Properties

Label 51.4.h.a.19.5
Level $51$
Weight $4$
Character 51.19
Analytic conductor $3.009$
Analytic rank $0$
Dimension $40$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [51,4,Mod(19,51)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(51, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("51.19");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 51.h (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.00909741029\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{8})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 19.5
Character \(\chi\) \(=\) 51.19
Dual form 51.4.h.a.43.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.320127 + 0.320127i) q^{2} +(-2.77164 + 1.14805i) q^{3} -7.79504i q^{4} +(-2.81499 - 6.79598i) q^{5} +(-1.25480 - 0.519754i) q^{6} +(6.62120 - 15.9850i) q^{7} +(5.05641 - 5.05641i) q^{8} +(6.36396 - 6.36396i) q^{9} +(1.27442 - 3.07673i) q^{10} +(-0.780283 - 0.323204i) q^{11} +(8.94910 + 21.6050i) q^{12} -29.3566i q^{13} +(7.23685 - 2.99760i) q^{14} +(15.6043 + 15.6043i) q^{15} -59.1229 q^{16} +(-14.8387 + 68.5041i) q^{17} +4.07455 q^{18} +(-13.1225 - 13.1225i) q^{19} +(-52.9749 + 21.9429i) q^{20} +51.9061i q^{21} +(-0.146323 - 0.353256i) q^{22} +(111.142 + 46.0364i) q^{23} +(-8.20953 + 19.8196i) q^{24} +(50.1271 - 50.1271i) q^{25} +(9.39783 - 9.39783i) q^{26} +(-10.3325 + 24.9447i) q^{27} +(-124.604 - 51.6125i) q^{28} +(76.9723 + 185.828i) q^{29} +9.99068i q^{30} +(98.5318 - 40.8132i) q^{31} +(-59.3781 - 59.3781i) q^{32} +2.53372 q^{33} +(-26.6803 + 17.1797i) q^{34} -127.272 q^{35} +(-49.6073 - 49.6073i) q^{36} +(-64.8054 + 26.8433i) q^{37} -8.40173i q^{38} +(33.7028 + 81.3658i) q^{39} +(-48.5970 - 20.1296i) q^{40} +(73.4502 - 177.324i) q^{41} +(-16.6165 + 16.6165i) q^{42} +(359.226 - 359.226i) q^{43} +(-2.51939 + 6.08234i) q^{44} +(-61.1638 - 25.3349i) q^{45} +(20.8419 + 50.3169i) q^{46} -235.021i q^{47} +(163.867 - 67.8761i) q^{48} +(30.8578 + 30.8578i) q^{49} +32.0941 q^{50} +(-37.5187 - 206.904i) q^{51} -228.836 q^{52} +(-36.0951 - 36.0951i) q^{53} +(-11.2932 + 4.67779i) q^{54} +6.21260i q^{55} +(-47.3472 - 114.306i) q^{56} +(51.4362 + 21.3056i) q^{57} +(-34.8475 + 84.1292i) q^{58} +(106.903 - 106.903i) q^{59} +(121.636 - 121.636i) q^{60} +(-355.057 + 857.183i) q^{61} +(44.6081 + 18.4773i) q^{62} +(-59.5908 - 143.865i) q^{63} +434.966i q^{64} +(-199.507 + 82.6384i) q^{65} +(0.811111 + 0.811111i) q^{66} +158.409 q^{67} +(533.992 + 115.668i) q^{68} -360.896 q^{69} +(-40.7433 - 40.7433i) q^{70} +(-536.934 + 222.405i) q^{71} -64.3576i q^{72} +(186.196 + 449.517i) q^{73} +(-29.3392 - 12.1527i) q^{74} +(-81.3858 + 196.483i) q^{75} +(-102.290 + 102.290i) q^{76} +(-10.3328 + 10.3328i) q^{77} +(-15.2582 + 36.8366i) q^{78} +(1026.47 + 425.176i) q^{79} +(166.430 + 401.798i) q^{80} -81.0000i q^{81} +(80.2797 - 33.2529i) q^{82} +(-1038.74 - 1038.74i) q^{83} +404.610 q^{84} +(507.323 - 91.9949i) q^{85} +229.996 q^{86} +(-426.679 - 426.679i) q^{87} +(-5.57969 + 2.31118i) q^{88} +1043.96i q^{89} +(-11.4698 - 27.6906i) q^{90} +(-469.265 - 194.376i) q^{91} +(358.855 - 866.353i) q^{92} +(-226.239 + 226.239i) q^{93} +(75.2364 - 75.2364i) q^{94} +(-52.2406 + 126.120i) q^{95} +(232.744 + 96.4057i) q^{96} +(-195.970 - 473.115i) q^{97} +19.7568i q^{98} +(-7.02255 + 2.90883i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 32 q^{5} - 24 q^{6} + 128 q^{10} + 112 q^{11} + 256 q^{14} - 1024 q^{16} - 112 q^{17} - 32 q^{19} - 640 q^{20} + 728 q^{22} + 208 q^{23} + 456 q^{24} + 296 q^{25} + 1472 q^{26} - 328 q^{28} - 1272 q^{29}+ \cdots + 1008 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.320127 + 0.320127i 0.113182 + 0.113182i 0.761430 0.648248i \(-0.224498\pi\)
−0.648248 + 0.761430i \(0.724498\pi\)
\(3\) −2.77164 + 1.14805i −0.533402 + 0.220942i
\(4\) 7.79504i 0.974380i
\(5\) −2.81499 6.79598i −0.251780 0.607851i 0.746568 0.665309i \(-0.231700\pi\)
−0.998348 + 0.0574583i \(0.981700\pi\)
\(6\) −1.25480 0.519754i −0.0853781 0.0353648i
\(7\) 6.62120 15.9850i 0.357511 0.863109i −0.638137 0.769923i \(-0.720295\pi\)
0.995649 0.0931862i \(-0.0297052\pi\)
\(8\) 5.05641 5.05641i 0.223464 0.223464i
\(9\) 6.36396 6.36396i 0.235702 0.235702i
\(10\) 1.27442 3.07673i 0.0403008 0.0972947i
\(11\) −0.780283 0.323204i −0.0213877 0.00885906i 0.371964 0.928247i \(-0.378684\pi\)
−0.393352 + 0.919388i \(0.628684\pi\)
\(12\) 8.94910 + 21.6050i 0.215282 + 0.519736i
\(13\) 29.3566i 0.626311i −0.949702 0.313156i \(-0.898614\pi\)
0.949702 0.313156i \(-0.101386\pi\)
\(14\) 7.23685 2.99760i 0.138152 0.0572245i
\(15\) 15.6043 + 15.6043i 0.268600 + 0.268600i
\(16\) −59.1229 −0.923796
\(17\) −14.8387 + 68.5041i −0.211700 + 0.977335i
\(18\) 4.07455 0.0533545
\(19\) −13.1225 13.1225i −0.158448 0.158448i 0.623431 0.781879i \(-0.285738\pi\)
−0.781879 + 0.623431i \(0.785738\pi\)
\(20\) −52.9749 + 21.9429i −0.592278 + 0.245329i
\(21\) 51.9061i 0.539373i
\(22\) −0.146323 0.353256i −0.00141801 0.00342338i
\(23\) 111.142 + 46.0364i 1.00759 + 0.417358i 0.824576 0.565751i \(-0.191414\pi\)
0.183016 + 0.983110i \(0.441414\pi\)
\(24\) −8.20953 + 19.8196i −0.0698235 + 0.168569i
\(25\) 50.1271 50.1271i 0.401017 0.401017i
\(26\) 9.39783 9.39783i 0.0708871 0.0708871i
\(27\) −10.3325 + 24.9447i −0.0736475 + 0.177801i
\(28\) −124.604 51.6125i −0.840996 0.348352i
\(29\) 76.9723 + 185.828i 0.492876 + 1.18991i 0.953250 + 0.302182i \(0.0977151\pi\)
−0.460375 + 0.887725i \(0.652285\pi\)
\(30\) 9.99068i 0.0608013i
\(31\) 98.5318 40.8132i 0.570866 0.236460i −0.0785291 0.996912i \(-0.525022\pi\)
0.649395 + 0.760452i \(0.275022\pi\)
\(32\) −59.3781 59.3781i −0.328021 0.328021i
\(33\) 2.53372 0.0133656
\(34\) −26.6803 + 17.1797i −0.134577 + 0.0866559i
\(35\) −127.272 −0.614656
\(36\) −49.6073 49.6073i −0.229664 0.229664i
\(37\) −64.8054 + 26.8433i −0.287944 + 0.119270i −0.521980 0.852957i \(-0.674807\pi\)
0.234036 + 0.972228i \(0.424807\pi\)
\(38\) 8.40173i 0.0358669i
\(39\) 33.7028 + 81.3658i 0.138379 + 0.334076i
\(40\) −48.5970 20.1296i −0.192097 0.0795690i
\(41\) 73.4502 177.324i 0.279780 0.675449i −0.720049 0.693923i \(-0.755881\pi\)
0.999829 + 0.0184739i \(0.00588075\pi\)
\(42\) −16.6165 + 16.6165i −0.0610473 + 0.0610473i
\(43\) 359.226 359.226i 1.27399 1.27399i 0.330010 0.943977i \(-0.392948\pi\)
0.943977 0.330010i \(-0.107052\pi\)
\(44\) −2.51939 + 6.08234i −0.00863208 + 0.0208397i
\(45\) −61.1638 25.3349i −0.202617 0.0839267i
\(46\) 20.8419 + 50.3169i 0.0668038 + 0.161279i
\(47\) 235.021i 0.729389i −0.931127 0.364694i \(-0.881173\pi\)
0.931127 0.364694i \(-0.118827\pi\)
\(48\) 163.867 67.8761i 0.492754 0.204106i
\(49\) 30.8578 + 30.8578i 0.0899644 + 0.0899644i
\(50\) 32.0941 0.0907758
\(51\) −37.5187 206.904i −0.103013 0.568086i
\(52\) −228.836 −0.610265
\(53\) −36.0951 36.0951i −0.0935480 0.0935480i 0.658784 0.752332i \(-0.271071\pi\)
−0.752332 + 0.658784i \(0.771071\pi\)
\(54\) −11.2932 + 4.67779i −0.0284594 + 0.0117883i
\(55\) 6.21260i 0.0152310i
\(56\) −47.3472 114.306i −0.112983 0.272765i
\(57\) 51.4362 + 21.3056i 0.119524 + 0.0495086i
\(58\) −34.8475 + 84.1292i −0.0788913 + 0.190461i
\(59\) 106.903 106.903i 0.235891 0.235891i −0.579255 0.815146i \(-0.696657\pi\)
0.815146 + 0.579255i \(0.196657\pi\)
\(60\) 121.636 121.636i 0.261719 0.261719i
\(61\) −355.057 + 857.183i −0.745252 + 1.79920i −0.162206 + 0.986757i \(0.551861\pi\)
−0.583046 + 0.812439i \(0.698139\pi\)
\(62\) 44.6081 + 18.4773i 0.0913747 + 0.0378486i
\(63\) −59.5908 143.865i −0.119170 0.287703i
\(64\) 434.966i 0.849543i
\(65\) −199.507 + 82.6384i −0.380704 + 0.157693i
\(66\) 0.811111 + 0.811111i 0.00151274 + 0.00151274i
\(67\) 158.409 0.288847 0.144424 0.989516i \(-0.453867\pi\)
0.144424 + 0.989516i \(0.453867\pi\)
\(68\) 533.992 + 115.668i 0.952295 + 0.206277i
\(69\) −360.896 −0.629664
\(70\) −40.7433 40.7433i −0.0695679 0.0695679i
\(71\) −536.934 + 222.405i −0.897497 + 0.371756i −0.783257 0.621698i \(-0.786443\pi\)
−0.114240 + 0.993453i \(0.536443\pi\)
\(72\) 64.3576i 0.105342i
\(73\) 186.196 + 449.517i 0.298528 + 0.720711i 0.999968 + 0.00798265i \(0.00254098\pi\)
−0.701440 + 0.712729i \(0.747459\pi\)
\(74\) −29.3392 12.1527i −0.0460893 0.0190908i
\(75\) −81.3858 + 196.483i −0.125302 + 0.302505i
\(76\) −102.290 + 102.290i −0.154388 + 0.154388i
\(77\) −10.3328 + 10.3328i −0.0152927 + 0.0152927i
\(78\) −15.2582 + 36.8366i −0.0221494 + 0.0534733i
\(79\) 1026.47 + 425.176i 1.46185 + 0.605519i 0.964985 0.262307i \(-0.0844833\pi\)
0.496868 + 0.867826i \(0.334483\pi\)
\(80\) 166.430 + 401.798i 0.232593 + 0.561530i
\(81\) 81.0000i 0.111111i
\(82\) 80.2797 33.2529i 0.108115 0.0447826i
\(83\) −1038.74 1038.74i −1.37369 1.37369i −0.854897 0.518798i \(-0.826380\pi\)
−0.518798 0.854897i \(-0.673620\pi\)
\(84\) 404.610 0.525555
\(85\) 507.323 91.9949i 0.647376 0.117391i
\(86\) 229.996 0.288385
\(87\) −426.679 426.679i −0.525802 0.525802i
\(88\) −5.57969 + 2.31118i −0.00675905 + 0.00279969i
\(89\) 1043.96i 1.24337i 0.783267 + 0.621685i \(0.213552\pi\)
−0.783267 + 0.621685i \(0.786448\pi\)
\(90\) −11.4698 27.6906i −0.0134336 0.0324316i
\(91\) −469.265 194.376i −0.540575 0.223913i
\(92\) 358.855 866.353i 0.406666 0.981777i
\(93\) −226.239 + 226.239i −0.252257 + 0.252257i
\(94\) 75.2364 75.2364i 0.0825536 0.0825536i
\(95\) −52.2406 + 126.120i −0.0564187 + 0.136207i
\(96\) 232.744 + 96.4057i 0.247441 + 0.102493i
\(97\) −195.970 473.115i −0.205132 0.495232i 0.787513 0.616299i \(-0.211369\pi\)
−0.992644 + 0.121067i \(0.961369\pi\)
\(98\) 19.7568i 0.0203647i
\(99\) −7.02255 + 2.90883i −0.00712922 + 0.00295302i
\(100\) −390.743 390.743i −0.390743 0.390743i
\(101\) −182.348 −0.179647 −0.0898234 0.995958i \(-0.528630\pi\)
−0.0898234 + 0.995958i \(0.528630\pi\)
\(102\) 54.2248 78.2463i 0.0526378 0.0759563i
\(103\) −856.328 −0.819190 −0.409595 0.912268i \(-0.634330\pi\)
−0.409595 + 0.912268i \(0.634330\pi\)
\(104\) −148.439 148.439i −0.139958 0.139958i
\(105\) 352.753 146.115i 0.327859 0.135804i
\(106\) 23.1100i 0.0211759i
\(107\) −522.112 1260.49i −0.471724 1.13884i −0.963401 0.268064i \(-0.913616\pi\)
0.491677 0.870778i \(-0.336384\pi\)
\(108\) 194.445 + 80.5419i 0.173245 + 0.0717606i
\(109\) 325.783 786.510i 0.286279 0.691138i −0.713678 0.700474i \(-0.752972\pi\)
0.999956 + 0.00933646i \(0.00297193\pi\)
\(110\) −1.98882 + 1.98882i −0.00172388 + 0.00172388i
\(111\) 148.800 148.800i 0.127238 0.127238i
\(112\) −391.465 + 945.080i −0.330267 + 0.797336i
\(113\) 2078.13 + 860.790i 1.73004 + 0.716605i 0.999428 + 0.0338073i \(0.0107632\pi\)
0.730608 + 0.682797i \(0.239237\pi\)
\(114\) 9.64561 + 23.2866i 0.00792451 + 0.0191315i
\(115\) 884.908i 0.717549i
\(116\) 1448.53 600.002i 1.15942 0.480248i
\(117\) −186.824 186.824i −0.147623 0.147623i
\(118\) 68.4450 0.0533972
\(119\) 996.788 + 690.776i 0.767861 + 0.532129i
\(120\) 157.803 0.120045
\(121\) −940.655 940.655i −0.706728 0.706728i
\(122\) −388.070 + 160.744i −0.287985 + 0.119287i
\(123\) 575.804i 0.422101i
\(124\) −318.141 768.059i −0.230402 0.556240i
\(125\) −1331.27 551.429i −0.952578 0.394571i
\(126\) 26.9784 65.1316i 0.0190748 0.0460507i
\(127\) 838.437 838.437i 0.585821 0.585821i −0.350676 0.936497i \(-0.614048\pi\)
0.936497 + 0.350676i \(0.114048\pi\)
\(128\) −614.269 + 614.269i −0.424174 + 0.424174i
\(129\) −583.235 + 1408.05i −0.398070 + 0.961025i
\(130\) −90.3222 37.4127i −0.0609368 0.0252408i
\(131\) 425.101 + 1026.29i 0.283521 + 0.684481i 0.999913 0.0132179i \(-0.00420751\pi\)
−0.716391 + 0.697699i \(0.754208\pi\)
\(132\) 19.7504i 0.0130231i
\(133\) −296.650 + 122.877i −0.193405 + 0.0801109i
\(134\) 50.7111 + 50.7111i 0.0326923 + 0.0326923i
\(135\) 198.610 0.126619
\(136\) 271.355 + 421.416i 0.171092 + 0.265707i
\(137\) −2073.16 −1.29286 −0.646431 0.762973i \(-0.723739\pi\)
−0.646431 + 0.762973i \(0.723739\pi\)
\(138\) −115.533 115.533i −0.0712666 0.0712666i
\(139\) 649.385 268.984i 0.396260 0.164136i −0.175650 0.984453i \(-0.556203\pi\)
0.571910 + 0.820316i \(0.306203\pi\)
\(140\) 992.093i 0.598908i
\(141\) 269.815 + 651.392i 0.161153 + 0.389058i
\(142\) −243.085 100.689i −0.143656 0.0595044i
\(143\) −9.48816 + 22.9064i −0.00554853 + 0.0133953i
\(144\) −376.256 + 376.256i −0.217741 + 0.217741i
\(145\) 1046.20 1046.20i 0.599190 0.599190i
\(146\) −84.2960 + 203.509i −0.0477835 + 0.115360i
\(147\) −120.953 50.1003i −0.0678641 0.0281102i
\(148\) 209.244 + 505.160i 0.116215 + 0.280567i
\(149\) 3157.78i 1.73621i 0.496381 + 0.868105i \(0.334662\pi\)
−0.496381 + 0.868105i \(0.665338\pi\)
\(150\) −88.9532 + 36.8456i −0.0484200 + 0.0200562i
\(151\) 47.4059 + 47.4059i 0.0255486 + 0.0255486i 0.719766 0.694217i \(-0.244249\pi\)
−0.694217 + 0.719766i \(0.744249\pi\)
\(152\) −132.706 −0.0708148
\(153\) 341.525 + 530.390i 0.180462 + 0.280258i
\(154\) −6.61563 −0.00346170
\(155\) −554.732 554.732i −0.287465 0.287465i
\(156\) 634.250 262.715i 0.325517 0.134833i
\(157\) 1016.92i 0.516934i 0.966020 + 0.258467i \(0.0832174\pi\)
−0.966020 + 0.258467i \(0.916783\pi\)
\(158\) 192.489 + 464.709i 0.0969214 + 0.233989i
\(159\) 141.482 + 58.6036i 0.0705674 + 0.0292300i
\(160\) −236.384 + 570.681i −0.116799 + 0.281977i
\(161\) 1471.78 1471.78i 0.720451 0.720451i
\(162\) 25.9303 25.9303i 0.0125758 0.0125758i
\(163\) −1111.76 + 2684.03i −0.534232 + 1.28975i 0.394466 + 0.918911i \(0.370930\pi\)
−0.928697 + 0.370839i \(0.879070\pi\)
\(164\) −1382.25 572.547i −0.658144 0.272612i
\(165\) −7.13238 17.2191i −0.00336518 0.00812427i
\(166\) 665.058i 0.310955i
\(167\) 1818.85 753.394i 0.842797 0.349098i 0.0808413 0.996727i \(-0.474239\pi\)
0.761956 + 0.647629i \(0.224239\pi\)
\(168\) 262.459 + 262.459i 0.120531 + 0.120531i
\(169\) 1335.19 0.607734
\(170\) 191.858 + 132.958i 0.0865578 + 0.0599847i
\(171\) −167.022 −0.0746931
\(172\) −2800.18 2800.18i −1.24135 1.24135i
\(173\) −2131.81 + 883.025i −0.936870 + 0.388064i −0.798281 0.602286i \(-0.794257\pi\)
−0.138589 + 0.990350i \(0.544257\pi\)
\(174\) 273.183i 0.119022i
\(175\) −469.380 1133.18i −0.202753 0.489490i
\(176\) 46.1326 + 19.1088i 0.0197578 + 0.00818396i
\(177\) −173.566 + 419.026i −0.0737064 + 0.177943i
\(178\) −334.201 + 334.201i −0.140727 + 0.140727i
\(179\) 2566.64 2566.64i 1.07173 1.07173i 0.0745092 0.997220i \(-0.476261\pi\)
0.997220 0.0745092i \(-0.0237390\pi\)
\(180\) −197.486 + 476.774i −0.0817765 + 0.197426i
\(181\) 552.051 + 228.667i 0.226705 + 0.0939043i 0.493145 0.869947i \(-0.335847\pi\)
−0.266440 + 0.963852i \(0.585847\pi\)
\(182\) −87.9993 212.449i −0.0358403 0.0865263i
\(183\) 2783.42i 1.12435i
\(184\) 794.757 329.199i 0.318425 0.131896i
\(185\) 364.853 + 364.853i 0.144997 + 0.144997i
\(186\) −144.850 −0.0571018
\(187\) 33.7192 48.6567i 0.0131860 0.0190274i
\(188\) −1831.99 −0.710702
\(189\) 330.328 + 330.328i 0.127132 + 0.127132i
\(190\) −57.0980 + 23.6508i −0.0218017 + 0.00903057i
\(191\) 1047.20i 0.396718i −0.980129 0.198359i \(-0.936439\pi\)
0.980129 0.198359i \(-0.0635611\pi\)
\(192\) −499.363 1205.57i −0.187700 0.453148i
\(193\) 1393.77 + 577.318i 0.519822 + 0.215317i 0.627139 0.778907i \(-0.284226\pi\)
−0.107317 + 0.994225i \(0.534226\pi\)
\(194\) 88.7212 214.192i 0.0328341 0.0792685i
\(195\) 458.088 458.088i 0.168227 0.168227i
\(196\) 240.538 240.538i 0.0876595 0.0876595i
\(197\) 596.973 1441.22i 0.215901 0.521232i −0.778409 0.627758i \(-0.783973\pi\)
0.994310 + 0.106526i \(0.0339727\pi\)
\(198\) −3.17930 1.31691i −0.00114113 0.000472670i
\(199\) 902.921 + 2179.84i 0.321640 + 0.776508i 0.999159 + 0.0410026i \(0.0130552\pi\)
−0.677519 + 0.735505i \(0.736945\pi\)
\(200\) 506.927i 0.179226i
\(201\) −439.053 + 181.862i −0.154072 + 0.0638186i
\(202\) −58.3745 58.3745i −0.0203328 0.0203328i
\(203\) 3480.10 1.20323
\(204\) −1612.83 + 292.460i −0.553531 + 0.100374i
\(205\) −1411.85 −0.481016
\(206\) −274.134 274.134i −0.0927174 0.0927174i
\(207\) 1000.27 414.327i 0.335864 0.139119i
\(208\) 1735.65i 0.578584i
\(209\) 5.99803 + 14.4805i 0.00198513 + 0.00479253i
\(210\) 159.701 + 66.1503i 0.0524782 + 0.0217372i
\(211\) −251.245 + 606.560i −0.0819737 + 0.197902i −0.959552 0.281531i \(-0.909158\pi\)
0.877578 + 0.479433i \(0.159158\pi\)
\(212\) −281.363 + 281.363i −0.0911513 + 0.0911513i
\(213\) 1232.85 1232.85i 0.396590 0.396590i
\(214\) 236.374 570.658i 0.0755057 0.182287i
\(215\) −3452.51 1430.08i −1.09516 0.453630i
\(216\) 73.8858 + 178.376i 0.0232745 + 0.0561896i
\(217\) 1845.26i 0.577256i
\(218\) 356.075 147.491i 0.110626 0.0458227i
\(219\) −1032.14 1032.14i −0.318471 0.318471i
\(220\) 48.4275 0.0148408
\(221\) 2011.05 + 435.612i 0.612116 + 0.132590i
\(222\) 95.2695 0.0288021
\(223\) 3084.19 + 3084.19i 0.926154 + 0.926154i 0.997455 0.0713006i \(-0.0227149\pi\)
−0.0713006 + 0.997455i \(0.522715\pi\)
\(224\) −1342.31 + 556.005i −0.400389 + 0.165847i
\(225\) 638.014i 0.189041i
\(226\) 389.703 + 940.827i 0.114702 + 0.276915i
\(227\) −5839.10 2418.63i −1.70729 0.707182i −1.00000 0.000256354i \(-0.999918\pi\)
−0.707288 0.706925i \(-0.750082\pi\)
\(228\) 166.078 400.947i 0.0482402 0.116462i
\(229\) −1286.81 + 1286.81i −0.371332 + 0.371332i −0.867962 0.496631i \(-0.834570\pi\)
0.496631 + 0.867962i \(0.334570\pi\)
\(230\) 283.283 283.283i 0.0812135 0.0812135i
\(231\) 16.7763 40.5015i 0.00477834 0.0115359i
\(232\) 1328.82 + 550.417i 0.376041 + 0.155761i
\(233\) 573.863 + 1385.43i 0.161352 + 0.389538i 0.983792 0.179314i \(-0.0573878\pi\)
−0.822440 + 0.568852i \(0.807388\pi\)
\(234\) 119.615i 0.0334165i
\(235\) −1597.20 + 661.580i −0.443360 + 0.183646i
\(236\) −833.312 833.312i −0.229847 0.229847i
\(237\) −3333.11 −0.913540
\(238\) 97.9628 + 540.234i 0.0266806 + 0.147135i
\(239\) 1601.04 0.433315 0.216658 0.976248i \(-0.430484\pi\)
0.216658 + 0.976248i \(0.430484\pi\)
\(240\) −922.569 922.569i −0.248132 0.248132i
\(241\) −3382.81 + 1401.21i −0.904175 + 0.374522i −0.785824 0.618450i \(-0.787761\pi\)
−0.118351 + 0.992972i \(0.537761\pi\)
\(242\) 602.257i 0.159978i
\(243\) 92.9921 + 224.503i 0.0245492 + 0.0592669i
\(244\) 6681.77 + 2767.68i 1.75310 + 0.726158i
\(245\) 122.845 296.573i 0.0320337 0.0773362i
\(246\) −184.330 + 184.330i −0.0477742 + 0.0477742i
\(247\) −385.232 + 385.232i −0.0992378 + 0.0992378i
\(248\) 291.849 704.586i 0.0747276 0.180408i
\(249\) 4071.54 + 1686.49i 1.03624 + 0.429224i
\(250\) −249.647 602.702i −0.0631563 0.152473i
\(251\) 6432.51i 1.61759i 0.588088 + 0.808797i \(0.299881\pi\)
−0.588088 + 0.808797i \(0.700119\pi\)
\(252\) −1121.43 + 464.513i −0.280332 + 0.116117i
\(253\) −71.8428 71.8428i −0.0178526 0.0178526i
\(254\) 536.812 0.132609
\(255\) −1300.50 + 837.409i −0.319375 + 0.205649i
\(256\) 3086.44 0.753526
\(257\) 3641.57 + 3641.57i 0.883870 + 0.883870i 0.993925 0.110055i \(-0.0351028\pi\)
−0.110055 + 0.993925i \(0.535103\pi\)
\(258\) −637.465 + 264.047i −0.153825 + 0.0637164i
\(259\) 1213.65i 0.291168i
\(260\) 644.169 + 1555.16i 0.153653 + 0.370950i
\(261\) 1672.45 + 692.751i 0.396636 + 0.164292i
\(262\) −192.455 + 464.628i −0.0453814 + 0.109560i
\(263\) 1016.05 1016.05i 0.238221 0.238221i −0.577892 0.816113i \(-0.696125\pi\)
0.816113 + 0.577892i \(0.196125\pi\)
\(264\) 12.8115 12.8115i 0.00298672 0.00298672i
\(265\) −143.694 + 346.909i −0.0333097 + 0.0804168i
\(266\) −134.302 55.6296i −0.0309570 0.0128228i
\(267\) −1198.52 2893.49i −0.274713 0.663216i
\(268\) 1234.81i 0.281447i
\(269\) −4668.12 + 1933.60i −1.05807 + 0.438266i −0.842765 0.538281i \(-0.819074\pi\)
−0.215302 + 0.976547i \(0.569074\pi\)
\(270\) 63.5803 + 63.5803i 0.0143310 + 0.0143310i
\(271\) −7587.91 −1.70086 −0.850429 0.526090i \(-0.823658\pi\)
−0.850429 + 0.526090i \(0.823658\pi\)
\(272\) 877.305 4050.16i 0.195568 0.902857i
\(273\) 1523.79 0.337816
\(274\) −663.674 663.674i −0.146329 0.146329i
\(275\) −55.3146 + 22.9121i −0.0121294 + 0.00502418i
\(276\) 2813.20i 0.613532i
\(277\) −1226.17 2960.24i −0.265970 0.642108i 0.733316 0.679888i \(-0.237971\pi\)
−0.999286 + 0.0377799i \(0.987971\pi\)
\(278\) 293.994 + 121.776i 0.0634267 + 0.0262722i
\(279\) 367.319 886.786i 0.0788201 0.190289i
\(280\) −643.542 + 643.542i −0.137353 + 0.137353i
\(281\) −928.811 + 928.811i −0.197182 + 0.197182i −0.798791 0.601609i \(-0.794527\pi\)
0.601609 + 0.798791i \(0.294527\pi\)
\(282\) −122.153 + 294.903i −0.0257947 + 0.0622739i
\(283\) 1004.92 + 416.251i 0.211082 + 0.0874331i 0.485719 0.874115i \(-0.338558\pi\)
−0.274637 + 0.961548i \(0.588558\pi\)
\(284\) 1733.66 + 4185.42i 0.362231 + 0.874503i
\(285\) 409.534i 0.0851183i
\(286\) −10.3704 + 4.29555i −0.00214410 + 0.000888116i
\(287\) −2348.20 2348.20i −0.482962 0.482962i
\(288\) −755.760 −0.154631
\(289\) −4472.63 2033.02i −0.910366 0.413804i
\(290\) 669.836 0.135635
\(291\) 1086.32 + 1086.32i 0.218836 + 0.218836i
\(292\) 3504.00 1451.40i 0.702247 0.290880i
\(293\) 8873.35i 1.76924i −0.466315 0.884619i \(-0.654419\pi\)
0.466315 0.884619i \(-0.345581\pi\)
\(294\) −22.6818 54.7587i −0.00449942 0.0108626i
\(295\) −1027.44 425.580i −0.202779 0.0839939i
\(296\) −191.952 + 463.413i −0.0376925 + 0.0909978i
\(297\) 16.1245 16.1245i 0.00315029 0.00315029i
\(298\) −1010.89 + 1010.89i −0.196507 + 0.196507i
\(299\) 1351.47 3262.74i 0.261396 0.631067i
\(300\) 1531.59 + 634.406i 0.294755 + 0.122091i
\(301\) −3363.72 8120.74i −0.644125 1.55505i
\(302\) 30.3518i 0.00578328i
\(303\) 505.403 209.345i 0.0958239 0.0396916i
\(304\) 775.841 + 775.841i 0.146373 + 0.146373i
\(305\) 6824.88 1.28128
\(306\) −60.4609 + 279.123i −0.0112952 + 0.0521452i
\(307\) 4654.23 0.865248 0.432624 0.901574i \(-0.357588\pi\)
0.432624 + 0.901574i \(0.357588\pi\)
\(308\) 80.5448 + 80.5448i 0.0149009 + 0.0149009i
\(309\) 2373.43 983.108i 0.436957 0.180994i
\(310\) 355.169i 0.0650717i
\(311\) 2454.04 + 5924.58i 0.447447 + 1.08023i 0.973275 + 0.229641i \(0.0737553\pi\)
−0.525829 + 0.850591i \(0.676245\pi\)
\(312\) 581.835 + 241.004i 0.105577 + 0.0437313i
\(313\) 2271.45 5483.76i 0.410191 0.990290i −0.574895 0.818227i \(-0.694957\pi\)
0.985086 0.172062i \(-0.0550430\pi\)
\(314\) −325.542 + 325.542i −0.0585076 + 0.0585076i
\(315\) −809.956 + 809.956i −0.144876 + 0.144876i
\(316\) 3314.26 8001.34i 0.590006 1.42440i
\(317\) −6868.17 2844.89i −1.21689 0.504053i −0.320472 0.947258i \(-0.603842\pi\)
−0.896420 + 0.443205i \(0.853842\pi\)
\(318\) 26.5315 + 64.0526i 0.00467865 + 0.0112953i
\(319\) 169.876i 0.0298157i
\(320\) 2956.02 1224.42i 0.516396 0.213898i
\(321\) 2894.21 + 2894.21i 0.503237 + 0.503237i
\(322\) 942.314 0.163084
\(323\) 1093.67 704.225i 0.188400 0.121313i
\(324\) −631.398 −0.108264
\(325\) −1471.56 1471.56i −0.251162 0.251162i
