Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [510,2,Mod(169,510)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(510, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("510.169");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 510.f (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
169.1 |
|
− | 1.00000i | −1.00000 | −1.00000 | −0.224745 | − | 2.22474i | 1.00000i | 0.449490 | 1.00000i | 1.00000 | −2.22474 | + | 0.224745i | |||||||||||||||||||||||||
169.2 | − | 1.00000i | −1.00000 | −1.00000 | 2.22474 | + | 0.224745i | 1.00000i | −4.44949 | 1.00000i | 1.00000 | 0.224745 | − | 2.22474i | ||||||||||||||||||||||||||
169.3 | 1.00000i | −1.00000 | −1.00000 | −0.224745 | + | 2.22474i | − | 1.00000i | 0.449490 | − | 1.00000i | 1.00000 | −2.22474 | − | 0.224745i | |||||||||||||||||||||||||
169.4 | 1.00000i | −1.00000 | −1.00000 | 2.22474 | − | 0.224745i | − | 1.00000i | −4.44949 | − | 1.00000i | 1.00000 | 0.224745 | + | 2.22474i | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
85.c | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 510.2.f.a | ✓ | 4 |
3.b | odd | 2 | 1 | 1530.2.f.g | 4 | ||
5.b | even | 2 | 1 | 510.2.f.b | yes | 4 | |
5.c | odd | 4 | 1 | 2550.2.c.m | 4 | ||
5.c | odd | 4 | 1 | 2550.2.c.q | 4 | ||
15.d | odd | 2 | 1 | 1530.2.f.i | 4 | ||
17.b | even | 2 | 1 | 510.2.f.b | yes | 4 | |
51.c | odd | 2 | 1 | 1530.2.f.i | 4 | ||
85.c | even | 2 | 1 | inner | 510.2.f.a | ✓ | 4 |
85.g | odd | 4 | 1 | 2550.2.c.m | 4 | ||
85.g | odd | 4 | 1 | 2550.2.c.q | 4 | ||
255.h | odd | 2 | 1 | 1530.2.f.g | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
510.2.f.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
510.2.f.a | ✓ | 4 | 85.c | even | 2 | 1 | inner |
510.2.f.b | yes | 4 | 5.b | even | 2 | 1 | |
510.2.f.b | yes | 4 | 17.b | even | 2 | 1 | |
1530.2.f.g | 4 | 3.b | odd | 2 | 1 | ||
1530.2.f.g | 4 | 255.h | odd | 2 | 1 | ||
1530.2.f.i | 4 | 15.d | odd | 2 | 1 | ||
1530.2.f.i | 4 | 51.c | odd | 2 | 1 | ||
2550.2.c.m | 4 | 5.c | odd | 4 | 1 | ||
2550.2.c.m | 4 | 85.g | odd | 4 | 1 | ||
2550.2.c.q | 4 | 5.c | odd | 4 | 1 | ||
2550.2.c.q | 4 | 85.g | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .