(112\) −1384.73 + 1384.73i −1.16825 + 1.16825i
\(113\) −878.649 + 878.649i −0.731472 + 0.731472i −0.970911 0.239439i \(-0.923036\pi\)
0.239439 + 0.970911i \(0.423036\pi\)
\(114\) 580.962 + 580.962i 0.477299 + 0.477299i
\(115\) −2197.96 −1.78227
\(116\) −506.668 506.668i −0.405542 0.405542i
\(117\) 502.905i 0.397381i
\(118\) 2123.24 1.65644
\(119\) 1702.21 297.163i 1.31127 0.228915i
\(120\) −804.995 −0.612380
\(121\) 475.241i 0.357055i
\(122\) −448.510 448.510i −0.332838 0.332838i
\(123\) 237.764 0.174296
\(124\) 291.379 + 291.379i 0.211021 + 0.211021i
\(125\) 400.257 400.257i 0.286401 0.286401i
\(126\) 526.200 526.200i 0.372045 0.372045i
\(127\) 1761.90i 1.23105i 0.788117 + 0.615525i \(0.211056\pi\)
−0.788117 + 0.615525i \(0.788944\pi\)
\(128\) 1679.90i 1.16003i
\(129\) −543.496 + 543.496i −0.370947 + 0.370947i
\(130\) −2231.80 + 2231.80i −1.50571 + 1.50571i
\(131\) −55.8332 55.8332i −0.0372380 0.0372380i 0.688243 0.725481i \(-0.258382\pi\)
−0.725481 + 0.688243i \(0.758382\pi\)
\(132\) 414.303 0.273185
\(133\) 1423.37 + 1423.37i 0.927986 + 0.927986i
\(134\) 2284.45i 1.47273i
\(135\) 454.701 0.289885
\(136\) 642.135 913.755i 0.404872 0.576131i
\(137\) −929.313 −0.579537 −0.289768 0.957097i \(-0.593578\pi\)
−0.289768 + 0.957097i \(0.593578\pi\)
\(138\) 1313.24i 0.810076i
\(139\) −677.301 677.301i −0.413294 0.413294i 0.469590 0.882884i \(-0.344402\pi\)
−0.882884 + 0.469590i \(0.844402\pi\)
\(140\) 1349.05 0.814399
\(141\) −490.284 490.284i −0.292832 0.292832i
\(142\) −1297.48 + 1297.48i −0.766774 + 0.766774i
\(143\) −1679.25 + 1679.25i −0.982001 + 0.982001i
\(144\) 714.930i 0.413733i
\(145\) 3713.56i 2.12686i
\(146\) −1710.65 + 1710.65i −0.969690 + 0.969690i
\(147\) 561.592 561.592i 0.315098 0.315098i
\(148\) 479.869 + 479.869i 0.266520 + 0.266520i
\(149\) 2851.93 1.56805 0.784024 0.620731i \(-0.213164\pi\)
0.784024 + 0.620731i \(0.213164\pi\)
\(150\) 1128.51 + 1128.51i 0.614286 + 0.614286i
\(151\) 3389.72i 1.82683i 0.407027 + 0.913416i \(0.366565\pi\)
−0.407027 + 0.913416i \(0.633435\pi\)
\(152\) 1301.03 0.694257
\(153\) −362.710 + 516.134i −0.191656 + 0.272725i
\(154\) 3514.08 1.83878
\(155\) 2135.63i 1.10670i
\(156\) −385.176 385.176i −0.197684 0.197684i
\(157\) 490.585 0.249382 0.124691 0.992196i \(-0.460206\pi\)
0.124691 + 0.992196i \(0.460206\pi\)
\(158\) 862.404 + 862.404i 0.434235 + 0.434235i
\(159\) 163.326 163.326i 0.0814630 0.0814630i
\(160\) 1654.82 1654.82i 0.817657 0.817657i
\(161\) 3217.48i 1.57499i
\(162\) 271.676i 0.131758i
\(163\) −1266.81 + 1266.81i −0.608739 + 0.608739i −0.942617 0.333877i \(-0.891643\pi\)
0.333877 + 0.942617i \(0.391643\pi\)
\(164\) −182.104 + 182.104i −0.0867068 + 0.0867068i
\(165\) 1518.30 + 1518.30i 0.716358 + 0.716358i
\(166\) −941.397 −0.440160
\(167\) −795.209 795.209i −0.368474 0.368474i 0.498447 0.866920i \(-0.333904\pi\)
−0.866920 + 0.498447i \(0.833904\pi\)
\(168\) 1178.39i 0.541159i
\(169\) 925.388 0.421205
\(170\) −3900.16 + 680.871i −1.75958 + 0.307179i
\(171\) −734.884 −0.328643
\(172\) 832.529i 0.369068i
\(173\) −2053.13 2053.13i −0.902292 0.902292i 0.0933416 0.995634i \(-0.470245\pi\)
−0.995634 + 0.0933416i \(0.970245\pi\)
\(174\) 2218.79 0.966700
\(175\) 2764.89 + 2764.89i 1.19432 + 1.19432i
\(176\) 2387.23 2387.23i 1.02241 1.02241i
\(177\) −1342.89 + 1342.89i −0.570270 + 0.570270i
\(178\) 1476.27i 0.621635i
\(179\) 136.544i 0.0570154i −0.999594 0.0285077i \(-0.990924\pi\)
0.999594 0.0285077i \(-0.00907551\pi\)
\(180\) −348.256 + 348.256i −0.144208 + 0.144208i
\(181\) −1641.88 + 1641.88i −0.674252 + 0.674252i −0.958694 0.284441i \(-0.908192\pi\)
0.284441 + 0.958694i \(0.408192\pi\)
\(182\) −3267.02 3267.02i −1.33059 1.33059i
\(183\) 567.340 0.229175
\(184\) −1470.46 1470.46i −0.589150 0.589150i
\(185\) 3517.15i 1.39776i
\(186\) −1276.00 −0.503015
\(187\) −2934.55 + 512.300i −1.14757 + 0.200337i
\(188\) 751.019 0.291349
\(189\) 665.613i 0.256170i
\(190\) −3261.29 3261.29i −1.24526 1.24526i
\(191\) −1346.87 −0.510242 −0.255121 0.966909i \(-0.582115\pi\)
−0.255121 + 0.966909i \(0.582115\pi\)
\(192\) −359.359 359.359i −0.135076 0.135076i
\(193\) 3580.03 3580.03i 1.33521 1.33521i 0.434578 0.900634i \(-0.356898\pi\)
0.900634 0.434578i \(-0.143102\pi\)
\(194\) −2104.43 + 2104.43i −0.778809 + 0.778809i
\(195\) 2823.10i 1.03675i
\(196\) 860.249i 0.313502i
\(197\) −1115.92 + 1115.92i −0.403584 + 0.403584i −0.879494 0.475910i \(-0.842119\pi\)
0.475910 + 0.879494i \(0.342119\pi\)
\(198\) −907.154 + 907.154i −0.325599 + 0.325599i
\(199\) 470.721 + 470.721i 0.167681 + 0.167681i 0.785959 0.618278i \(-0.212169\pi\)
−0.618278 + 0.785959i \(0.712169\pi\)
\(200\) 2527.23 0.893512
\(201\) 1444.85 + 1444.85i 0.507024 + 0.507024i
\(202\) 1943.25i 0.676866i
\(203\) 5436.09 1.87950
\(204\) −117.508 673.108i −0.0403294 0.231015i
\(205\) −1334.71 −0.454732
\(206\) 351.048i 0.118732i
\(207\) 830.587 + 830.587i 0.278888 + 0.278888i
\(208\) −4438.79 −1.47969
\(209\) −2453.86 2453.86i −0.812137 0.812137i
\(210\) −2953.87 + 2953.87i −0.970651 + 0.970651i
\(211\) 3094.75 3094.75i 1.00972 1.00972i 0.00977143 0.999952i \(-0.496890\pi\)
0.999952 0.00977143i \(-0.00311039\pi\)
\(212\) 250.184i 0.0810505i
\(213\) 1641.23i 0.527960i
\(214\) 4060.65 4060.65i 1.29710 1.29710i
\(215\) 3050.96 3050.96i 0.967786 0.967786i
\(216\) 304.200 + 304.200i 0.0958248 + 0.0958248i
\(217\) −3126.23 −0.977984
\(218\) −22.9543 22.9543i −0.00713148 0.00713148i
\(219\) 2163.88i 0.667677i
\(220\) −2325.73 −0.712731
\(221\) 3204.52 + 2251.96i 0.975383 + 0.685444i
\(222\) −2101.43 −0.635310
\(223\) 4814.96i 1.44589i −0.690906 0.722945i \(-0.742788\pi\)
0.690906 0.722945i \(-0.257212\pi\)
\(224\) 2422.41 + 2422.41i 0.722562 + 0.722562i
\(225\) −1427.51 −0.422965
\(226\) 2947.00 + 2947.00i 0.867398 + 0.867398i
\(227\) −938.074 + 938.074i −0.274283 + 0.274283i −0.830822 0.556539i \(-0.812129\pi\)
0.556539 + 0.830822i \(0.312129\pi\)
\(228\) 562.849 562.849i 0.163489 0.163489i
\(229\) 4821.14i 1.39122i −0.718418 0.695611i \(-0.755134\pi\)
0.718418 0.695611i \(-0.244866\pi\)
\(230\) 7372.00i 2.11346i
\(231\) −2222.55 + 2222.55i −0.633044 + 0.633044i
\(232\) 2484.41 2484.41i 0.703058 0.703058i
\(233\) 2613.59 + 2613.59i 0.734857 + 0.734857i 0.971578 0.236721i \(-0.0760726\pi\)
−0.236721 + 0.971578i \(0.576073\pi\)
\(234\) 1686.75 0.471224
\(235\) 2752.25 + 2752.25i 0.763989 + 0.763989i
\(236\) 2057.05i 0.567382i
\(237\) −1090.89 −0.298991
\(238\) −996.691 5709.23i −0.271453 1.55494i
\(239\) 302.431 0.0818521 0.0409261 0.999162i \(-0.486969\pi\)
0.0409261 + 0.999162i \(0.486969\pi\)
\(240\) 4013.33i 1.07941i
\(241\) 4552.78 + 4552.78i 1.21689 + 1.21689i 0.968716 + 0.248172i \(0.0798299\pi\)
0.248172 + 0.968716i \(0.420170\pi\)
\(242\) −1593.97 −0.423405
\(243\) −171.827 171.827i −0.0453609 0.0453609i
\(244\) −434.526 + 434.526i −0.114007 + 0.114007i
\(245\) −3152.55 + 3152.55i −0.822078 + 0.822078i
\(246\) 797.464i 0.206685i
\(247\) 4562.68i 1.17537i
\(248\) −1428.76 + 1428.76i −0.365831 + 0.365831i
\(249\) 595.406 595.406i 0.151536 0.151536i
\(250\) −1342.47 1342.47i −0.339621 0.339621i
\(251\) −2896.91 −0.728492 −0.364246 0.931303i \(-0.618673\pi\)
−0.364246 + 0.931303i \(0.618673\pi\)
\(252\) −509.794 509.794i −0.127437 0.127437i
\(253\) 5546.84i 1.37837i
\(254\) 5909.45 1.45981
\(255\) 2036.11 2897.37i 0.500023 0.711530i
\(256\) 4279.19 1.04472
\(257\) 5439.49i 1.32026i −0.751152 0.660129i \(-0.770502\pi\)
0.751152 0.660129i \(-0.229498\pi\)
\(258\) 1822.90 + 1822.90i 0.439878 + 0.439878i
\(259\) −5148.57 −1.23520
\(260\) 2162.22 + 2162.22i 0.515751 + 0.515751i
\(261\) −1403.32 + 1403.32i −0.332809 + 0.332809i
\(262\) −187.266 + 187.266i −0.0441577 + 0.0441577i
\(263\) 6793.03i 1.59268i 0.604846 + 0.796342i \(0.293234\pi\)
−0.604846 + 0.796342i \(0.706766\pi\)
\(264\) 2031.51i 0.473601i
\(265\) −916.847 + 916.847i −0.212534 + 0.212534i
\(266\) 4774.02 4774.02i 1.10043 1.10043i
\(267\) 933.697 + 933.697i 0.214012 + 0.214012i
\(268\) −2213.22 −0.504456
\(269\) −4255.36 4255.36i −0.964512 0.964512i 0.0348793 0.999392i \(-0.488895\pi\)
−0.999392 + 0.0348793i \(0.988895\pi\)
\(270\) 1525.08i 0.343752i
\(271\) −6622.55 −1.48447 −0.742235 0.670140i \(-0.766234\pi\)
−0.742235 + 0.670140i \(0.766234\pi\)
\(272\) −4555.55 3201.38i −1.01552 0.713649i
\(273\) 4132.59 0.916175
\(274\) 3116.93i 0.687229i
\(275\) −4766.60 4766.60i −1.04522 1.04522i
\(276\) −1272.30 −0.277476
\(277\) −4765.53 4765.53i −1.03369 1.03369i −0.999412 0.0342806i \(-0.989086\pi\)
−0.0342806 0.999412i \(-0.510914\pi\)
\(278\) −2271.68 + 2271.68i −0.490095 + 0.490095i
\(279\) 807.033 807.033i 0.173175 0.173175i
\(280\) 6615.00i 1.41186i
\(281\) 3246.90i 0.689303i −0.938731 0.344651i \(-0.887997\pi\)
0.938731 0.344651i \(-0.112003\pi\)
\(282\) −1644.42 + 1644.42i −0.347248 + 0.347248i
\(283\) −1779.17 + 1779.17i −0.373713 + 0.373713i −0.868828 0.495114i \(-0.835126\pi\)
0.495114 + 0.868828i \(0.335126\pi\)
\(284\) 1257.02 + 1257.02i 0.262643 + 0.262643i
\(285\) 4125.34 0.857417
\(286\) 5632.25 + 5632.25i 1.16448 + 1.16448i
\(287\) 1953.81i 0.401846i
\(288\) −1250.68 −0.255893
\(289\) 1664.64 + 4622.39i 0.338824 + 0.940850i
\(290\) −12455.4 −2.52208
\(291\) 2661.98i 0.536247i
\(292\) 1657.32 + 1657.32i 0.332148 + 0.332148i
\(293\) 2983.23 0.594820 0.297410 0.954750i \(-0.403877\pi\)
0.297410 + 0.954750i \(0.403877\pi\)
\(294\) −1883.59 1883.59i −0.373651 0.373651i
\(295\) 7538.44 7538.44i 1.48781 1.48781i
\(296\) −2353.01 + 2353.01i −0.462046 + 0.462046i
\(297\) 1147.50i 0.224190i
\(298\) 9565.43i 1.85943i
\(299\) 5156.87 5156.87i 0.997423 0.997423i
\(300\) 1093.33 1093.33i 0.210411 0.210411i
\(301\) 4466.14 + 4466.14i 0.855230 + 0.855230i
\(302\) 11369.2 2.16630
\(303\) −1229.05 1229.05i −0.233027 0.233027i
\(304\) 6486.30i 1.22373i
\(305\) −3184.81 −0.597908
\(306\) 1731.12 + 1216.54i 0.323405 + 0.227270i
\(307\) 999.847 0.185877 0.0929386 0.995672i \(-0.470374\pi\)
0.0929386 + 0.995672i \(0.470374\pi\)
\(308\) 3404.51i 0.629838i
\(309\) −222.028 222.028i −0.0408761 0.0408761i
\(310\) 7162.94 1.31235
\(311\) −3377.02 3377.02i −0.615733 0.615733i 0.328701 0.944434i \(-0.393389\pi\)
−0.944434 + 0.328701i \(0.893389\pi\)
\(312\) 1888.68 1888.68i 0.342711 0.342711i
\(313\) 4323.97 4323.97i 0.780848 0.780848i −0.199126 0.979974i \(-0.563810\pi\)
0.979974 + 0.199126i \(0.0638102\pi\)
\(314\) 1645.43i 0.295723i
\(315\) 3736.48i 0.668339i
\(316\) 835.515 835.515i 0.148739 0.148739i
\(317\) −1346.73 + 1346.73i −0.238612 + 0.238612i −0.816275 0.577663i \(-0.803965\pi\)
0.577663 + 0.816275i \(0.303965\pi\)
\(318\) −547.800 547.800i −0.0966009 0.0966009i
\(319\) −9371.66 −1.64487
\(320\) 2017.30 + 2017.30i 0.352407 + 0.352407i
\(321\) 5136.48i 0.893117i
\(322\) −10791.5 −1.86766
\(323\) −3290.74 + 4682.70i −0.566877 + 0.806664i
\(324\) 263.205 0.0451312
\(325\) 8862.96i 1.51270i
\(326\) 4248.92 + 4248.92i 0.721858 + 0.721858i
\(327\) 29.0359 0.00491036
\(328\) −892.933 892.933i −0.150317 0.150317i
\(329\) −4028.88 + 4028.88i −0.675135 + 0.675135i
\(330\) 5092.39 5092.39i 0.849476 0.849476i
\(331\) 8019.25i 1.33166i 0.746105 + 0.665828i \(0.231921\pi\)
−0.746105 + 0.665828i \(0.768079\pi\)
\(332\) 912.046i 0.150768i
\(333\) 1329.09 1329.09i 0.218721 0.218721i
\(334\) −2667.15 + 2667.15i −0.436946 + 0.436946i
\(335\) −8110.79 8110.79i −1.32281 1.32281i
\(336\) −5874.90 −0.953875
\(337\) −8635.56 8635.56i −1.39587 1.39587i −0.811449 0.584423i \(-0.801321\pi\)
−0.584423 0.811449i \(-0.698679\pi\)
\(338\) 3103.77i 0.499476i
\(339\) −3727.79 −0.597244
\(340\) 659.642 + 3778.56i 0.105218 + 0.602709i
\(341\) 5389.54 0.855894
\(342\) 2464.81i 0.389713i
\(343\) 1364.26 + 1364.26i 0.214762 + 0.214762i
\(344\) 4082.25 0.639826
\(345\) −4662.58 4662.58i −0.727608 0.727608i
\(346\) −6886.24 + 6886.24i −1.06996 + 1.06996i
\(347\) 2550.88 2550.88i 0.394635 0.394635i −0.481701 0.876336i \(-0.659981\pi\)
0.876336 + 0.481701i \(0.159981\pi\)
\(348\) 2149.61i 0.331124i
\(349\) 2728.68i 0.418519i −0.977860 0.209259i \(-0.932895\pi\)
0.977860 0.209259i \(-0.0671053\pi\)
\(350\) 9273.51 9273.51i 1.41626 1.41626i
\(351\) −1066.82 + 1066.82i −0.162230 + 0.162230i
\(352\) −4176.16 4176.16i −0.632358 0.632358i
\(353\) 2513.16 0.378929 0.189465 0.981888i \(-0.439325\pi\)
0.189465 + 0.981888i \(0.439325\pi\)
\(354\) 4504.08 + 4504.08i 0.676241 + 0.676241i
\(355\) 9213.22i 1.37743i
\(356\) −1430.24 −0.212929
\(357\) 4241.30 + 2980.55i 0.628778 + 0.441869i
\(358\) −457.970 −0.0676102
\(359\) 6707.98i 0.986166i −0.869982 0.493083i \(-0.835870\pi\)
0.869982 0.493083i \(-0.164130\pi\)
\(360\) −1707.65 1707.65i −0.250003 0.250003i
\(361\) 191.665 0.0279436
\(362\) 5506.88 + 5506.88i 0.799545 + 0.799545i
\(363\) 1008.14 1008.14i 0.145767 0.145767i
\(364\) −3165.16 + 3165.16i −0.455768 + 0.455768i
\(365\) 12147.1i 1.74194i
\(366\) 1902.87i 0.271761i
\(367\) −1575.31 + 1575.31i −0.224062 + 0.224062i −0.810206 0.586145i \(-0.800645\pi\)
0.586145 + 0.810206i \(0.300645\pi\)
\(368\) −7331.01 + 7331.01i −1.03847 + 1.03847i
\(369\) 504.373 + 504.373i 0.0711561 + 0.0711561i
\(370\) 11796.6 1.65750
\(371\) −1342.12 1342.12i −0.187816 0.187816i
\(372\) 1236.22i 0.172298i
\(373\) 6113.83 0.848691 0.424346 0.905500i \(-0.360504\pi\)
0.424346 + 0.905500i \(0.360504\pi\)
\(374\) 1718.27 + 9842.55i 0.237565 + 1.36082i
\(375\) 1698.15 0.233845
\(376\) 3682.57i 0.505091i
\(377\) 8712.79 + 8712.79i 1.19027 + 1.19027i
\(378\) 2232.48 0.303773
\(379\) 1321.68 + 1321.68i 0.179129 + 0.179129i 0.790976 0.611847i \(-0.209573\pi\)
−0.611847 + 0.790976i \(0.709573\pi\)
\(380\) −3159.60 + 3159.60i −0.426538 + 0.426538i
\(381\) −3737.56 + 3737.56i −0.502574 + 0.502574i
\(382\) 4517.43i 0.605058i
\(383\) 3159.66i 0.421544i −0.977535 0.210772i \(-0.932402\pi\)
0.977535 0.210772i \(-0.0675977\pi\)
\(384\) −3563.60 + 3563.60i −0.473579 + 0.473579i
\(385\) 12476.5 12476.5i 1.65159 1.65159i
\(386\) −12007.5 12007.5i −1.58333 1.58333i
\(387\) −2305.86 −0.302877
\(388\) 2038.81 + 2038.81i 0.266766 + 0.266766i
\(389\) 4591.25i 0.598420i −0.954187 0.299210i \(-0.903277\pi\)
0.954187 0.299210i \(-0.0967231\pi\)
\(390\) −9468.74 −1.22941
\(391\) 9011.81 1573.24i 1.16559 0.203484i
\(392\) −4218.18 −0.543495
\(393\) 236.880i 0.0304047i
\(394\) 3742.82 + 3742.82i 0.478580 + 0.478580i
\(395\) 6123.82 0.780057
\(396\) 878.870 + 878.870i 0.111527 + 0.111527i
\(397\) −7829.84 + 7829.84i −0.989845 + 0.989845i −0.999949 0.0101040i \(-0.996784\pi\)
0.0101040 + 0.999949i \(0.496784\pi\)
\(398\) 1578.81 1578.81i 0.198840 0.198840i
\(399\) 6038.86i 0.757698i
\(400\) 12599.6i 1.57495i
\(401\) 5641.36 5641.36i 0.702533 0.702533i −0.262420 0.964954i \(-0.584521\pi\)
0.964954 + 0.262420i \(0.0845207\pi\)
\(402\) 4846.05 4846.05i 0.601241 0.601241i
\(403\) −5010.63 5010.63i −0.619348 0.619348i
\(404\) 1882.67 0.231847
\(405\) 964.566 + 964.566i 0.118345 + 0.118345i
\(406\) 18232.7i 2.22876i
\(407\) 8875.98 1.08100
\(408\) 3300.54 576.193i 0.400493 0.0699162i
\(409\) −7832.34 −0.946906 −0.473453 0.880819i \(-0.656993\pi\)
−0.473453 + 0.880819i \(0.656993\pi\)
\(410\) 4476.64i 0.539233i
\(411\) −1971.37 1971.37i −0.236595 0.236595i
\(412\) 340.103 0.0406691
\(413\) 11035.1 + 11035.1i 1.31478 + 1.31478i
\(414\) 2785.81 2785.81i 0.330712 0.330712i
\(415\) −3342.37 + 3342.37i −0.395350 + 0.395350i
\(416\) 7765.11i 0.915182i
\(417\) 2873.54i 0.337453i
\(418\) −8230.28 + 8230.28i −0.963053 + 0.963053i
\(419\) 3717.06 3717.06i 0.433390 0.433390i −0.456390 0.889780i \(-0.650858\pi\)
0.889780 + 0.456390i \(0.150858\pi\)
\(420\) 2861.78 + 2861.78i 0.332477 + 0.332477i
\(421\) 3469.89 0.401691 0.200846 0.979623i \(-0.435631\pi\)
0.200846 + 0.979623i \(0.435631\pi\)
\(422\) −10379.9 10379.9i −1.19736 1.19736i
\(423\) 2080.10i 0.239097i
\(424\) −1226.76 −0.140511
\(425\) −6392.23 + 9096.11i −0.729573 + 1.03818i
\(426\) −5504.73 −0.626068
\(427\) 4662.08i 0.528370i
\(428\) −3934.04 3934.04i −0.444297 0.444297i
\(429\) −7124.47 −0.801801
\(430\) −10233.0 10233.0i −1.14762 1.14762i
\(431\) 6483.95 6483.95i 0.724643 0.724643i −0.244905 0.969547i \(-0.578757\pi\)
0.969547 + 0.244905i \(0.0787566\pi\)
\(432\) 1516.60 1516.60i 0.168906 0.168906i
\(433\) 2879.08i 0.319538i −0.987154 0.159769i \(-0.948925\pi\)
0.987154 0.159769i \(-0.0510749\pi\)
\(434\) 10485.5i 1.15972i
\(435\) 7877.66 7877.66i 0.868287 0.868287i
\(436\) −22.2386 + 22.2386i −0.00244275 + 0.00244275i
\(437\) 7535.62 + 7535.62i 0.824891 + 0.824891i
\(438\) −7257.69 −0.791748
\(439\) 7737.14 + 7737.14i 0.841170 + 0.841170i 0.989011 0.147841i \(-0.0472325\pi\)
−0.147841 + 0.989011i \(0.547232\pi\)
\(440\) 11404.1i 1.23561i
\(441\) 2382.63 0.257276
\(442\) 7553.11 10748.0i 0.812816 1.15663i
\(443\) 3073.02 0.329580 0.164790 0.986329i \(-0.447305\pi\)
0.164790 + 0.986329i \(0.447305\pi\)
\(444\) 2035.91i 0.217613i
\(445\) −5241.39 5241.39i −0.558350 0.558350i
\(446\) −16149.5 −1.71457
\(447\) 6049.86 + 6049.86i 0.640153 + 0.640153i
\(448\) −2953.01 + 2953.01i −0.311421 + 0.311421i
\(449\) −10538.0 + 10538.0i −1.10762 + 1.10762i −0.114152 + 0.993463i \(0.536415\pi\)
−0.993463 + 0.114152i \(0.963585\pi\)
\(450\) 4787.88i 0.501562i
\(451\) 3368.31i 0.351680i
\(452\) 2855.12 2855.12i 0.297110 0.297110i
\(453\) −7190.69 + 7190.69i −0.745801 + 0.745801i
\(454\) 3146.32 + 3146.32i 0.325251 + 0.325251i
\(455\) −23198.7 −2.39027
\(456\) 2759.89 + 2759.89i 0.283429 + 0.283429i
\(457\) 10638.2i 1.08891i −0.838789 0.544456i \(-0.816736\pi\)
0.838789 0.544456i \(-0.183264\pi\)
\(458\) −16170.2 −1.64975
\(459\) −1864.31 + 325.462i −0.189583 + 0.0330965i
\(460\) 7142.16 0.723923
\(461\) 1579.43i 0.159570i 0.996812 + 0.0797848i \(0.0254233\pi\)
−0.996812 + 0.0797848i \(0.974577\pi\)
\(462\) 7454.48 + 7454.48i 0.750680 + 0.750680i
\(463\) −2791.55 −0.280204 −0.140102 0.990137i \(-0.544743\pi\)
−0.140102 + 0.990137i \(0.544743\pi\)
\(464\) −12386.1 12386.1i −1.23925 1.23925i
\(465\) −4530.35 + 4530.35i −0.451807 + 0.451807i
\(466\) 8766.02 8766.02i 0.871412 0.871412i
\(467\) 6637.75i 0.657727i 0.944377 + 0.328864i \(0.106666\pi\)
−0.944377 + 0.328864i \(0.893334\pi\)
\(468\) 1634.16i 0.161409i
\(469\) 11873.0 11873.0i 1.16896 1.16896i
\(470\) 9231.12 9231.12i 0.905957 0.905957i
\(471\) 1040.69 + 1040.69i 0.101810 + 0.101810i
\(472\) 10086.6 0.983629
\(473\) −7699.50 7699.50i −0.748464 0.748464i
\(474\) 3658.87i 0.354552i
\(475\) −12951.2 −1.25104
\(476\) −5531.23 + 965.615i −0.532612 + 0.0929809i
\(477\) 692.935 0.0665143
\(478\) 1014.36i 0.0970623i
\(479\) −1923.52 1923.52i −0.183482 0.183482i 0.609389 0.792871i \(-0.291415\pi\)
−0.792871 + 0.609389i \(0.791415\pi\)
\(480\) 7020.81 0.667614
\(481\) −8251.95 8251.95i −0.782238 0.782238i
\(482\) 15270.1 15270.1i 1.44302 1.44302i
\(483\) 6825.30 6825.30i 0.642986 0.642986i
\(484\) 1544.27i 0.145029i
\(485\) 14943.3i 1.39905i
\(486\) −576.311 + 576.311i −0.0537901 + 0.0537901i
\(487\) 3328.61 3328.61i 0.309720 0.309720i −0.535081 0.844801i \(-0.679719\pi\)
0.844801 + 0.535081i \(0.179719\pi\)
\(488\) −2130.67 2130.67i −0.197645 0.197645i
\(489\) −5374.63 −0.497033
\(490\) 10573.7 + 10573.7i 0.974841 + 0.974841i
\(491\) 10064.8i 0.925088i 0.886596 + 0.462544i \(0.153063\pi\)
−0.886596 + 0.462544i \(0.846937\pi\)
\(492\) −772.600 −0.0707958
\(493\) 2658.06 + 15225.9i 0.242826 + 1.39095i
\(494\) 15303.3 1.39378
\(495\) 6441.58i 0.584904i
\(496\) 7123.11 + 7123.11i 0.644833 + 0.644833i
\(497\) −13486.7 −1.21723
\(498\) −1997.00 1997.00i −0.179695 0.179695i
\(499\) −3918.97 + 3918.97i −0.351578 + 0.351578i −0.860696 0.509119i \(-0.829971\pi\)
0.509119 + 0.860696i \(0.329971\pi\)
\(500\) −1300.61 + 1300.61i −0.116330 + 0.116330i
\(501\) 3373.79i 0.300858i
\(502\) 9716.29i 0.863863i
\(503\) 7965.14 7965.14i 0.706060 0.706060i −0.259645 0.965704i \(-0.583605\pi\)
0.965704 + 0.259645i \(0.0836054\pi\)
\(504\) 2499.74 2499.74i 0.220927 0.220927i
\(505\) 6899.40 + 6899.40i 0.607959 + 0.607959i
\(506\) 18604.2 1.63450
\(507\) 1963.04 + 1963.04i 0.171956 + 0.171956i
\(508\) 5725.20i 0.500029i
\(509\) 5617.41 0.489169 0.244585 0.969628i \(-0.421348\pi\)
0.244585 + 0.969628i \(0.421348\pi\)
\(510\) −9717.83 6829.14i −0.843750 0.592940i
\(511\) −17781.5 −1.53935
\(512\) 913.281i 0.0788315i
\(513\) −1558.92 1558.92i −0.134168 0.134168i
\(514\) −18244.2 −1.56559
\(515\) 1246.37 + 1246.37i 0.106644 + 0.106644i
\(516\) 1766.06 1766.06i 0.150671 0.150671i
\(517\) 6945.67 6945.67i 0.590852 0.590852i
\(518\) 17268.4i 1.46473i
\(519\) 8710.69i 0.736719i
\(520\) −10602.3 + 10602.3i −0.894119 + 0.894119i
\(521\) 4833.13 4833.13i 0.406417 0.406417i −0.474070 0.880487i \(-0.657216\pi\)
0.880487 + 0.474070i \(0.157216\pi\)
\(522\) 4706.76 + 4706.76i 0.394654 + 0.394654i
\(523\) 15447.5 1.29153 0.645767 0.763534i \(-0.276538\pi\)
0.645767 + 0.763534i \(0.276538\pi\)
\(524\) 181.427 + 181.427i 0.0151253 + 0.0151253i
\(525\) 11730.4i 0.975160i
\(526\) 22783.9 1.88864
\(527\) −1528.62 8756.25i −0.126353 0.723772i
\(528\) 10128.1 0.834794
\(529\) 4866.96i 0.400013i
\(530\) 3075.12 + 3075.12i 0.252028 + 0.252028i
\(531\) −5697.40 −0.465624
\(532\) −4625.18 4625.18i −0.376930 0.376930i
\(533\) 3131.50 3131.50i 0.254485 0.254485i
\(534\) 3131.64 3131.64i 0.253781 0.253781i
\(535\) 28834.1i 2.33011i
\(536\) 10852.4i 0.874538i
\(537\) 289.653 289.653i 0.0232764 0.0232764i
\(538\) −14272.6 + 14272.6i −1.14374 + 1.14374i
\(539\) 7955.87 + 7955.87i 0.635777 + 0.635777i
\(540\) −1477.53 −0.117746
\(541\) −7300.56 7300.56i −0.580176 0.580176i 0.354775 0.934952i \(-0.384557\pi\)
−0.934952 + 0.354775i \(0.884557\pi\)
\(542\) 22212.2i 1.76032i
\(543\) −6965.89 −0.550525
\(544\) −5600.42 + 7969.37i −0.441390 + 0.628096i
\(545\) −162.996 −0.0128109
\(546\) 13860.8i 1.08642i
\(547\) 11859.8 + 11859.8i 0.927036 + 0.927036i 0.997513 0.0704770i \(-0.0224521\pi\)
−0.0704770 + 0.997513i \(0.522452\pi\)
\(548\) 3019.75 0.235397
\(549\) 1203.51 + 1203.51i 0.0935601 + 0.0935601i
\(550\) −15987.3 + 15987.3i −1.23945 + 1.23945i
\(551\) −12731.8 + 12731.8i −0.984379 + 0.984379i
\(552\) 6238.62i 0.481039i
\(553\) 8964.33i 0.689335i
\(554\) −15983.7 + 15983.7i −1.22578 + 1.22578i
\(555\) −7461.00 + 7461.00i −0.570634 + 0.570634i
\(556\) 2200.85 + 2200.85i 0.167872 + 0.167872i
\(557\) 2794.92 0.212611 0.106306 0.994334i \(-0.466098\pi\)
0.106306 + 0.994334i \(0.466098\pi\)
\(558\) −2706.80 2706.80i −0.205355 0.205355i
\(559\) 14316.4i 1.08322i
\(560\) 32979.3 2.48862
\(561\) −7311.88 5138.38i −0.550282 0.386707i
\(562\) −10890.2 −0.817392
\(563\) 2322.28i 0.173841i −0.996215 0.0869204i \(-0.972297\pi\)
0.996215 0.0869204i \(-0.0277026\pi\)
\(564\) 1593.15 + 1593.15i 0.118943 + 0.118943i
\(565\) 20926.3 1.55819
\(566\) 5967.38 + 5967.38i 0.443159 + 0.443159i
\(567\) −1411.98 + 1411.98i −0.104581 + 0.104581i
\(568\) −6163.74 + 6163.74i −0.455325 + 0.455325i
\(569\) 21761.5i 1.60332i −0.597778 0.801662i \(-0.703950\pi\)
0.597778 0.801662i \(-0.296050\pi\)
\(570\) 13836.5i 1.01675i
\(571\) 1228.39 1228.39i 0.0900292 0.0900292i −0.660658 0.750687i \(-0.729723\pi\)
0.750687 + 0.660658i \(0.229723\pi\)
\(572\) 5456.64 5456.64i 0.398870 0.398870i
\(573\) −2857.15 2857.15i −0.208305 0.208305i
\(574\) −6553.11 −0.476519
\(575\) 14637.9 + 14637.9i 1.06164 + 1.06164i
\(576\) 1524.63i 0.110289i
\(577\) −26921.6 −1.94239 −0.971195 0.238284i \(-0.923415\pi\)
−0.971195 + 0.238284i \(0.923415\pi\)
\(578\) 15503.6 5583.25i 1.11568 0.401786i
\(579\) 15188.8 1.09020
\(580\) 12067.0i 0.863890i
\(581\) −4892.72 4892.72i −0.349370 0.349370i
\(582\) −8928.33 −0.635895
\(583\) 2313.78 + 2313.78i 0.164369 + 0.164369i
\(584\) −8126.55 + 8126.55i −0.575820 + 0.575820i
\(585\) 5988.71 5988.71i 0.423252 0.423252i
\(586\) 10005.8i 0.705353i
\(587\) 10102.5i 0.710352i −0.934799 0.355176i \(-0.884421\pi\)
0.934799 0.355176i \(-0.115579\pi\)
\(588\) −1824.86 + 1824.86i −0.127987 + 0.127987i
\(589\) 7321.92 7321.92i 0.512214 0.512214i
\(590\) −25284.1 25284.1i −1.76429 1.76429i
\(591\) −4734.45 −0.329525
\(592\) 11731.0 + 11731.0i 0.814426 + 0.814426i
\(593\) 15991.8i 1.10742i −0.832708 0.553712i \(-0.813211\pi\)
0.832708 0.553712i \(-0.186789\pi\)
\(594\) −3848.73 −0.265850
\(595\) −23808.9 16731.6i −1.64046 1.15282i
\(596\) −9267.19 −0.636911
\(597\) 1997.10i 0.136911i
\(598\) −17296.2 17296.2i −1.18277 1.18277i
\(599\) −17280.7 −1.17875 −0.589373 0.807861i \(-0.700625\pi\)
−0.589373 + 0.807861i \(0.700625\pi\)
\(600\) 5361.07 + 5361.07i 0.364775 + 0.364775i
\(601\) 5463.07 5463.07i 0.370787 0.370787i −0.496977 0.867764i \(-0.665557\pi\)
0.867764 + 0.496977i \(0.165557\pi\)
\(602\) 14979.5 14979.5i 1.01415 1.01415i
\(603\) 6129.97i 0.413983i
\(604\) 11014.7i 0.742024i
\(605\) −5659.27 + 5659.27i −0.380301 + 0.380301i
\(606\) −4122.27 + 4122.27i −0.276329 + 0.276329i
\(607\) 9113.48 + 9113.48i 0.609398 + 0.609398i 0.942789 0.333391i \(-0.108193\pi\)
−0.333391 + 0.942789i \(0.608193\pi\)
\(608\) −11347.0 −0.756876
\(609\) 11531.7 + 11531.7i 0.767303 + 0.767303i
\(610\) 10681.9i 0.709014i
\(611\) −12914.7 −0.855112
\(612\) 1178.61 1677.15i 0.0778470 0.110776i
\(613\) 9361.69 0.616827 0.308414 0.951252i \(-0.400202\pi\)
0.308414 + 0.951252i \(0.400202\pi\)
\(614\) 3353.51i 0.220418i
\(615\) −2831.34 2831.34i −0.185644 0.185644i
\(616\) 16693.8 1.09190
\(617\) 14473.2 + 14473.2i 0.944356 + 0.944356i 0.998531 0.0541757i \(-0.0172531\pi\)
−0.0541757 + 0.998531i \(0.517253\pi\)
\(618\) −744.686 + 744.686i −0.0484720 + 0.0484720i
\(619\) −11487.6 + 11487.6i −0.745925 + 0.745925i −0.973711 0.227786i \(-0.926851\pi\)
0.227786 + 0.973711i \(0.426851\pi\)
\(620\) 6939.61i 0.449519i
\(621\) 3523.88i 0.227711i
\(622\) −11326.6 + 11326.6i −0.730152 + 0.730152i
\(623\) 7672.60 7672.60i 0.493413 0.493413i
\(624\) −9416.09 9416.09i −0.604079 0.604079i
\(625\) 10293.8 0.658801
\(626\) −14502.7 14502.7i −0.925949 0.925949i
\(627\) 10410.8i 0.663107i
\(628\) −1594.13 −0.101294
\(629\) −2517.48 14420.6i −0.159584 0.914127i
\(630\) −12532.2 −0.792533
\(631\) 2480.05i 0.156464i −0.996935 0.0782322i \(-0.975072\pi\)
0.996935 0.0782322i \(-0.0249276\pi\)
\(632\) 4096.89 + 4096.89i 0.257857 + 0.257857i
\(633\) 13129.9 0.824436
\(634\) 4516.96 + 4516.96i 0.282952 + 0.282952i
\(635\) 20981.1 20981.1i 1.31120 1.31120i
\(636\) −530.720 + 530.720i −0.0330887 + 0.0330887i
\(637\) 14793.1i 0.920130i
\(638\) 31432.7i 1.95052i
\(639\) 3481.58 3481.58i 0.215539 0.215539i
\(640\) 20004.6 20004.6i 1.23555 1.23555i
\(641\) −11857.5 11857.5i −0.730642 0.730642i 0.240105 0.970747i \(-0.422818\pi\)
−0.970747 + 0.240105i \(0.922818\pi\)
\(642\) 17227.9 1.05908
\(643\) 240.253 + 240.253i 0.0147351 + 0.0147351i 0.714436 0.699701i \(-0.246683\pi\)
−0.699701 + 0.714436i \(0.746683\pi\)
\(644\) 10455.0i 0.639729i
\(645\) 12944.1 0.790194
\(646\) 15705.9 + 11037.2i 0.956562 + 0.672217i
\(647\) −4602.65 −0.279673 −0.139837 0.990175i \(-0.544658\pi\)
−0.139837 + 0.990175i \(0.544658\pi\)
\(648\) 1290.61i 0.0782406i
\(649\) −19024.2 19024.2i −1.15064 1.15064i
\(650\) 29726.5 1.79380
\(651\) −6631.74 6631.74i −0.399260 0.399260i
\(652\) 4116.44 4116.44i 0.247258 0.247258i
\(653\) −13760.0 + 13760.0i −0.824611 + 0.824611i −0.986765 0.162154i \(-0.948156\pi\)
0.162154 + 0.986765i \(0.448156\pi\)
\(654\) 97.3869i 0.00582283i
\(655\) 1329.75i 0.0793246i
\(656\) −4451.75 + 4451.75i −0.264956 + 0.264956i
\(657\) 4590.28 4590.28i 0.272578 0.272578i
\(658\) 13512.9 + 13512.9i 0.800592 + 0.800592i
\(659\) −18144.0 −1.07252 −0.536261 0.844052i \(-0.680164\pi\)
−0.536261 + 0.844052i \(0.680164\pi\)
\(660\) −4933.62 4933.62i −0.290971 0.290971i
\(661\) 14393.6i 0.846970i 0.905903 + 0.423485i \(0.139193\pi\)
−0.905903 + 0.423485i \(0.860807\pi\)
\(662\) 26896.7 1.57911
\(663\) 2020.70 + 11574.9i 0.118367 + 0.678030i
\(664\) −4472.16 −0.261375
\(665\) 33899.7i 1.97680i
\(666\) −4457.81 4457.81i −0.259364 0.259364i
\(667\) 28779.7 1.67070
\(668\) 2583.99 + 2583.99i 0.149667 + 0.149667i
\(669\) 10214.1 10214.1i 0.590282 0.590282i
\(670\) −27203.7 + 27203.7i −1.56862 + 1.56862i
\(671\) 8037.29i 0.462409i
\(672\) 10277.4i 0.589969i
\(673\) −12560.1 + 12560.1i −0.719402 + 0.719402i −0.968483 0.249081i \(-0.919871\pi\)
0.249081 + 0.968483i \(0.419871\pi\)
\(674\) −28963.8 + 28963.8i −1.65526 + 1.65526i
\(675\) −3028.20 3028.20i −0.172675 0.172675i
\(676\) −3007.00 −0.171085
\(677\) 12033.3 + 12033.3i 0.683128 + 0.683128i 0.960704 0.277576i \(-0.0895311\pi\)
−0.277576 + 0.960704i \(0.589531\pi\)
\(678\) 12503.1i 0.708227i
\(679\) −21874.7 −1.23634
\(680\) −18527.9 + 3234.51i −1.04487 + 0.182409i
\(681\) −3979.91 −0.223951
\(682\) 18076.6i 1.01494i
\(683\) −8041.12 8041.12i −0.450490 0.450490i 0.445027 0.895517i \(-0.353194\pi\)
−0.895517 + 0.445027i \(0.853194\pi\)
\(684\) 2387.97 0.133489
\(685\) 11066.5 + 11066.5i 0.617267 + 0.617267i
\(686\) 4575.77 4575.77i 0.254670 0.254670i
\(687\) 10227.2 10227.2i 0.567964 0.567964i
\(688\) 20352.2i 1.12779i
\(689\) 4302.23i 0.237884i
\(690\) −15638.4 + 15638.4i −0.862816 + 0.862816i
\(691\) −16381.5 + 16381.5i −0.901855 + 0.901855i −0.995597 0.0937419i \(-0.970117\pi\)
0.0937419 + 0.995597i \(0.470117\pi\)
\(692\) 6671.54 + 6671.54i 0.366494 + 0.366494i
\(693\) −9429.49 −0.516878
\(694\) −8555.69 8555.69i −0.467968 0.467968i
\(695\) 16130.9i 0.880403i
\(696\) 10540.5 0.574045
\(697\) 5472.41 955.347i 0.297392 0.0519173i
\(698\) −9152.05 −0.496290
\(699\) 11088.5i 0.600008i
\(700\) −8984.37 8984.37i −0.485111 0.485111i
\(701\) −25706.5 −1.38505 −0.692525 0.721394i \(-0.743502\pi\)
−0.692525 + 0.721394i \(0.743502\pi\)
\(702\) 3578.14 + 3578.14i 0.192377 + 0.192377i
\(703\) 12058.4 12058.4i 0.646929 0.646929i
\(704\) 5090.91 5090.91i 0.272544 0.272544i
\(705\) 11676.8i 0.623794i
\(706\) 8429.19i 0.449344i
\(707\) −10099.7 + 10099.7i −0.537252 + 0.537252i
\(708\) 4363.65 4363.65i 0.231633 0.231633i
\(709\) 19768.6 + 19768.6i 1.04714 + 1.04714i 0.998832 + 0.0483115i \(0.0153840\pi\)
0.0483115 + 0.998832i \(0.484616\pi\)
\(710\) 30901.3 1.63339
\(711\) −2314.13 2314.13i −0.122063 0.122063i
\(712\) 7013.09i 0.369139i
\(713\) −16550.9 −0.869335
\(714\) 9996.81 14225.4i 0.523979 0.745620i
\(715\) 39993.9 2.09187
\(716\) 443.691i 0.0231586i
\(717\) 641.554 + 641.554i 0.0334160 + 0.0334160i
\(718\) −22498.7 −1.16942
\(719\) 24030.0 + 24030.0i 1.24641 + 1.24641i 0.957296 + 0.289111i \(0.0933597\pi\)
0.289111 + 0.957296i \(0.406640\pi\)
\(720\) −8513.55 + 8513.55i −0.440668 + 0.440668i
\(721\) −1824.50 + 1824.50i −0.0942413 + 0.0942413i
\(722\) 642.849i 0.0331362i
\(723\) 19315.8i 0.993585i
\(724\) 5335.19 5335.19i 0.273868 0.273868i
\(725\) −24731.4 + 24731.4i −1.26690 + 1.26690i
\(726\) −3381.31 3381.31i −0.172854 0.172854i
\(727\) 2058.35 0.105007 0.0525034 0.998621i \(-0.483280\pi\)
0.0525034 + 0.998621i \(0.483280\pi\)
\(728\) −15520.2 15520.2i −0.790131 0.790131i
\(729\) 729.000i 0.0370370i
\(730\) 40741.7 2.06564
\(731\) −10325.4 + 14693.0i −0.522433 + 0.743420i
\(732\) −1843.54 −0.0930863
\(733\) 5879.10i 0.296247i −0.988969 0.148124i \(-0.952677\pi\)
0.988969 0.148124i \(-0.0473234\pi\)
\(734\) 5283.63 + 5283.63i 0.265698 + 0.265698i
\(735\) −13375.1 −0.671224
\(736\) 12824.7 + 12824.7i 0.642288 + 0.642288i
\(737\) −20468.6 + 20468.6i −1.02303 + 1.02303i
\(738\) 1691.68 1691.68i 0.0843787 0.0843787i
\(739\) 1015.40i 0.0505440i −0.999681 0.0252720i \(-0.991955\pi\)
0.999681 0.0252720i \(-0.00804519\pi\)
\(740\) 11428.8i 0.567744i
\(741\) −9678.90 + 9678.90i −0.479842 + 0.479842i
\(742\) −4501.51 + 4501.51i −0.222717 + 0.222717i
\(743\) 14598.4 + 14598.4i 0.720811 + 0.720811i 0.968771 0.247959i \(-0.0797598\pi\)
−0.247959 + 0.968771i \(0.579760\pi\)
\(744\) −6061.70 −0.298700
\(745\) −33961.4 33961.4i −1.67013 1.67013i
\(746\) 20505.9i 1.00640i
\(747\) 2526.10 0.123728
\(748\) 9535.68 1664.69i 0.466122 0.0813733i
\(749\) 42208.8 2.05911
\(750\) 5695.62i 0.277299i
\(751\) 8471.38 + 8471.38i 0.411618 + 0.411618i 0.882302 0.470684i \(-0.155993\pi\)
−0.470684 + 0.882302i \(0.655993\pi\)
\(752\) 18359.6 0.890299
\(753\) −6145.28 6145.28i −0.297405 0.297405i
\(754\) 29222.9 29222.9i 1.41145 1.41145i
\(755\) 40365.6 40365.6i 1.94577 1.94577i
\(756\) 2162.87i 0.104052i
\(757\) 8449.86i 0.405701i −0.979210 0.202850i \(-0.934980\pi\)
0.979210 0.202850i \(-0.0650205\pi\)
\(758\) 4432.93 4432.93i 0.212416 0.212416i
\(759\) −11766.6 + 11766.6i −0.562716 + 0.562716i
\(760\) −15492.9 15492.9i −0.739457 0.739457i
\(761\) 8080.05 0.384890 0.192445 0.981308i \(-0.438358\pi\)
0.192445 + 0.981308i \(0.438358\pi\)
\(762\) 12535.8 + 12535.8i 0.595965 + 0.595965i
\(763\) 238.601i 0.0113210i
\(764\) 4376.59 0.207251
\(765\) 10465.5 1827.01i 0.494614 0.0863474i
\(766\) −10597.6 −0.499877
\(767\) 35373.5i 1.66527i
\(768\) 9077.53 + 9077.53i 0.426506 + 0.426506i
\(769\) −24375.9 −1.14307 −0.571533 0.820579i \(-0.693651\pi\)
−0.571533 + 0.820579i \(0.693651\pi\)
\(770\) −41846.4 41846.4i −1.95849 1.95849i
\(771\) 11538.9 11538.9i 0.538993 0.538993i
\(772\) −11633.1 + 11633.1i −0.542338 + 0.542338i
\(773\) 25018.8i 1.16412i −0.813146 0.582060i \(-0.802247\pi\)
0.813146 0.582060i \(-0.197753\pi\)
\(774\) 7733.89i 0.359159i
\(775\) 14222.8 14222.8i 0.659222 0.659222i
\(776\) −9997.19 + 9997.19i −0.462472 + 0.462472i
\(777\) −10921.8 10921.8i −0.504268 0.504268i
\(778\) −15399.1 −0.709622
\(779\) 4575.99 + 4575.99i 0.210465 + 0.210465i
\(780\) 9173.53i 0.421109i
\(781\) 23250.8 1.06527
\(782\) −5276.67 30225.8i −0.241296 1.38219i
\(783\) −5953.78 −0.271738
\(784\) 21029.8i 0.957992i
\(785\) −5842.00 5842.00i −0.265618 0.265618i
\(786\) −794.501 −0.0360546
\(787\) −17180.5 17180.5i −0.778167 0.778167i 0.201352 0.979519i \(-0.435466\pi\)
−0.979519 + 0.201352i \(0.935466\pi\)
\(788\) 3626.12 3626.12i 0.163928 0.163928i
\(789\) −14410.2 + 14410.2i −0.650211 + 0.650211i
\(790\) 20539.4i 0.925012i
\(791\) 30632.9i 1.37697i
\(792\) −4309.48 + 4309.48i −0.193347 + 0.193347i
\(793\) 7472.23 7472.23i 0.334611 0.334611i
\(794\) 26261.4 + 26261.4i 1.17378 + 1.17378i
\(795\) −3889.85 −0.173533
\(796\) −1529.58 1529.58i −0.0681089 0.0681089i
\(797\) 31232.7i 1.38810i −0.719926 0.694051i \(-0.755824\pi\)
0.719926 0.694051i \(-0.244176\pi\)
\(798\) 20254.5 0.898497
\(799\) −13254.4 9314.47i −0.586869 0.412419i
\(800\) −22041.4 −0.974102
\(801\) 3961.34i 0.174740i
\(802\) −18921.2 18921.2i −0.833082 0.833082i
\(803\) 30654.9 1.34718
\(804\) −4694.96 4694.96i −0.205943 0.205943i
\(805\) −38314.5 + 38314.5i −1.67753 + 1.67753i
\(806\) −16805.7 + 16805.7i −0.734438 + 0.734438i
\(807\) 18054.0i 0.787521i
\(808\) 9231.54i 0.401936i
\(809\) 11111.7 11111.7i 0.482902 0.482902i −0.423155 0.906057i \(-0.639078\pi\)
0.906057 + 0.423155i \(0.139078\pi\)
\(810\) 3235.17 3235.17i 0.140336 0.140336i
\(811\) 24543.9 + 24543.9i 1.06270 + 1.06270i 0.997898 + 0.0648062i \(0.0206429\pi\)
0.0648062 + 0.997898i \(0.479357\pi\)
\(812\) −17664.3 −0.763417
\(813\) −14048.5 14048.5i −0.606032 0.606032i
\(814\) 29770.2i 1.28187i
\(815\) 30171.0 1.29674
\(816\) −2872.63 16455.0i −0.123238 0.705930i
\(817\) −20920.2 −0.895845
\(818\) 26269.8i 1.12286i
\(819\) 8766.55 + 8766.55i 0.374027 + 0.374027i
\(820\) 4337.06 0.184703
\(821\) 2105.65 + 2105.65i 0.0895099 + 0.0895099i 0.750444 0.660934i \(-0.229840\pi\)
−0.660934 + 0.750444i \(0.729840\pi\)
\(822\) −6612.01 + 6612.01i −0.280560 + 0.280560i
\(823\) 11713.0 11713.0i 0.496097 0.496097i −0.414123 0.910221i \(-0.635912\pi\)
0.910221 + 0.414123i \(0.135912\pi\)
\(824\) 1667.67i 0.0705051i
\(825\) 20223.0i 0.853422i
\(826\) 37012.0 37012.0i 1.55910 1.55910i
\(827\) −30264.8 + 30264.8i −1.27256 + 1.27256i −0.327823 + 0.944739i \(0.606315\pi\)
−0.944739 + 0.327823i \(0.893685\pi\)
\(828\) −2698.95 2698.95i −0.113279 0.113279i
\(829\) −33758.6 −1.41433 −0.707167 0.707046i \(-0.750027\pi\)
−0.707167 + 0.707046i \(0.750027\pi\)
\(830\) 11210.4 + 11210.4i 0.468816 + 0.468816i
\(831\) 20218.4i 0.844007i
\(832\) −9465.99 −0.394440
\(833\) 10669.2 15182.2i 0.443777 0.631492i
\(834\) −9637.92 −0.400161
\(835\) 18939.1i 0.784926i
\(836\) 7973.67 + 7973.67i 0.329875 + 0.329875i
\(837\) 3423.95 0.141397
\(838\) −12467.1 12467.1i −0.513924 0.513924i
\(839\) −18778.3 + 18778.3i −0.772703 + 0.772703i −0.978578 0.205875i \(-0.933996\pi\)
0.205875 + 0.978578i \(0.433996\pi\)
\(840\) −14032.5 + 14032.5i −0.576391 + 0.576391i
\(841\) 24235.7i 0.993716i
\(842\) 11638.1i 0.476336i
\(843\) 6887.72 6887.72i 0.281407 0.281407i
\(844\) −10056.2 + 10056.2i −0.410130 + 0.410130i
\(845\) −11019.7 11019.7i −0.448627 0.448627i
\(846\) −6976.69 −0.283527
\(847\) −8284.31 8284.31i −0.336071 0.336071i
\(848\) 6116.05i 0.247672i
\(849\) −7548.39 −0.305136
\(850\) 30508.5 + 21439.7i 1.23110 + 0.865146i
\(851\) −27257.5 −1.09797
\(852\) 5333.10i 0.214447i
\(853\) −4407.60 4407.60i −0.176921 0.176921i 0.613091 0.790012i \(-0.289926\pi\)
−0.790012 + 0.613091i \(0.789926\pi\)
\(854\) −15636.7 −0.626554
\(855\) 8751.16 + 8751.16i 0.350039 + 0.350039i
\(856\) 19290.3 19290.3i 0.770245 0.770245i
\(857\) 13851.1 13851.1i 0.552094 0.552094i −0.374951 0.927045i \(-0.622340\pi\)
0.927045 + 0.374951i \(0.122340\pi\)
\(858\) 23895.6i 0.950795i
\(859\) 23713.4i 0.941898i 0.882160 + 0.470949i \(0.156088\pi\)
−0.882160 + 0.470949i \(0.843912\pi\)
\(860\) −9913.94 + 9913.94i −0.393096 + 0.393096i
\(861\) 4144.66 4144.66i 0.164053 0.164053i
\(862\) −21747.3 21747.3i −0.859299 0.859299i
\(863\) 10642.1 0.419771 0.209886 0.977726i \(-0.432691\pi\)
0.209886 + 0.977726i \(0.432691\pi\)
\(864\) −2653.10 2653.10i −0.104468 0.104468i
\(865\) 48898.3i 1.92207i
\(866\) −9656.49 −0.378916
\(867\) −6274.34 + 13336.8i −0.245776 + 0.522425i
\(868\) 10158.5 0.397239
\(869\) 15454.2i 0.603279i
\(870\) −26421.8 26421.8i −1.02964 1.02964i
\(871\) 38059.2 1.48058
\(872\) −109.046 109.046i −0.00423481 0.00423481i
\(873\) 5646.91 5646.91i 0.218922 0.218922i
\(874\) 25274.6 25274.6i 0.978177 0.978177i
\(875\) 13954.4i 0.539138i
\(876\) 7031.41i 0.271198i
\(877\) 5293.93 5293.93i 0.203835 0.203835i −0.597806 0.801641i \(-0.703961\pi\)
0.801641 + 0.597806i \(0.203961\pi\)
\(878\) 25950.5 25950.5i 0.997480 0.997480i
\(879\) 6328.39 + 6328.39i 0.242834 + 0.242834i
\(880\) −56855.3 −2.17795
\(881\) 20754.3 + 20754.3i 0.793678 + 0.793678i 0.982090 0.188412i \(-0.0603339\pi\)
−0.188412 + 0.982090i \(0.560334\pi\)
\(882\) 7991.40i 0.305085i
\(883\) −26493.4 −1.00971 −0.504855 0.863204i \(-0.668454\pi\)
−0.504855 + 0.863204i \(0.668454\pi\)
\(884\) −10412.9 7317.62i −0.396182 0.278414i
\(885\) 31982.9 1.21479
\(886\) 10307.0i 0.390824i
\(887\) −20262.6 20262.6i −0.767027 0.767027i 0.210555 0.977582i \(-0.432473\pi\)
−0.977582 + 0.210555i \(0.932473\pi\)
\(888\) −9982.96 −0.377259
\(889\) 30713.1 + 30713.1i 1.15870 + 1.15870i
\(890\) −17579.7 + 17579.7i −0.662106 + 0.662106i
\(891\) 2434.21 2434.21i 0.0915253 0.0915253i
\(892\) 15645.9i 0.587293i
\(893\) 18872.0i 0.707197i