\(326\) −1215.13 + 503.324i −0.206442 + 0.0855109i
\(327\) 2553.94i 0.431905i
\(328\) −525.231 1268.02i −0.0884178 0.213459i
\(329\) −3756.80 1556.12i −0.629542 0.260765i
\(330\) 3.22903 7.79556i 0.000538643 0.00130040i
\(331\) −4454.94 + 4454.94i −0.739776 + 0.739776i −0.972535 0.232759i \(-0.925225\pi\)
0.232759 + 0.972535i \(0.425225\pi\)
\(332\) −8097.03 + 8097.03i −1.33850 + 1.33850i
\(333\) −241.589 + 583.248i −0.0397568 + 0.0959814i
\(334\) 823.445 + 341.082i 0.134901 + 0.0558778i
\(335\) −445.920 1076.55i −0.0727261 0.175576i
\(336\) 3068.84i 0.498271i
\(337\) 110.753 45.8752i 0.0179023 0.00741537i −0.373714 0.927544i \(-0.621916\pi\)
0.391617 + 0.920128i \(0.371916\pi\)
\(338\) 427.430 + 427.430i 0.0687845 + 0.0687845i
\(339\) −6748.06 −1.08113
\(340\) −717.104 3954.60i −0.114384 0.630790i
\(341\) −90.0737 −0.0143043
\(342\) −53.4683 53.4683i −0.00845390 0.00845390i
\(343\) 6180.43 2560.02i 0.972921 0.402997i
\(344\) 3632.79i 0.569381i
\(345\) 1015.92 + 2452.64i 0.158537 + 0.382742i
\(346\) −965.129 399.770i −0.149959 0.0621149i
\(347\) −1454.50 + 3511.48i −0.225019 + 0.543245i −0.995558 0.0941481i \(-0.969987\pi\)
0.770539 + 0.637393i \(0.219987\pi\)
\(348\) −3325.98 + 3325.98i −0.512331 + 0.512331i
\(349\) −1357.28 + 1357.28i −0.208177 + 0.208177i −0.803492 0.595315i \(-0.797027\pi\)
0.595315 + 0.803492i \(0.297027\pi\)
\(350\) 212.501 513.024i 0.0324534 0.0783494i
\(351\) 732.292 + 303.325i 0.111359 + 0.0461263i
\(352\) 27.1405 + 65.5230i 0.00410964 + 0.00992156i
\(353\) 10588.6i 1.59652i 0.602310 + 0.798262i \(0.294247\pi\)
−0.602310 + 0.798262i \(0.705753\pi\)
\(354\) −189.705 + 78.5783i −0.0284822 + 0.0117977i
\(355\) 3022.92 + 3022.92i 0.451944 + 0.451944i
\(356\) 8137.74 1.21151
\(357\) −3555.78 770.218i −0.527148 0.114186i
\(358\) 1643.30 0.242601
\(359\) 5887.75 + 5887.75i 0.865582 + 0.865582i 0.991980 0.126398i \(-0.0403416\pi\)
−0.126398 + 0.991980i \(0.540342\pi\)
\(360\) −437.373 + 181.166i −0.0640322 + 0.0265230i
\(361\) 6514.60i 0.949789i
\(362\) 103.524 + 249.929i 0.0150306 + 0.0362872i
\(363\) 3687.07 + 1527.24i 0.533116 + 0.220824i
\(364\) −1515.17 + 3657.94i −0.218177 + 0.526725i
\(365\) 2530.77 2530.77i 0.362922 0.362922i
\(366\) 891.048 891.048i 0.127256 0.127256i
\(367\) −1909.17 + 4609.14i −0.271547 + 0.655572i −0.999550 0.0300018i \(-0.990449\pi\)
0.728003 + 0.685574i \(0.240449\pi\)
\(368\) −6571.01 2721.80i −0.930809 0.385554i
\(369\) −661.052 1595.92i −0.0932601 0.225150i
\(370\) 233.598i 0.0328221i
\(371\) −815.973 + 337.987i −0.114187 + 0.0472976i
\(372\) 1763.54 + 1763.54i 0.245794 + 0.245794i
\(373\) −7799.78 −1.08273 −0.541364 0.840789i \(-0.682092\pi\)
−0.541364 + 0.840789i \(0.682092\pi\)
\(374\) 26.3707 4.78190i 0.00364598 0.000661140i
\(375\) 4322.86 0.595284
\(376\) −1188.36 1188.36i −0.162992 0.162992i
\(377\) 5455.26 2259.64i 0.745252 0.308694i
\(378\) 211.494i 0.0287780i
\(379\) 3664.91 + 8847.87i 0.496711 + 1.19917i 0.951245 + 0.308438i \(0.0998061\pi\)
−0.454533 + 0.890730i \(0.650194\pi\)
\(380\) 983.111 + 407.218i 0.132717 + 0.0549732i
\(381\) −1361.28 + 3286.41i −0.183045 + 0.441911i
\(382\) 335.238 335.238i 0.0449012 0.0449012i
\(383\) −4955.65 + 4955.65i −0.661154 + 0.661154i −0.955652 0.294498i \(-0.904847\pi\)
0.294498 + 0.955652i \(0.404847\pi\)
\(384\) 997.321 2407.75i 0.132537 0.319973i
\(385\) 99.3085 + 41.1349i 0.0131460 + 0.00544527i
\(386\) 261.368 + 630.998i 0.0344644 + 0.0832045i
\(387\) 4572.20i 0.600563i
\(388\) −3687.95 + 1527.60i −0.482544 + 0.199876i
\(389\) 5699.40 + 5699.40i 0.742856 + 0.742856i 0.973127 0.230271i \(-0.0739611\pi\)
−0.230271 + 0.973127i \(0.573961\pi\)
\(390\) 293.292 0.0380806
\(391\) −4802.87 + 6930.54i −0.621206 + 0.896400i
\(392\) 312.059 0.0402076
\(393\) −2356.45 2356.45i −0.302462 0.302462i
\(394\) 652.480 270.266i 0.0834302 0.0345579i
\(395\) 8172.70i 1.04105i
\(396\) 22.6745 + 54.7410i 0.00287736 + 0.00694657i
\(397\) −512.686 212.361i −0.0648135 0.0268466i 0.350041 0.936734i \(-0.386168\pi\)
−0.414855 + 0.909888i \(0.636168\pi\)
\(398\) −408.777 + 986.876i −0.0514828 + 0.124290i
\(399\) 681.139 681.139i 0.0854626 0.0854626i
\(400\) −2963.66 + 2963.66i −0.370458 + 0.370458i
\(401\) 4773.23 11523.6i 0.594423 1.43506i −0.284768 0.958596i \(-0.591917\pi\)
0.879192 0.476468i \(-0.158083\pi\)
\(402\) −198.772 82.3339i −0.0246613 0.0102150i
\(403\) −1198.14 2892.56i −0.148098 0.357540i
\(404\) 1421.41i 0.175044i
\(405\) −550.474 + 228.014i −0.0675390 + 0.0279756i
\(406\) 1114.07 + 1114.07i 0.136184 + 0.136184i
\(407\) 59.2424 0.00721507
\(408\) −1235.90 856.483i −0.149967 0.103927i
\(409\) 3703.58 0.447751 0.223875 0.974618i \(-0.428129\pi\)
0.223875 + 0.974618i \(0.428129\pi\)
\(410\) −451.972 451.972i −0.0544423 0.0544423i
\(411\) 5746.05 2380.09i 0.689615 0.285648i
\(412\) 6675.11i 0.798202i
\(413\) −1001.02 2416.67i −0.119266 0.287933i
\(414\) 452.852 + 187.577i 0.0537595 + 0.0222679i
\(415\) −4135.22 + 9983.31i −0.489133 + 1.18087i
\(416\) −1743.14 + 1743.14i −0.205443 + 0.205443i
\(417\) −1491.05 + 1491.05i −0.175101 + 0.175101i
\(418\) −2.71547 + 6.55573i −0.000317747 + 0.000767108i
\(419\) −11310.5 4684.95i −1.31874 0.546241i −0.391319 0.920255i \(-0.627981\pi\)
−0.927423 + 0.374015i \(0.877981\pi\)
\(420\) −1138.97 2749.72i −0.132324 0.319459i
\(421\) 13087.7i 1.51510i −0.652780 0.757548i \(-0.726397\pi\)
0.652780 0.757548i \(-0.273603\pi\)
\(422\) −274.606 + 113.746i −0.0316769 + 0.0131210i
\(423\) −1495.66 1495.66i −0.171919 0.171919i
\(424\) −365.024 −0.0418092
\(425\) 2690.10 + 4177.74i 0.307032 + 0.476823i
\(426\) 789.339 0.0897737
\(427\) 11351.2 + 11351.2i 1.28647 + 1.28647i
\(428\) −9825.56 + 4069.88i −1.10966 + 0.459638i
\(429\) 74.3813i 0.00837100i
\(430\) −647.435 1563.05i −0.0726095 0.175295i
\(431\) −5560.46 2303.22i −0.621434 0.257406i 0.0496745 0.998765i \(-0.484182\pi\)
−0.671109 + 0.741359i \(0.734182\pi\)
\(432\) 610.885 1474.81i 0.0680352 0.164251i
\(433\) 11424.0 11424.0i 1.26790 1.26790i 0.320736 0.947168i \(-0.396070\pi\)
0.947168 0.320736i \(-0.103930\pi\)
\(434\) 590.718 590.718i 0.0653350 0.0653350i
\(435\) −1698.61 + 4100.80i −0.187223 + 0.451996i
\(436\) −6130.88 2539.49i −0.673430 0.278944i
\(437\) −854.344 2062.57i −0.0935213 0.225780i
\(438\) 660.828i 0.0720904i
\(439\) −1194.57 + 494.807i −0.129872 + 0.0537946i −0.446673 0.894697i \(-0.647391\pi\)
0.316801 + 0.948492i \(0.397391\pi\)
\(440\) 31.4135 + 31.4135i 0.00340359 + 0.00340359i
\(441\) 392.755 0.0424096
\(442\) 504.339 + 783.241i 0.0542736 + 0.0842873i
\(443\) 1279.76 0.137253 0.0686267 0.997642i \(-0.478138\pi\)
0.0686267 + 0.997642i \(0.478138\pi\)
\(444\) −1159.90 1159.90i −0.123978 0.123978i
\(445\) 7094.76 2938.74i 0.755784 0.313056i
\(446\) 1974.66i 0.209648i
\(447\) −3625.29 8752.22i −0.383602 0.926098i
\(448\) 6952.93 + 2880.00i 0.733248 + 0.303721i
\(449\) 4447.36 10736.9i 0.467448 1.12852i −0.497826 0.867277i \(-0.665868\pi\)
0.965274 0.261241i \(-0.0841318\pi\)
\(450\) 204.245 204.245i 0.0213961 0.0213961i
\(451\) −114.624 + 114.624i −0.0119677 + 0.0119677i
\(452\) 6709.89 16199.1i 0.698245 1.68571i
\(453\) −185.817 76.9677i −0.0192725 0.00798291i
\(454\) −1094.98 2643.52i −0.113194 0.273274i
\(455\) 3736.28i 0.384966i
\(456\) 367.812 152.353i 0.0377728 0.0156460i
\(457\) 13259.6 + 13259.6i 1.35724 + 1.35724i 0.877300 + 0.479942i \(0.159342\pi\)
0.479942 + 0.877300i \(0.340658\pi\)
\(458\) −823.886 −0.0840560
\(459\) −1555.50 1077.96i −0.158180 0.109619i
