Properties

Label 510.2.l.a.137.1
Level $510$
Weight $2$
Character 510.137
Analytic conductor $4.072$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [510,2,Mod(137,510)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(510, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("510.137");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.07237050309\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 137.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 510.137
Dual form 510.2.l.a.443.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(1.70711 - 0.292893i) q^{3} -1.00000i q^{4} +(0.707107 - 2.12132i) q^{5} +(-1.00000 + 1.41421i) q^{6} +(-3.00000 - 3.00000i) q^{7} +(0.707107 + 0.707107i) q^{8} +(2.82843 - 1.00000i) q^{9} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} +(1.70711 - 0.292893i) q^{3} -1.00000i q^{4} +(0.707107 - 2.12132i) q^{5} +(-1.00000 + 1.41421i) q^{6} +(-3.00000 - 3.00000i) q^{7} +(0.707107 + 0.707107i) q^{8} +(2.82843 - 1.00000i) q^{9} +(1.00000 + 2.00000i) q^{10} +1.41421i q^{11} +(-0.292893 - 1.70711i) q^{12} +(-2.00000 + 2.00000i) q^{13} +4.24264 q^{14} +(0.585786 - 3.82843i) q^{15} -1.00000 q^{16} +(0.707107 - 0.707107i) q^{17} +(-1.29289 + 2.70711i) q^{18} -8.00000i q^{19} +(-2.12132 - 0.707107i) q^{20} +(-6.00000 - 4.24264i) q^{21} +(-1.00000 - 1.00000i) q^{22} +(1.41421 + 1.00000i) q^{24} +(-4.00000 - 3.00000i) q^{25} -2.82843i q^{26} +(4.53553 - 2.53553i) q^{27} +(-3.00000 + 3.00000i) q^{28} -4.24264 q^{29} +(2.29289 + 3.12132i) q^{30} +10.0000 q^{31} +(0.707107 - 0.707107i) q^{32} +(0.414214 + 2.41421i) q^{33} +1.00000i q^{34} +(-8.48528 + 4.24264i) q^{35} +(-1.00000 - 2.82843i) q^{36} +(-2.00000 - 2.00000i) q^{37} +(5.65685 + 5.65685i) q^{38} +(-2.82843 + 4.00000i) q^{39} +(2.00000 - 1.00000i) q^{40} +8.48528i q^{41} +(7.24264 - 1.24264i) q^{42} +1.41421 q^{44} +(-0.121320 - 6.70711i) q^{45} +(2.82843 - 2.82843i) q^{47} +(-1.70711 + 0.292893i) q^{48} +11.0000i q^{49} +(4.94975 - 0.707107i) q^{50} +(1.00000 - 1.41421i) q^{51} +(2.00000 + 2.00000i) q^{52} +(-5.65685 - 5.65685i) q^{53} +(-1.41421 + 5.00000i) q^{54} +(3.00000 + 1.00000i) q^{55} -4.24264i q^{56} +(-2.34315 - 13.6569i) q^{57} +(3.00000 - 3.00000i) q^{58} +9.89949 q^{59} +(-3.82843 - 0.585786i) q^{60} +10.0000 q^{61} +(-7.07107 + 7.07107i) q^{62} +(-11.4853 - 5.48528i) q^{63} +1.00000i q^{64} +(2.82843 + 5.65685i) q^{65} +(-2.00000 - 1.41421i) q^{66} +(10.0000 + 10.0000i) q^{67} +(-0.707107 - 0.707107i) q^{68} +(3.00000 - 9.00000i) q^{70} +11.3137i q^{71} +(2.70711 + 1.29289i) q^{72} +(-3.00000 + 3.00000i) q^{73} +2.82843 q^{74} +(-7.70711 - 3.94975i) q^{75} -8.00000 q^{76} +(4.24264 - 4.24264i) q^{77} +(-0.828427 - 4.82843i) q^{78} -14.0000i q^{79} +(-0.707107 + 2.12132i) q^{80} +(7.00000 - 5.65685i) q^{81} +(-6.00000 - 6.00000i) q^{82} +(8.48528 + 