\(894\) 20291.3 20291.3i 0.759109 0.759109i
\(895\) −1625.99 + 1625.99i −0.0607273 + 0.0607273i
\(896\) 29283.7 + 29283.7i 1.09185 + 1.09185i
\(897\) 21878.7 0.814393
\(898\) 35344.7 + 35344.7i 1.31344 + 1.31344i
\(899\) 27963.5i 1.03742i
\(900\) 4638.61 0.171800
\(901\) 3102.89 4415.40i 0.114731 0.163261i
\(902\) 11297.4 0.417031
\(903\) 18948.2i 0.698293i
\(904\) 13999.9 + 13999.9i 0.515077 + 0.515077i
\(905\) 39103.7 1.43630
\(906\) 24117.7 + 24117.7i 0.884390 + 0.884390i
\(907\) −14929.0 + 14929.0i −0.546539 + 0.546539i −0.925438 0.378899i \(-0.876303\pi\)
0.378899 + 0.925438i \(0.376303\pi\)
\(908\) 3048.22 3048.22i 0.111408 0.111408i
\(909\) 5214.43i 0.190266i
\(910\) 77808.9i 2.83444i
\(911\) 19255.7 19255.7i 0.700294 0.700294i −0.264179 0.964474i \(-0.585101\pi\)
0.964474 + 0.264179i \(0.0851010\pi\)
\(912\) 13759.5 13759.5i 0.499587 0.499587i
\(913\) 8434.90 + 8434.90i 0.305755 + 0.305755i
\(914\) −35680.7 −1.29126
\(915\) −6756.01 6756.01i −0.244095 0.244095i
\(916\) 15666.0i 0.565088i
\(917\) −1946.55 −0.0700990
\(918\) 1091.61 + 6252.93i 0.0392466 + 0.224812i
\(919\) −14081.0 −0.505428 −0.252714 0.967541i \(-0.581323\pi\)
−0.252714 + 0.967541i \(0.581323\pi\)
\(920\) 35021.1i 1.25501i
\(921\) 2121.00 + 2121.00i 0.0758840 + 0.0758840i
\(922\) 5297.46 0.189222
\(923\) −21616.1 21616.1i −0.770860 0.770860i
\(924\) 7222.07 7222.07i 0.257130 0.257130i
\(925\) 23423.3 23423.3i 0.832600 0.832600i
\(926\) 9362.91i 0.332273i
\(927\) 941.985i 0.0333752i
\(928\) −21667.9 + 21667.9i −0.766471 + 0.766471i
\(929\) 26545.3 26545.3i 0.937484 0.937484i −0.0606733 0.998158i \(-0.519325\pi\)
0.998158 + 0.0606733i \(0.0193248\pi\)
\(930\) 15194.9 + 15194.9i 0.535764 + 0.535764i
\(931\) 21616.8 0.760968
\(932\) −8492.71 8492.71i −0.298485 0.298485i
\(933\) 14327.5i 0.502744i
\(934\) 22263.2 0.779949
\(935\) 41045.9 + 28844.8i 1.43566 + 1.00890i
\(936\) 8013.01 0.279822
\(937\) 15576.6i 0.543078i 0.962427 + 0.271539i \(0.0875326\pi\)
−0.962427 + 0.271539i \(0.912467\pi\)
\(938\) −39822.1 39822.1i −1.38618 1.38618i
\(939\) 18345.1 0.637560
\(940\) −8943.31 8943.31i −0.310318 0.310318i
\(941\) −24963.5 + 24963.5i −0.864810 + 0.864810i −0.991892 0.127082i \(-0.959439\pi\)
0.127082 + 0.991892i \(0.459439\pi\)
\(942\) 3490.49 3490.49i 0.120729 0.120729i
\(943\) 10343.8i 0.357203i
\(944\) 50287.0i 1.73379i
\(945\) 7926.27 7926.27i 0.272848 0.272848i
\(946\) −25824.3 + 25824.3i −0.887547 + 0.887547i
\(947\) −32846.8 32846.8i −1.12711 1.12711i −0.990644 0.136469i \(-0.956425\pi\)
−0.136469 0.990644i \(-0.543575\pi\)
\(948\) 3544.79 0.121445
\(949\) −28499.7 28499.7i −0.974856 0.974856i
\(950\) 43438.7i 1.48351i
\(951\) −5713.69 −0.194826
\(952\) −4734.83 27122.0i −0.161194 0.923350i
\(953\) 24064.4 0.817968 0.408984 0.912542i \(-0.365883\pi\)
0.408984 + 0.912542i \(0.365883\pi\)
\(954\) 2324.12i 0.0788743i
\(955\) 16038.9 + 16038.9i 0.543461 + 0.543461i
\(956\) −982.734 −0.0332468
\(957\) −19880.3 19880.3i −0.671514 0.671514i
\(958\) −6451.53 + 6451.53i −0.217578 + 0.217578i
\(959\) −16199.6 + 16199.6i −0.545478 + 0.545478i
\(960\) 8558.66i 0.287739i
\(961\) 13709.5i 0.460189i
\(962\) −27677.2 + 27677.2i −0.927598 + 0.927598i
\(963\) −10896.1 + 10896.1i −0.364613 + 0.364613i
\(964\) −14794.0 14794.0i −0.494277 0.494277i
\(965\) −85263.5 −2.84428
\(966\) −22892.2 22892.2i −0.762468 0.762468i
\(967\) 44054.0i 1.46503i −0.680752 0.732514i \(-0.738347\pi\)
0.680752 0.732514i \(-0.261653\pi\)
\(968\) −7572.22 −0.251426
\(969\) −16914.2 + 2952.80i −0.560746 + 0.0978923i
\(970\) 50120.0 1.65903
\(971\) 6832.21i 0.225804i −0.993606 0.112902i \(-0.963985\pi\)
0.993606 0.112902i \(-0.0360147\pi\)
\(972\) 558.343 + 558.343i 0.0184247 + 0.0184247i
\(973\) −23613.2 −0.778010
\(974\) −11164.2 11164.2i −0.367273 0.367273i
\(975\) −18801.2 + 18801.2i −0.617559 + 0.617559i
\(976\) −10622.5 + 10622.5i −0.348380 + 0.348380i
\(977\) 4977.75i 0.163002i 0.996673 + 0.0815008i \(0.0259713\pi\)
−0.996673 + 0.0815008i \(0.974029\pi\)
\(978\) 18026.6i 0.589395i
\(979\) −13227.3 + 13227.3i −0.431816 + 0.431816i
\(980\) 10244.0 10244.0i 0.333912 0.333912i
\(981\) 61.5944 + 61.5944i 0.00200465 + 0.00200465i
\(982\) 33757.6 1.09699
\(983\) −11935.6 11935.6i −0.387269 0.387269i 0.486444 0.873712i \(-0.338294\pi\)
−0.873712 + 0.486444i \(0.838294\pi\)
\(984\) 3788.40i 0.122733i
\(985\) 26577.3 0.859718
\(986\) 51068.0 8915.20i 1.64943 0.287949i
\(987\) −17093.1 −0.551245
\(988\) 14826.2i 0.477412i
\(989\) 23644.6 + 23644.6i 0.760218 + 0.760218i
\(990\) 21605.2 0.693594
\(991\) −3614.91 3614.91i −0.115874 0.115874i 0.646792 0.762666i \(-0.276110\pi\)
−0.762666 + 0.646792i \(0.776110\pi\)
\(992\) 12461.0 12461.0i 0.398828 0.398828i
\(993\) −17011.4 + 17011.4i −0.543646 + 0.543646i
\(994\) 45234.8i 1.44342i
\(995\) 11210.9i 0.357196i
\(996\) −1934.74 + 1934.74i −0.0615508 + 0.0615508i
\(997\) −30371.5 + 30371.5i −0.964770 + 0.964770i −0.999400 0.0346301i \(-0.988975\pi\)
0.0346301 + 0.999400i \(0.488975\pi\)
\(998\) 13144.3 + 13144.3i 0.416910 + 0.416910i
\(999\) 5638.87 0.178585
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.4.e.a.13.2 yes 16
3.2 odd 2 153.4.f.b.64.7 16
17.2 even 8 867.4.a.q.1.7 8
17.4 even 4 inner 51.4.e.a.4.7 16
17.15 even 8 867.4.a.p.1.7 8
51.38 odd 4 153.4.f.b.55.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.e.a.4.7 16 17.4 even 4 inner
51.4.e.a.13.2 yes 16 1.1 even 1 trivial
153.4.f.b.55.2 16 51.38 odd 4
153.4.f.b.64.7 16 3.2 odd 2
867.4.a.p.1.7 8 17.15 even 8
867.4.a.q.1.7 8 17.2 even 8