\(460\) −6897.89 −0.699165
\(461\) 5405.53 + 5405.53i 0.546119 + 0.546119i 0.925316 0.379197i \(-0.123800\pi\)
−0.379197 + 0.925316i \(0.623800\pi\)
\(462\) 18.3361 7.59507i 0.00184648 0.000764837i
\(463\) 4635.96i 0.465337i −0.972556 0.232669i \(-0.925254\pi\)
0.972556 0.232669i \(-0.0747458\pi\)
\(464\) −4550.83 10986.7i −0.455316 1.09923i
\(465\) 2174.38 + 900.656i 0.216848 + 0.0898213i
\(466\) −259.803 + 627.221i −0.0258265 + 0.0623508i
\(467\) 5158.09 5158.09i 0.511109 0.511109i −0.403757 0.914866i \(-0.632296\pi\)
0.914866 + 0.403757i \(0.132296\pi\)
\(468\) −1456.30 + 1456.30i −0.143841 + 0.143841i
\(469\) 1048.86 2532.17i 0.103266 0.249307i
\(470\) −723.094 299.516i −0.0709657 0.0293949i
\(471\) −1167.47 2818.52i −0.114213 0.275734i
\(472\) 1081.09i 0.105426i
\(473\) −396.401 + 164.195i −0.0385339 + 0.0159613i
\(474\) −1067.02 1067.02i −0.103396 0.103396i
\(475\) −1315.59 −0.127081
\(476\) 5384.62 7770.00i 0.518495 0.748188i
\(477\) −459.416 −0.0440989
\(478\) 512.534 + 512.534i 0.0490435 + 0.0490435i
\(479\) −9023.05 + 3737.47i −0.860696 + 0.356512i −0.768980 0.639273i \(-0.779235\pi\)
−0.0917164 + 0.995785i \(0.529235\pi\)
\(480\) 1853.10i 0.176213i
\(481\) 788.026 + 1902.46i 0.0747004 + 0.180343i
\(482\) −1531.49 634.365i −0.144725 0.0599472i
\(483\) −2389.57 + 5768.93i −0.225112 + 0.543469i
\(484\) −7332.44 + 7332.44i −0.688621 + 0.688621i
\(485\) −2663.62 + 2663.62i −0.249379 + 0.249379i
\(486\) −42.1001 + 101.639i −0.00392942 + 0.00948646i
\(487\) 7412.70 + 3070.44i 0.689736 + 0.285698i 0.699890 0.714250i \(-0.253232\pi\)
−0.0101543 + 0.999948i \(0.503232\pi\)
\(488\) 2538.96 + 6129.58i 0.235519 + 0.568593i
\(489\) 8715.51i 0.805989i
\(490\) 134.267 55.6152i 0.0123787 0.00512742i
\(491\) 1498.20 + 1498.20i 0.137705 + 0.137705i 0.772599 0.634894i \(-0.218956\pi\)
−0.634894 + 0.772599i \(0.718956\pi\)
\(492\) 4488.41 0.411287
\(493\) −13872.1 + 2515.49i −1.26728 + 0.229801i
\(494\) −246.646 −0.0224638
\(495\) 39.5368 + 39.5368i 0.00358999 + 0.00358999i
\(496\) −5825.49 + 2413.00i −0.527363 + 0.218441i
\(497\) 10055.5i 0.907545i
\(498\) 763.520 + 1843.30i 0.0687031 + 0.165864i
\(499\) −503.819 208.689i −0.0451985 0.0187218i 0.359970 0.932964i \(-0.382787\pi\)
−0.405168 + 0.914242i \(0.632787\pi\)
\(500\) −4298.41 + 10377.3i −0.384462 + 0.928173i
\(501\) −4176.27 + 4176.27i −0.372419 + 0.372419i
\(502\) −2059.22 + 2059.22i −0.183082 + 0.183082i
\(503\) 4410.24 10647.3i 0.390940 0.943813i −0.598795 0.800902i \(-0.704354\pi\)
0.989736 0.142911i \(-0.0456462\pi\)
\(504\) −1028.76 426.125i −0.0909216 0.0376609i
\(505\) 513.308 + 1239.23i 0.0452315 + 0.109198i
\(506\) 45.9976i 0.00404119i
\(507\) −3700.67 + 1532.87i −0.324167 + 0.134274i
\(508\) −6535.65 6535.65i −0.570812 0.570812i
\(509\) −13687.9 −1.19196 −0.595979 0.803000i \(-0.703236\pi\)
−0.595979 + 0.803000i \(0.703236\pi\)
\(510\) −684.403 148.248i −0.0594233 0.0128717i
\(511\) 8418.36 0.728780
\(512\) 5902.21 + 5902.21i 0.509459 + 0.509459i
\(513\) 462.925 191.750i 0.0398414 0.0165029i
\(514\) 2331.53i 0.200076i
\(515\) 2410.55 + 5819.59i 0.206256 + 0.497945i
\(516\) 10975.8 + 4546.34i 0.936404 + 0.387871i
\(517\) −75.9595 + 183.383i −0.00646170 + 0.0155999i
\(518\) −388.521 + 388.521i −0.0329549 + 0.0329549i
\(519\) 4894.85 4894.85i 0.413989 0.413989i
\(520\) −590.935 + 1426.64i −0.0498350 + 0.120312i
\(521\) 4882.56 + 2022.42i 0.410573 + 0.170065i 0.578403 0.815751i \(-0.303676\pi\)
−0.167830 + 0.985816i \(0.553676\pi\)
\(522\) 313.627 + 757.163i 0.0262971 + 0.0634868i
\(523\) 551.260i 0.0460897i 0.999734 + 0.0230448i \(0.00733605\pi\)
−0.999734 + 0.0230448i \(0.992664\pi\)
\(524\) 7999.93 3313.68i 0.666944 0.276257i
\(525\) 2601.91 + 2601.91i 0.216298 + 0.216298i
\(526\) 650.527 0.0539246
\(527\) 1333.79 + 7355.45i 0.110248 + 0.607985i
\(528\) −149.801 −0.0123470
\(529\) 1629.74 + 1629.74i 0.133947 + 0.133947i
\(530\) −157.055 + 65.0544i −0.0128718 + 0.00533167i
\(531\) 1360.65i 0.111200i
\(532\) 957.827 + 2312.40i 0.0780584 + 0.188450i
\(533\) −5205.64 2156.25i −0.423042 0.175230i
\(534\) 542.604 1309.96i 0.0439715 0.106157i
\(535\) −7096.52 + 7096.52i −0.573476 + 0.573476i
\(536\) 800.983 800.983i 0.0645470 0.0645470i
\(537\) −4167.16 + 10060.4i −0.334872 + 0.808453i
\(538\) −2113.39 875.393i −0.169358 0.0701503i
\(539\) −14.1045 34.0512i −0.00112713 0.00272113i
\(540\) 1548.17i 0.123375i
\(541\) −16512.4 + 6839.64i −1.31224 + 0.543548i −0.925537 0.378657i \(-0.876386\pi\)
−0.386703 + 0.922204i \(0.626386\pi\)
\(542\) −2429.09 2429.09i −0.192506 0.192506i
\(543\) −1792.61 −0.141672
\(544\) 4948.74 3186.55i 0.390028 0.251144i
\(545\) −6262.18 −0.492188
\(546\) 487.805 + 487.805i 0.0382346 + 0.0382346i
\(547\) 13493.5 5589.20i 1.05474 0.436887i 0.213157 0.977018i \(-0.431625\pi\)
0.841581 + 0.540131i \(0.181625\pi\)
\(548\) 16160.4i 1.25974i
\(549\) 3195.51 + 7714.64i 0.248417 + 0.599732i
\(550\) −25.0425 10.3729i −0.00194148 0.000804188i
\(551\) 1428.45 3448.59i 0.110443 0.266633i
\(552\) −1824.84 + 1824.84i −0.140707 + 0.140707i
\(553\) 13592.9 13592.9i 1.04526 1.04526i
\(554\) 555.122 1340.18i 0.0425720 0.102778i
\(555\) −1430.11 592.370i −0.109378 0.0453058i
\(556\) −2096.74 5061.98i −0.159931 0.386107i
\(557\) 17809.6i 1.35479i 0.735619 + 0.677395i \(0.236891\pi\)
−0.735619 + 0.677395i \(0.763109\pi\)
\(558\) 401.473 166.295i 0.0304582 0.0126162i
\(559\) −10545.6 10545.6i −0.797913 0.797913i
\(560\) 7524.71 0.567816
\(561\) −37.5970 + 173.570i −0.00282949 + 0.0130626i
\(562\) −594.675 −0.0446349
\(563\) −3846.68 3846.68i −0.287955 0.287955i 0.548316 0.836271i \(-0.315269\pi\)
−0.836271 + 0.548316i \(0.815269\pi\)
\(564\) 5077.63 2103.22i 0.379090 0.157024i
\(565\) 16546.1i 1.23203i
\(566\) 188.448 + 454.955i 0.0139948 + 0.0337865i
\(567\) −1294.78 536.317i −0.0959010 0.0397235i
\(568\) −1590.39 + 3839.53i −0.117484 + 0.283632i
\(569\) 5419.10 5419.10i 0.399263 0.399263i −0.478710 0.877973i \(-0.658896\pi\)
0.877973 + 0.478710i \(0.158896\pi\)
\(570\) 131.103 131.103i 0.00963385 0.00963385i
\(571\) −2665.53 + 6435.16i −0.195357 + 0.471634i −0.990956 0.134190i \(-0.957157\pi\)
0.795598 + 0.605825i \(0.207157\pi\)
\(572\) 178.557 + 73.9605i 0.0130521 + 0.00540637i
\(573\) 1202.24 + 2902.47i 0.0876517 + 0.211610i
\(574\) 1503.44i 0.109325i
\(575\) 7878.88 3263.54i 0.571430 0.236694i
\(576\) 2768.11 + 2768.11i 0.200239 + 0.200239i
\(577\) 9597.05 0.692427 0.346214 0.938156i \(-0.387467\pi\)
0.346214 + 0.938156i \(0.387467\pi\)
\(578\) −780.984 2082.63i −0.0562018 0.149872i
\(579\) −4525.81 −0.324847
\(580\) −8155.20 8155.20i −0.583839 0.583839i
\(581\) −23482.0 + 9726.56i −1.67676 + 0.694536i
\(582\) 695.519i 0.0495364i
\(583\) 16.4983 + 39.8305i 0.00117203 + 0.00282952i
\(584\) 3214.43 + 1331.46i 0.227763 + 0.0943427i
\(585\) −743.746 + 1795.56i −0.0525643 + 0.126901i
\(586\) 2840.60 2840.60i 0.200246 0.200246i
\(587\) 191.586 191.586i 0.0134712 0.0134712i −0.700339 0.713810i \(-0.746968\pi\)
0.713810 + 0.700339i \(0.246968\pi\)
\(588\) −390.534 + 942.832i −0.0273901 + 0.0661254i
\(589\) −1828.56 757.413i −0.127919 0.0529858i
\(590\) −192.672 465.151i −0.0134444 0.0324575i
\(591\) 4679.90i 0.325728i
\(592\) 3831.48 1587.05i 0.266002 0.110181i
\(593\) −2738.28 2738.28i −0.189625 0.189625i 0.605909 0.795534i \(-0.292810\pi\)
−0.795534 + 0.605909i \(0.792810\pi\)
\(594\) 10.3238 0.000713112
\(595\) 1888.55 8718.68i 0.130123 0.600724i
\(596\) 24615.0 1.69173
\(597\) −5005.14 5005.14i −0.343127 0.343127i
