Properties

Label 510.2.f.a
Level 510510
Weight 22
Character orbit 510.f
Analytic conductor 4.0724.072
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [510,2,Mod(169,510)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(510, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("510.169");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 510=23517 510 = 2 \cdot 3 \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 510.f (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.072370503094.07237050309
Analytic rank: 00
Dimension: 44
Coefficient field: Q(i,6)\Q(i, \sqrt{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+9 x^{4} + 9 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β2q2q3q4+(β3+β2+1)q5β2q6+(β3β12)q7β2q8+q9+(β2+β11)q10+(2β32β1)q11++(2β32β1)q99+O(q100) q + \beta_{2} q^{2} - q^{3} - q^{4} + ( - \beta_{3} + \beta_{2} + 1) q^{5} - \beta_{2} q^{6} + (\beta_{3} - \beta_1 - 2) q^{7} - \beta_{2} q^{8} + q^{9} + (\beta_{2} + \beta_1 - 1) q^{10} + ( - 2 \beta_{3} - 2 \beta_1) q^{11}+ \cdots + ( - 2 \beta_{3} - 2 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q34q4+4q58q7+4q94q10+4q124q15+4q1616q178q194q20+8q218q23+8q264q27+8q28+4q304q34++32q97+O(q100) 4 q - 4 q^{3} - 4 q^{4} + 4 q^{5} - 8 q^{7} + 4 q^{9} - 4 q^{10} + 4 q^{12} - 4 q^{15} + 4 q^{16} - 16 q^{17} - 8 q^{19} - 4 q^{20} + 8 q^{21} - 8 q^{23} + 8 q^{26} - 4 q^{27} + 8 q^{28} + 4 q^{30} - 4 q^{34}+ \cdots + 32 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x4+9 x^{4} + 9 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν2)/3 ( \nu^{2} ) / 3 Copy content Toggle raw display
β3\beta_{3}== (ν3)/3 ( \nu^{3} ) / 3 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== 3β2 3\beta_{2} Copy content Toggle raw display
ν3\nu^{3}== 3β3 3\beta_{3} Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/510Z)×\left(\mathbb{Z}/510\mathbb{Z}\right)^\times.

nn 241241 307307 341341
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
169.1
−1.22474 + 1.22474i
1.22474 1.22474i
−1.22474 1.22474i
1.22474 + 1.22474i
1.00000i −1.00000 −1.00000 −0.224745 2.22474i 1.00000i 0.449490 1.00000i 1.00000 −2.22474 + 0.224745i
169.2 1.00000i −1.00000 −1.00000 2.22474 + 0.224745i 1.00000i −4.44949 1.00000i 1.00000 0.224745 2.22474i
169.3 1.00000i −1.00000 −1.00000 −0.224745 + 2.22474i 1.00000i 0.449490 1.00000i 1.00000 −2.22474 0.224745i
169.4 1.00000i −1.00000 −1.00000 2.22474 0.224745i 1.00000i −4.44949 1.00000i 1.00000 0.224745 + 2.22474i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
85.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 510.2.f.a 4
3.b odd 2 1 1530.2.f.g 4
5.b even 2 1 510.2.f.b yes 4
5.c odd 4 1 2550.2.c.m 4
5.c odd 4 1 2550.2.c.q 4
15.d odd 2 1 1530.2.f.i 4
17.b even 2 1 510.2.f.b yes 4
51.c odd 2 1 1530.2.f.i 4
85.c even 2 1 inner 510.2.f.a 4
85.g odd 4 1 2550.2.c.m 4
85.g odd 4 1 2550.2.c.q 4
255.h odd 2 1 1530.2.f.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.f.a 4 1.a even 1 1 trivial
510.2.f.a 4 85.c even 2 1 inner
510.2.f.b yes 4 5.b even 2 1
510.2.f.b yes 4 17.b even 2 1
1530.2.f.g 4 3.b odd 2 1
1530.2.f.g 4 255.h odd 2 1
1530.2.f.i 4 15.d odd 2 1
1530.2.f.i 4 51.c odd 2 1
2550.2.c.m 4 5.c odd 4 1
2550.2.c.m 4 85.g odd 4 1
2550.2.c.q 4 5.c odd 4 1
2550.2.c.q 4 85.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T72+4T72 T_{7}^{2} + 4T_{7} - 2 acting on S2new(510,[χ])S_{2}^{\mathrm{new}}(510, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
33 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
55 T44T3++25 T^{4} - 4 T^{3} + \cdots + 25 Copy content Toggle raw display
77 (T2+4T2)2 (T^{2} + 4 T - 2)^{2} Copy content Toggle raw display
1111 (T2+24)2 (T^{2} + 24)^{2} Copy content Toggle raw display
1313 (T2+4)2 (T^{2} + 4)^{2} Copy content Toggle raw display
1717 (T2+8T+17)2 (T^{2} + 8 T + 17)^{2} Copy content Toggle raw display
1919 (T+2)4 (T + 2)^{4} Copy content Toggle raw display
2323 (T2+4T2)2 (T^{2} + 4 T - 2)^{2} Copy content Toggle raw display
2929 T4+84T2+900 T^{4} + 84T^{2} + 900 Copy content Toggle raw display
3131 T4+116T2+2500 T^{4} + 116T^{2} + 2500 Copy content Toggle raw display
3737 (T2+4T2)2 (T^{2} + 4 T - 2)^{2} Copy content Toggle raw display
4141 T4+80T2+64 T^{4} + 80T^{2} + 64 Copy content Toggle raw display
4343 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
4747 (T2+64)2 (T^{2} + 64)^{2} Copy content Toggle raw display
5353 T4+200T2+8464 T^{4} + 200T^{2} + 8464 Copy content Toggle raw display
5959 (T28T80)2 (T^{2} - 8 T - 80)^{2} Copy content Toggle raw display
6161 T4+116T2+2500 T^{4} + 116T^{2} + 2500 Copy content Toggle raw display
6767 T4+224T2+6400 T^{4} + 224T^{2} + 6400 Copy content Toggle raw display
7171 T4+212T2+8836 T^{4} + 212T^{2} + 8836 Copy content Toggle raw display
7373 (T28T8)2 (T^{2} - 8 T - 8)^{2} Copy content Toggle raw display
7979 T4+20T2+4 T^{4} + 20T^{2} + 4 Copy content Toggle raw display
8383 (T2+36)2 (T^{2} + 36)^{2} Copy content Toggle raw display
8989 (T+4)4 (T + 4)^{4} Copy content Toggle raw display
9797 (T8)4 (T - 8)^{4} Copy content Toggle raw display
show more
show less