Properties

Label 510.2.f.a
Level $510$
Weight $2$
Character orbit 510.f
Analytic conductor $4.072$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [510,2,Mod(169,510)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(510, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("510.169");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.07237050309\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} - q^{3} - q^{4} + ( - \beta_{3} + \beta_{2} + 1) q^{5} - \beta_{2} q^{6} + (\beta_{3} - \beta_1 - 2) q^{7} - \beta_{2} q^{8} + q^{9} + (\beta_{2} + \beta_1 - 1) q^{10} + ( - 2 \beta_{3} - 2 \beta_1) q^{11}+ \cdots + ( - 2 \beta_{3} - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 4 q^{4} + 4 q^{5} - 8 q^{7} + 4 q^{9} - 4 q^{10} + 4 q^{12} - 4 q^{15} + 4 q^{16} - 16 q^{17} - 8 q^{19} - 4 q^{20} + 8 q^{21} - 8 q^{23} + 8 q^{26} - 4 q^{27} + 8 q^{28} + 4 q^{30} - 4 q^{34}+ \cdots + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/510\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(307\) \(341\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
169.1
−1.22474 + 1.22474i
1.22474 1.22474i
−1.22474 1.22474i
1.22474 + 1.22474i
1.00000i −1.00000 −1.00000 −0.224745 2.22474i 1.00000i 0.449490 1.00000i 1.00000 −2.22474 + 0.224745i
169.2 1.00000i −1.00000 −1.00000 2.22474 + 0.224745i 1.00000i −4.44949 1.00000i 1.00000 0.224745 2.22474i
169.3 1.00000i −1.00000 −1.00000 −0.224745 + 2.22474i 1.00000i 0.449490 1.00000i 1.00000 −2.22474 0.224745i
169.4 1.00000i −1.00000 −1.00000 2.22474 0.224745i 1.00000i −4.44949 1.00000i 1.00000 0.224745 + 2.22474i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
85.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 510.2.f.a 4
3.b odd 2 1 1530.2.f.g 4
5.b even 2 1 510.2.f.b yes 4
5.c odd 4 1 2550.2.c.m 4
5.c odd 4 1 2550.2.c.q 4
15.d odd 2 1 1530.2.f.i 4
17.b even 2 1 510.2.f.b yes 4
51.c odd 2 1 1530.2.f.i 4
85.c even 2 1 inner 510.2.f.a 4
85.g odd 4 1 2550.2.c.m 4
85.g odd 4 1 2550.2.c.q 4
255.h odd 2 1 1530.2.f.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.f.a 4 1.a even 1 1 trivial
510.2.f.a 4 85.c even 2 1 inner
510.2.f.b yes 4 5.b even 2 1
510.2.f.b yes 4 17.b even 2 1
1530.2.f.g 4 3.b odd 2 1
1530.2.f.g 4 255.h odd 2 1
1530.2.f.i 4 15.d odd 2 1
1530.2.f.i 4 51.c odd 2 1
2550.2.c.m 4 5.c odd 4 1
2550.2.c.m 4 85.g odd 4 1
2550.2.c.q 4 5.c odd 4 1
2550.2.c.q 4 85.g odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 4T_{7} - 2 \) acting on \(S_{2}^{\mathrm{new}}(510, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 4 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} + 4 T - 2)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 24)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 8 T + 17)^{2} \) Copy content Toggle raw display
$19$ \( (T + 2)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 4 T - 2)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 84T^{2} + 900 \) Copy content Toggle raw display
$31$ \( T^{4} + 116T^{2} + 2500 \) Copy content Toggle raw display
$37$ \( (T^{2} + 4 T - 2)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 80T^{2} + 64 \) Copy content Toggle raw display
$43$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} + 200T^{2} + 8464 \) Copy content Toggle raw display
$59$ \( (T^{2} - 8 T - 80)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 116T^{2} + 2500 \) Copy content Toggle raw display
$67$ \( T^{4} + 224T^{2} + 6400 \) Copy content Toggle raw display
$71$ \( T^{4} + 212T^{2} + 8836 \) Copy content Toggle raw display
$73$ \( (T^{2} - 8 T - 8)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} + 20T^{2} + 4 \) Copy content Toggle raw display
$83$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$89$ \( (T + 4)^{4} \) Copy content Toggle raw display
$97$ \( (T - 8)^{4} \) Copy content Toggle raw display
show more
show less