\(598\) 1477.13 611.848i 0.101011 0.0418400i
\(599\) 24689.8i 1.68414i −0.539369 0.842069i \(-0.681337\pi\)
0.539369 0.842069i \(-0.318663\pi\)
\(600\) 581.978 + 1405.02i 0.0395986 + 0.0955994i
\(601\) −15867.1 6572.35i −1.07692 0.446076i −0.227495 0.973779i \(-0.573053\pi\)
−0.849429 + 0.527703i \(0.823053\pi\)
\(602\) 1522.85 3676.48i 0.103101 0.248907i
\(603\) 1008.11 1008.11i 0.0680820 0.0680820i
\(604\) 369.531 369.531i 0.0248941 0.0248941i
\(605\) −3744.74 + 9040.60i −0.251645 + 0.607525i
\(606\) 228.810 + 94.7762i 0.0153379 + 0.00635317i
\(607\) −43.1573 104.191i −0.00288583 0.00696701i 0.922430 0.386164i \(-0.126200\pi\)
−0.925316 + 0.379197i \(0.876200\pi\)
\(608\) 1558.38i 0.103948i
\(609\) −9645.58 + 3995.33i −0.641804 + 0.265844i
\(610\) 2184.83 + 2184.83i 0.145018 + 0.145018i
\(611\) −6899.40 −0.456825
\(612\) 4134.41 2662.20i 0.273078 0.175838i
\(613\) −4185.29 −0.275762 −0.137881 0.990449i \(-0.544029\pi\)
−0.137881 + 0.990449i \(0.544029\pi\)
\(614\) 1489.94 + 1489.94i 0.0979304 + 0.0979304i
\(615\) 3913.15 1620.88i 0.256575 0.106277i
\(616\) 104.494i 0.00683472i
\(617\) 419.698 + 1013.24i 0.0273847 + 0.0661126i 0.936980 0.349382i \(-0.113608\pi\)
−0.909596 + 0.415495i \(0.863608\pi\)
\(618\) 1074.52 + 445.080i 0.0699409 + 0.0289705i
\(619\) 8007.15 19331.0i 0.519926 1.25521i −0.418022 0.908437i \(-0.637276\pi\)
0.937948 0.346776i \(-0.112724\pi\)
\(620\) −4324.15 + 4324.15i −0.280100 + 0.280100i
\(621\) −2296.73 + 2296.73i −0.148413 + 0.148413i
\(622\) −1111.01 + 2682.22i −0.0716198 + 0.172906i
\(623\) 16687.8 + 6912.29i 1.07316 + 0.444519i
\(624\) −1992.61 4810.58i −0.127834 0.308618i
\(625\) 1738.23i 0.111247i
\(626\) 2482.65 1028.35i 0.158509 0.0656566i
\(627\) −33.2487 33.2487i −0.00211775 0.00211775i
\(628\) 7926.90 0.503690
\(629\) −877.248 4837.75i −0.0556092 0.306667i
\(630\) −518.577 −0.0327946
\(631\) −18464.3 18464.3i −1.16490 1.16490i −0.983389 0.181510i \(-0.941902\pi\)
−0.181510 0.983389i \(-0.558098\pi\)
\(632\) 7340.10 3040.37i 0.461983 0.191360i
\(633\) 1969.61i 0.123673i
\(634\) −1287.96 3109.41i −0.0806805 0.194780i
\(635\) −8058.19 3337.81i −0.503590 0.208594i
\(636\) 456.817 1102.85i 0.0284811 0.0687594i
\(637\) 905.879 905.879i 0.0563457 0.0563457i
\(638\) 54.3818 54.3818i 0.00337460 0.00337460i
\(639\) −2001.65 + 4832.40i −0.123919 + 0.299166i
\(640\) 5903.72 + 2445.40i 0.364633 + 0.151036i
\(641\) 6892.92 + 16641.0i 0.424733 + 1.02540i 0.980933 + 0.194348i \(0.0622590\pi\)
−0.556199 + 0.831049i \(0.687741\pi\)
\(642\) 1853.03i 0.113915i
\(643\) 16581.1 6868.13i 1.01695 0.421233i 0.188962 0.981984i \(-0.439488\pi\)
0.827984 + 0.560752i \(0.189488\pi\)
\(644\) −11472.6 11472.6i −0.701993 0.701993i
\(645\) 11210.9 0.684386
\(646\) 575.553 + 124.671i 0.0350539 + 0.00759303i
\(647\) −15336.8 −0.931917 −0.465959 0.884807i \(-0.654290\pi\)
−0.465959 + 0.884807i \(0.654290\pi\)
\(648\) −409.570 409.570i −0.0248293 0.0248293i
\(649\) −117.966 + 48.8631i −0.00713493 + 0.00295538i
\(650\) 942.172i 0.0568539i
\(651\) 2118.46 + 5114.40i 0.127540 + 0.307910i
\(652\) 20922.1 + 8666.21i 1.25671 + 0.520545i
\(653\) 8172.70 19730.6i 0.489774 1.18242i −0.465060 0.885279i \(-0.653967\pi\)
0.954834 0.297139i \(-0.0960326\pi\)
\(654\) −817.584 + 817.584i −0.0488839 + 0.0488839i
\(655\) 5777.96 5777.96i 0.344677 0.344677i
\(656\) −4342.59 + 10483.9i −0.258460 + 0.623977i
\(657\) 4045.65 + 1675.76i 0.240237 + 0.0995095i
\(658\) −704.498 1700.81i −0.0417389 0.100767i
\(659\) 9454.54i 0.558872i 0.960164 + 0.279436i \(0.0901474\pi\)
−0.960164 + 0.279436i \(0.909853\pi\)
\(660\) −134.223 + 55.5972i −0.00791612 + 0.00327897i
\(661\) −11521.9 11521.9i −0.677985 0.677985i 0.281559 0.959544i \(-0.409149\pi\)
−0.959544 + 0.281559i \(0.909149\pi\)
\(662\) −2852.29 −0.167458
\(663\) −6074.00 + 1101.42i −0.355799 + 0.0645184i
\(664\) −10504.6 −0.613943
\(665\) 1670.13 + 1670.13i 0.0973909 + 0.0973909i
\(666\) −264.053 + 109.374i −0.0153631 + 0.00636361i
\(667\) 24196.7i 1.40465i
\(668\) −5872.73 14178.0i −0.340154 0.821205i
\(669\) −12089.1 5007.45i −0.698639 0.289386i
\(670\) 201.880 487.382i 0.0116408 0.0281033i
\(671\) 554.089 554.089i 0.0318784 0.0318784i
\(672\) 3082.09 3082.09i 0.176926 0.176926i
\(673\) −10045.5 + 24251.9i −0.575370 + 1.38907i 0.321559 + 0.946890i \(0.395793\pi\)
−0.896928 + 0.442176i \(0.854207\pi\)
\(674\) 50.1407 + 20.7690i 0.00286550 + 0.00118693i
\(675\) 732.473 + 1768.35i 0.0417672 + 0.100835i
\(676\) 10407.9i 0.592164i
\(677\) −10189.6 + 4220.66i −0.578460 + 0.239606i −0.652677 0.757636i \(-0.726354\pi\)
0.0742173 + 0.997242i \(0.476354\pi\)
\(678\) −2160.23 2160.23i −0.122365 0.122365i
\(679\) −8860.30 −0.500776
\(680\) 2100.07 3030.40i 0.118433 0.170898i
\(681\) 18960.6 1.06692
\(682\) −28.8350 28.8350i −0.00161899 0.00161899i
\(683\) 4393.52 1819.86i 0.246140 0.101954i −0.256203 0.966623i \(-0.582472\pi\)
0.502343 + 0.864669i \(0.332472\pi\)
\(684\) 1301.95i 0.0727794i
\(685\) 5835.92 + 14089.2i 0.325517 + 0.785867i
\(686\) 2798.05 + 1158.99i 0.155729 + 0.0645051i
\(687\) 2089.25 5043.90i 0.116026 0.280112i
\(688\) −21238.5 + 21238.5i −1.17690 + 1.17690i
\(689\) −1059.63 + 1059.63i −0.0585902 + 0.0585902i
\(690\) −459.934 + 1110.38i −0.0253759 + 0.0612630i
\(691\) −1261.70 522.611i −0.0694604 0.0287715i 0.347683 0.937612i \(-0.386969\pi\)
−0.417143 + 0.908841i \(0.636969\pi\)
\(692\) 6883.21 + 16617.5i 0.378122 + 0.912867i
\(693\) 131.515i 0.00720903i
\(694\) −1589.74 + 658.493i −0.0869536 + 0.0360174i
\(695\) −3656.02 3656.02i −0.199541 0.199541i
\(696\) −4314.93 −0.234996
\(697\) 11057.5 + 7662.90i 0.600910 + 0.416432i
\(698\) −869.005 −0.0471237
\(699\) −3181.08 3181.08i −0.172131 0.172131i
\(700\) −8833.21 + 3658.84i −0.476949 + 0.197559i
\(701\) 8823.67i 0.475414i 0.971337 + 0.237707i \(0.0763958\pi\)
−0.971337 + 0.237707i \(0.923604\pi\)
\(702\) 137.324 + 331.529i 0.00738312 + 0.0178244i
\(703\) 1202.66 + 498.158i 0.0645223 + 0.0267260i
\(704\) 140.583 339.397i 0.00752615 0.0181697i
\(705\) 3667.32 3667.32i 0.195914 0.195914i
\(706\) −3389.69 + 3389.69i −0.180698 + 0.180698i
\(707\) −1207.36 + 2914.83i −0.0642257 + 0.155055i
\(708\) 3266.32 + 1352.96i 0.173384 + 0.0718181i
\(709\) 11842.1 + 28589.4i 0.627278 + 1.51438i 0.842992 + 0.537926i \(0.180792\pi\)
−0.215714 + 0.976456i \(0.569208\pi\)
\(710\) 1935.44i 0.102304i
\(711\) 9238.19 3826.58i 0.487284 0.201840i
\(712\) 5278.71 + 5278.71i 0.277848 + 0.277848i
\(713\) 12829.9 0.673888
\(714\) −891.734 1384.87i −0.0467399 0.0725874i
\(715\) 182.381 0.00953938
\(716\) −20007.0 20007.0i −1.04427 1.04427i
\(717\) −4437.49 + 1838.07i −0.231131 + 0.0957377i
\(718\) 3769.66i 0.195936i
\(719\) −1998.86 4825.68i −0.103679 0.250303i 0.863524 0.504307i \(-0.168252\pi\)
−0.967203 + 0.254005i \(0.918252\pi\)
\(720\) 3616.18 + 1497.87i 0.187177 + 0.0775311i
\(721\) −5669.92 + 13688.4i −0.292870 + 0.707050i
\(722\) 2085.50 2085.50i 0.107499 0.107499i
\(723\) 7767.28 7767.28i 0.399541 0.399541i
\(724\) 1782.47 4303.26i 0.0914984 0.220897i
\(725\) 13173.4 + 5456.60i 0.674825 + 0.279522i
\(726\) 691.422 + 1669.24i 0.0353458 + 0.0853324i
\(727\) 25678.0i 1.30997i 0.755644 + 0.654983i \(0.227324\pi\)
−0.755644 + 0.654983i \(0.772676\pi\)
\(728\) −3355.64 + 1389.95i −0.170836 + 0.0707625i
\(729\) −515.481 515.481i −0.0261891 0.0261891i
\(730\) 1620.33 0.0821523
\(731\) 19278.0 + 29938.9i 0.975408 + 1.51482i
\(732\) −21696.9 −1.09555
\(733\) 5734.46 + 5734.46i 0.288959 + 0.288959i 0.836669 0.547709i \(-0.184500\pi\)
−0.547709 + 0.836669i \(0.684500\pi\)
\(734\) −2086.68 + 864.333i −0.104933 + 0.0434647i
\(735\) 963.026i 0.0483289i
\(736\) −3865.83 9332.93i −0.193609 0.467414i
\(737\) −123.604 51.1985i −0.00617777 0.00255892i
\(738\) 299.276 722.517i 0.0149275 0.0360382i
\(739\) 17620.9 17620.9i 0.877123 0.877123i −0.116113 0.993236i \(-0.537043\pi\)
0.993236 + 0.116113i \(0.0370434\pi\)
\(740\) 2844.04 2844.04i 0.141282 0.141282i
\(741\) 625.458 1509.99i 0.0310078 0.0748595i
\(742\) −369.414 153.016i −0.0182771 0.00757062i
\(743\) −8310.78 20064.0i −0.410354 0.990682i −0.985043 0.172310i \(-0.944877\pi\)
0.574689 0.818372i \(-0.305123\pi\)
\(744\) 2287.92i 0.112741i
\(745\) 21460.2 8889.10i 1.05536 0.437143i
\(746\) −2496.92 2496.92i −0.122545 0.122545i
\(747\) −13221.0 −0.647566
\(748\) −379.281 262.842i −0.0185399 0.0128482i
\(749\) −23605.9 −1.15159
\(750\) 1383.86 + 1383.86i 0.0673754 + 0.0673754i
\(751\) −7931.34 + 3285.27i −0.385378 + 0.159629i −0.566957 0.823748i \(-0.691879\pi\)
0.181579 + 0.983376i \(0.441879\pi\)
\(752\) 13895.1i 0.673806i
\(753\) −7384.84 17828.6i −0.357395 0.862828i
\(754\) 2469.75 + 1023.00i 0.119288 + 0.0494106i
\(755\) 188.723 455.617i 0.00909712 0.0219624i
\(756\) 2574.92 2574.92i 0.123874 0.123874i
\(757\) −2669.64 + 2669.64i −0.128177 + 0.128177i −0.768285 0.640108i \(-0.778890\pi\)
0.640108 + 0.768285i \(0.278890\pi\)
\(758\) −1659.20 + 4005.67i −0.0795053 + 0.191943i
\(759\) 281.601 + 116.643i 0.0134670 + 0.00557823i
\(760\) 373.565 + 901.865i 0.0178298 + 0.0430449i
\(761\) 27931.4i 1.33050i −0.746620 0.665251i \(-0.768324\pi\)
0.746620 0.665251i \(-0.231676\pi\)
\(762\) −1487.85 + 616.287i −0.0707337 + 0.0292989i
\(763\) −10415.3 10415.3i −0.494179 0.494179i
\(764\) −8163.00 −0.386554
\(765\) 2643.13 3814.04i 0.124919 0.180257i
\(766\) −3172.87 −0.149661
\(767\) −3138.30 3138.30i −0.147741 0.147741i
\(768\) −8554.50 + 3543.39i −0.401932 + 0.166486i
\(769\) 19283.6i 0.904272i 0.891949 + 0.452136i \(0.149338\pi\)
−0.891949 + 0.452136i \(0.850662\pi\)
\(770\) 18.6229 + 44.9597i 0.000871588 + 0.00210420i
\(771\) −14273.8 5912.40i −0.666743 0.276174i
\(772\) 4500.22 10864.5i 0.209801 0.506504i
\(773\) 19044.5 19044.5i 0.886137 0.886137i −0.108012 0.994150i \(-0.534449\pi\)
0.994150 + 0.108012i \(0.0344486\pi\)
\(774\) 1463.68 1463.68i 0.0679729 0.0679729i
\(775\) 2893.27 6984.97i 0.134102 0.323752i
\(776\) −3383.17 1401.36i −0.156506 0.0648270i
\(777\) −1393.33 3363.79i −0.0643313 0.155309i
\(778\) 3649.06i 0.168156i
\(779\) −3290.79 + 1363.09i −0.151354 + 0.0626929i
\(780\) −3570.81 3570.81i −0.163917 0.163917i
\(781\) 490.842 0.0224888
\(782\) −3756.18 + 681.123i −0.171766 + 0.0311469i
\(783\) −5430.73 −0.247865
\(784\) −1824.40 1824.40i −0.0831087 0.0831087i
\(785\) 6910.94 2862.60i 0.314219 0.130154i
\(786\) 1508.73i 0.0684663i
\(787\) −8148.10 19671.3i −0.369058 0.890984i −0.993905 0.110237i \(-0.964839\pi\)
0.624848 0.780747i \(-0.285161\pi\)
\(788\) −11234.4 4653.43i −0.507878 0.210370i
\(789\) −1649.64 + 3982.58i −0.0744344 + 0.179701i
\(790\) 2616.30 2616.30i 0.117828 0.117828i
\(791\) 27519.5 27519.5i 1.23702 1.23702i
\(792\) −20.8006 + 50.2172i −0.000933230 + 0.00225302i
\(793\) 25163.9 + 10423.2i 1.12686 + 0.466760i
\(794\) −96.1419 232.107i −0.00429716 0.0103743i
\(795\) 1126.47i 0.0502540i
\(796\) 16992.0 7038.30i 0.756614 0.313400i
\(797\) −342.645 342.645i −0.0152285 0.0152285i 0.699452 0.714680i \(-0.253428\pi\)
−0.714680 + 0.699452i \(0.753428\pi\)
\(798\) 436.101 0.0193456
\(799\) 16099.9 + 3487.39i 0.712857 + 0.154412i
\(800\) −5952.91 −0.263084
\(801\) 6643.74 + 6643.74i 0.293065 + 0.293065i
\(802\) 5217.05 2160.97i 0.229701 0.0951454i
\(803\) 410.929i 0.0180590i
\(804\) 1417.62 + 3422.44i 0.0621836 + 0.150124i
\(805\) −14145.3 5859.15i −0.619322 0.256532i
\(806\) 542.429 1309.54i 0.0237050 0.0572290i
\(807\) 10718.5 10718.5i 0.467544 0.467544i
\(808\) −922.028 + 922.028i −0.0401446 + 0.0401446i
\(809\) −10783.6 + 26033.8i −0.468640 + 1.13140i 0.496118 + 0.868255i \(0.334758\pi\)
−0.964757 + 0.263141i \(0.915242\pi\)
\(810\) −249.215 103.228i −0.0108105 0.00447786i
\(811\) −3498.47 8446.05i −0.151477 0.365698i 0.829866 0.557963i \(-0.188417\pi\)
−0.981343 + 0.192265i \(0.938417\pi\)
\(812\) 27127.5i 1.17240i
\(813\) 21030.9 8711.30i 0.907241 0.375792i
\(814\) 18.9651 + 18.9651i 0.000816616 + 0.000816616i
\(815\) 21370.2 0.918484
\(816\) 2218.22 + 12232.8i 0.0951632 + 0.524795i
\(817\) −9427.90 −0.403721
\(818\) 1185.61 + 1185.61i 0.0506773 + 0.0506773i
\(819\) −4223.38 + 1749.38i −0.180192 + 0.0746378i
\(820\) 11005.5i 0.468692i
\(821\) 5959.55 + 14387.6i 0.253337 + 0.611610i 0.998469 0.0553066i \(-0.0176136\pi\)
−0.745132 + 0.666917i \(0.767614\pi\)
\(822\) 2601.40 + 1077.53i 0.110382 + 0.0457218i
\(823\) −7245.49 + 17492.2i −0.306880 + 0.740873i 0.692923 + 0.721012i \(0.256323\pi\)
−0.999803 + 0.0198616i \(0.993677\pi\)
\(824\) −4329.95 + 4329.95i −0.183059 + 0.183059i
\(825\) 127.008 127.008i 0.00535982 0.00535982i
\(826\) 453.188 1094.09i 0.0190901 0.0460876i
\(827\) −14193.7 5879.24i −0.596813 0.247208i 0.0637656 0.997965i \(-0.479689\pi\)
−0.660579 + 0.750757i \(0.729689\pi\)
\(828\) −3229.70 7797.18i −0.135555 0.327259i
\(829\) 20953.6i 0.877865i −0.898520 0.438932i \(-0.855357\pi\)
0.898520 0.438932i \(-0.144643\pi\)
\(830\) −4519.72 + 1872.13i −0.189014 + 0.0782922i
\(831\) 6797.02 + 6797.02i 0.283738 + 0.283738i
\(832\) 12769.1 0.532079
\(833\) −2571.77 + 1656.00i −0.106971 + 0.0688798i
\(834\) −954.652 −0.0396366
\(835\) −10240.1 10240.1i −0.424399 0.424399i
\(836\) 112.876 46.7549i 0.00466974 0.00193427i
\(837\) 2879.55i 0.118915i
\(838\) −2121.01 5120.56i −0.0874331 0.211082i
\(839\) 19210.5 + 7957.27i 0.790491 + 0.327432i 0.741141 0.671350i \(-0.234285\pi\)
0.0493498 + 0.998782i \(0.484285\pi\)
\(840\) 1044.85 2522.48i 0.0429174 0.103612i
\(841\) −11361.5 + 11361.5i −0.465846 + 0.465846i
\(842\) 4189.72 4189.72i 0.171481 0.171481i
\(843\) 1508.01 3640.65i 0.0616115 0.148743i
\(844\) 4728.16 + 1958.47i 0.192832 + 0.0798735i
\(845\) −3758.55 9073.94i −0.153015 0.369412i
\(846\) 957.603i 0.0389161i
\(847\) −21264.6 + 8808.10i −0.862646 + 0.357320i
\(848\) 2134.05 + 2134.05i 0.0864192 + 0.0864192i
\(849\) −3263.15 −0.131909
\(850\) −476.233 + 2198.58i −0.0192173 + 0.0887183i
\(851\) −8438.34 −0.339909
\(852\) −9610.14 9610.14i −0.386430 0.386430i
\(853\) −40362.0 + 16718.5i −1.62013 + 0.671079i −0.994075 0.108700i \(-0.965331\pi\)
−0.626054 + 0.779780i \(0.715331\pi\)
\(854\) 7267.62i 0.291209i
\(855\) 470.166 + 1135.08i 0.0188062 + 0.0454023i
\(856\) −9013.57 3733.54i −0.359904 0.149077i
\(857\) 3331.44 8042.81i 0.132789 0.320580i −0.843474 0.537170i \(-0.819493\pi\)
0.976263 + 0.216590i \(0.0694934\pi\)
\(858\) 23.8114 23.8114i 0.000947446 0.000947446i
\(859\) 18945.0 18945.0i 0.752496 0.752496i −0.222449 0.974944i \(-0.571405\pi\)
0.974944 + 0.222449i \(0.0714050\pi\)
\(860\) −11147.5 + 26912.4i −0.442008 + 1.06710i
\(861\) 9204.22 + 3812.51i 0.364319 + 0.150906i
\(862\) −1042.73 2517.38i −0.0412013 0.0994688i
\(863\) 11524.3i 0.454566i −0.973829 0.227283i \(-0.927016\pi\)
0.973829 0.227283i \(-0.0729843\pi\)
\(864\) 2094.69 867.651i 0.0824803 0.0341644i
\(865\) 12002.0 + 12002.0i 0.471771 + 0.471771i
\(866\) 7314.26 0.287008
\(867\) 14730.5 + 499.994i 0.577018 + 0.0195856i
\(868\) −14383.9 −0.562467
\(869\) −663.515 663.515i −0.0259013 0.0259013i
\(870\) −1856.54 + 769.005i −0.0723479 + 0.0299675i
\(871\) 4650.36i 0.180908i
\(872\) −2329.63 5624.22i −0.0904714 0.218417i
\(873\) −4258.03 1763.73i −0.165077 0.0683773i
\(874\) 386.785 933.782i 0.0149693 0.0361392i
\(875\) −17629.2 + 17629.2i −0.681115 + 0.681115i
\(876\) −8045.53 + 8045.53i −0.310312 + 0.310312i
\(877\) −2368.68 + 5718.51i −0.0912027 + 0.220183i −0.962898 0.269865i \(-0.913021\pi\)
0.871695 + 0.490048i \(0.163021\pi\)
\(878\) −540.814 224.013i −0.0207877 0.00861055i
\(879\) 10187.1 + 24593.7i 0.390900 + 0.943715i
\(880\) 367.307i 0.0140704i
\(881\) −1207.71 + 500.251i −0.0461848 + 0.0191304i −0.405656 0.914026i \(-0.632957\pi\)
0.359471 + 0.933156i \(0.382957\pi\)
\(882\) 125.732 + 125.732i 0.00480000 + 0.00480000i
\(883\) 1681.42 0.0640821 0.0320410 0.999487i \(-0.489799\pi\)
0.0320410 + 0.999487i \(0.489799\pi\)
\(884\) 3395.62 15676.2i 0.129193 0.596433i
\(885\) 3336.28 0.126721
\(886\) 409.686 + 409.686i 0.0155346 + 0.0155346i
\(887\) 17295.2 7163.90i 0.654696 0.271184i −0.0305088 0.999534i \(-0.509713\pi\)
0.685205 + 0.728351i \(0.259713\pi\)
\(888\) 1504.79i 0.0568663i
\(889\) −7850.95 18953.9i −0.296189 0.715064i
\(890\) 3211.99 + 1330.45i 0.120973 + 0.0501088i
\(891\) −26.1795 + 63.2029i −0.000984340 + 0.00237641i
\(892\) 24041.4 24041.4i 0.902426 0.902426i
\(893\) −3084.06 + 3084.06i −0.115570 + 0.115570i
\(894\) 1641.27 3962.37i 0.0614007 0.148234i
\(895\) −24667.9 10217.8i −0.921292 0.381612i
\(896\) 5751.89 + 13886.3i 0.214461 + 0.517755i
\(897\) 10594.7i 0.394366i
\(898\) 4860.88 2013.44i 0.180634 0.0748212i
\(899\) 15168.4 + 15168.4i 0.562732 + 0.562732i
\(900\) −4973.35 −0.184198
\(901\) 3008.27 1937.06i 0.111232 0.0716235i
\(902\) −73.3883 −0.00270905
\(903\) 18646.0 + 18646.0i 0.687155 + 0.687155i
\(904\) 14860.4 6155.38i 0.546736 0.226466i
\(905\) 4395.42i 0.161446i
\(906\) −34.8454 84.1243i −0.00127777 0.00308481i
\(907\) 7420.13 + 3073.52i 0.271644 + 0.112519i 0.514348 0.857582i \(-0.328034\pi\)
−0.242703 + 0.970101i \(0.578034\pi\)
\(908\) −18853.3 + 45516.0i −0.689064 + 1.66355i
\(909\) −1160.46 + 1160.46i −0.0423431 + 0.0423431i
\(910\) −1196.08 + 1196.08i −0.0435712 + 0.0435712i
\(911\) −13540.2 + 32688.9i −0.492433 + 1.18884i 0.461045 + 0.887377i \(0.347475\pi\)
−0.953478 + 0.301462i \(0.902525\pi\)
\(912\) −3041.06 1259.65i −0.110416 0.0457358i
\(913\) 474.787 + 1146.24i 0.0172105 + 0.0415497i
\(914\) 8489.53i 0.307231i
\(915\) −18916.1 + 7835.30i −0.683439 + 0.283090i
\(916\) 10030.7 + 10030.7i 0.361818 + 0.361818i
\(917\) 19219.9 0.692143
\(918\) −152.872 843.041i −0.00549622 0.0303099i
\(919\) −18134.4 −0.650924 −0.325462 0.945555i \(-0.605520\pi\)
−0.325462 + 0.945555i \(0.605520\pi\)
\(920\) −4474.46 4474.46i −0.160346 0.160346i
\(921\) −12899.9 + 5343.30i −0.461525 + 0.191170i
\(922\) 3460.91i 0.123622i
\(923\) 6529.06 + 15762.5i 0.232835 + 0.562113i
\(924\) −315.710 130.772i −0.0112404 0.00465592i
\(925\) −1902.93 + 4594.08i −0.0676411 + 0.163300i
\(926\) 1484.09 1484.09i 0.0526678 0.0526678i
\(927\) −5449.64 + 5449.64i −0.193085 + 0.193085i
\(928\) 6463.62 15604.6i 0.228641 0.551988i
\(929\) 14173.8 + 5870.97i 0.500567 + 0.207342i 0.618657 0.785661i \(-0.287677\pi\)
−0.118090 + 0.993003i \(0.537677\pi\)
\(930\) 407.752 + 984.400i 0.0143771 + 0.0347094i
\(931\) 809.863i 0.0285093i
\(932\) 10799.5 4473.28i 0.379558 0.157218i
\(933\) −13603.4 13603.4i −0.477338 0.477338i
\(934\) 3302.49 0.115697
\(935\) −425.589 92.1868i −0.0148858 0.00322442i
\(936\) −1889.32 −0.0659769
\(937\) −4570.78 4570.78i −0.159361 0.159361i 0.622923 0.782283i \(-0.285945\pi\)
−0.782283 + 0.622923i \(0.785945\pi\)
\(938\) 1146.38 474.848i 0.0399049 0.0165291i
\(939\) 17806.7i 0.618851i
\(940\) 5157.04 + 12450.2i 0.178941 + 0.432001i
\(941\) 6274.82 + 2599.12i 0.217379 + 0.0900412i 0.488715 0.872443i \(-0.337466\pi\)
−0.271337 + 0.962485i \(0.587466\pi\)
\(942\) 528.546 1276.02i 0.0182813 0.0441349i
\(943\) 16326.7 16326.7i 0.563809 0.563809i
\(944\) −6320.41 + 6320.41i −0.217915 + 0.217915i
\(945\) 1315.04 3174.78i 0.0452678 0.109286i
\(946\) −179.462 74.3355i −0.00616787 0.00255482i
\(947\) −14083.5 34000.5i −0.483265 1.16670i −0.958050 0.286603i \(-0.907474\pi\)
0.474785 0.880102i \(-0.342526\pi\)
\(948\) 25981.7i 0.890135i
\(949\) 13196.3 5466.07i 0.451390 0.186972i
\(950\) −421.155 421.155i −0.0143832 0.0143832i
\(951\) 22302.2 0.760460
\(952\) 8533.02 1547.33i 0.290501 0.0526777i
\(953\) −20402.5 −0.693497 −0.346748 0.937958i \(-0.612714\pi\)
−0.346748 + 0.937958i \(0.612714\pi\)
\(954\) −147.071 147.071i −0.00499120 0.00499120i
\(955\) −7116.78 + 2947.87i −0.241145 + 0.0998856i
\(956\) 12480.1i 0.422214i
\(957\) 195.026 + 470.834i 0.00658756 + 0.0159038i
\(958\) −4084.98 1692.05i −0.137766 0.0570645i
\(959\) −13726.8 + 33139.5i −0.462213 + 1.11588i
\(960\) −6787.33 + 6787.33i −0.228187 + 0.228187i
\(961\) −13022.6 + 13022.6i −0.437133 + 0.437133i
\(962\) −356.761 + 861.298i −0.0119568 + 0.0288663i
\(963\) −11344.4 4699.01i −0.379614 0.157241i
\(964\) 10922.5 + 26369.2i 0.364926 + 0.881010i
\(965\) 11097.2i 0.370187i
\(966\) −2611.75 + 1081.82i −0.0869894 + 0.0360322i
\(967\) −39299.3 39299.3i −1.30691 1.30691i −0.923635 0.383273i \(-0.874797\pi\)
−0.383273 0.923635i \(-0.625203\pi\)
\(968\) −9512.68 −0.315857
\(969\) −2222.76 + 3207.44i −0.0736898 + 0.106334i
\(970\) −1705.39 −0.0564504
\(971\) −23219.7 23219.7i −0.767410 0.767410i 0.210240 0.977650i \(-0.432575\pi\)
−0.977650 + 0.210240i \(0.932575\pi\)
\(972\) 1750.01 724.877i 0.0577485 0.0239202i
\(973\) 12161.4i 0.400696i
\(974\) 1390.07 + 3355.93i 0.0457298 + 0.110401i
\(975\) 5768.06 + 2389.21i 0.189462 + 0.0784779i
\(976\) 20992.0 50679.1i 0.688460 1.66209i
\(977\) −35164.1 + 35164.1i −1.15148 + 1.15148i −0.165229 + 0.986255i \(0.552836\pi\)
−0.986255 + 0.165229i \(0.947164\pi\)
\(978\) 2790.07 2790.07i 0.0912234 0.0912234i
\(979\) 337.413 814.587i 0.0110151 0.0265928i
\(980\) −2311.80 957.579i −0.0753548 0.0312130i
\(981\) −2932.05 7078.59i −0.0954262 0.230379i
\(982\) 959.230i 0.0311714i
\(983\) 10706.6 4434.82i 0.347393 0.143895i −0.202163 0.979352i \(-0.564797\pi\)
0.549556 + 0.835457i \(0.314797\pi\)
\(984\) 2911.50 + 2911.50i 0.0943245 + 0.0943245i
\(985\) −11475.0 −0.371191
\(986\) −5246.11 3635.56i −0.169442 0.117424i
\(987\) 12199.0 0.393413
\(988\) 3002.90 + 3002.90i 0.0966953 + 0.0966953i
\(989\) 56462.4 23387.5i 1.81537 0.751950i
\(990\) 25.3136i 0.000812644i
\(991\) 8281.33 + 19992.9i 0.265454 + 0.640863i 0.999259 0.0384976i \(-0.0122572\pi\)
−0.733805 + 0.679361i \(0.762257\pi\)
\(992\) −8274.05 3427.22i −0.264820 0.109692i
\(993\) 7232.99 17462.0i 0.231150 0.558046i
\(994\) −3219.03 + 3219.03i −0.102718 + 0.102718i
\(995\) 12272.5 12272.5i 0.391019 0.391019i
\(996\) 13146.2 31737.8i 0.418227 1.00969i
\(997\) −9023.53 3737.67i −0.286638 0.118729i 0.234732 0.972060i \(-0.424579\pi\)
−0.521370 + 0.853331i \(0.674579\pi\)
\(998\) −94.4792 228.093i −0.00299668 0.00723462i
\(999\) 1893.91i 0.0599806i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.4.h.a.19.5 40
3.2 odd 2 153.4.l.c.19.6 40
17.3 odd 16 867.4.a.v.1.11 20
17.9 even 8 inner 51.4.h.a.43.5 yes 40
17.14 odd 16 867.4.a.w.1.11 20
51.26 odd 8 153.4.l.c.145.6 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.4.h.a.19.5 40 1.1 even 1 trivial
51.4.h.a.43.5 yes 40 17.9 even 8 inner
153.4.l.c.19.6 40 3.2 odd 2
153.4.l.c.145.6 40 51.26 odd 8
867.4.a.v.1.11 20 17.3 odd 16
867.4.a.w.1.11 20 17.14 odd 16