8.48528i) q^{83} +(-4.24264 + 6.00000i) q^{84} +(-1.00000 - 2.00000i) q^{85} +(-7.24264 + 1.24264i) q^{87} +(-1.00000 + 1.00000i) q^{88} +2.82843 q^{89} +(4.82843 + 4.65685i) q^{90} +12.0000 q^{91} +(17.0711 - 2.92893i) q^{93} +4.00000i q^{94} +(-16.9706 - 5.65685i) q^{95} +(1.00000 - 1.41421i) q^{96} +(-3.00000 - 3.00000i) q^{97} +(-7.77817 - 7.77817i) q^{98} +(1.41421 + 4.00000i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{6} - 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{3} - 4 q^{6} - 12 q^{7} + 4 q^{10} - 4 q^{12} - 8 q^{13} + 8 q^{15} - 4 q^{16} - 8 q^{18} - 24 q^{21} - 4 q^{22} - 16 q^{25} + 4 q^{27} - 12 q^{28} + 12 q^{30} + 40 q^{31} - 4 q^{33} - 4 q^{36} - 8 q^{37} + 8 q^{40} + 12 q^{42} + 8 q^{45} - 4 q^{48} + 4 q^{51} + 8 q^{52} + 12 q^{55} - 32 q^{57} + 12 q^{58} - 4 q^{60} + 40 q^{61} - 12 q^{63} - 8 q^{66} + 40 q^{67} + 12 q^{70} + 8 q^{72} - 12 q^{73} - 28 q^{75} - 32 q^{76} + 8 q^{78} + 28 q^{81} - 24 q^{82} - 4 q^{85} - 12 q^{87} - 4 q^{88} + 8 q^{90} + 48 q^{91} + 40 q^{93} + 4 q^{96} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/510\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(307\) \(341\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 1.70711 0.292893i 0.985599 0.169102i
\(4\) 1.00000i 0.500000i
\(5\) 0.707107 2.12132i 0.316228 0.948683i
\(6\) −1.00000 + 1.41421i −0.408248 + 0.577350i
\(7\) −3.00000 3.00000i −1.13389 1.13389i −0.989524 0.144370i \(-0.953885\pi\)
−0.144370 0.989524i \(-0.546115\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) 2.82843 1.00000i 0.942809 0.333333i
\(10\) 1.00000 + 2.00000i 0.316228 + 0.632456i
\(11\) 1.41421i 0.426401i 0.977008 + 0.213201i \(0.0683888\pi\)
−0.977008 + 0.213201i \(0.931611\pi\)
\(12\) −0.292893 1.70711i −0.0845510 0.492799i
\(13\) −2.00000 + 2.00000i −0.554700 + 0.554700i −0.927794 0.373094i \(-0.878297\pi\)
0.373094 + 0.927794i \(0.378297\pi\)
\(14\) 4.24264 1.13389
\(15\) 0.585786 3.82843i 0.151249 0.988496i
\(16\) −1.00000 −0.250000
\(17\) 0.707107 0.707107i 0.171499 0.171499i
\(18\) −1.29289 + 2.70711i −0.304738 + 0.638071i
\(19\) 8.00000i 1.83533i −0.397360 0.917663i \(-0.630073\pi\)
0.397360 0.917663i \(-0.369927\pi\)
\(20\) −2.12132 0.707107i −0.474342 0.158114i
\(21\) −6.00000 4.24264i −1.30931 0.925820i
\(22\) −1.00000 1.00000i −0.213201 0.213201i
\(23\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(24\) 1.41421 + 1.00000i 0.288675 + 0.204124i
\(25\) −4.00000 3.00000i −0.800000 0.600000i
\(26\) 2.82843i 0.554700i
\(27\) 4.53553 2.53553i 0.872864 0.487964i
\(28\) −3.00000 + 3.00000i −0.566947 + 0.566947i
\(29\) −4.24264 −0.787839 −0.393919 0.919145i \(-0.628881\pi\)
−0.393919 + 0.919145i \(0.628881\pi\)
\(30\) 2.29289 + 3.12132i 0.418623 + 0.569873i
\(31\) 10.0000 1.79605 0.898027 0.439941i \(-0.145001\pi\)
0.898027 + 0.439941i \(0.145001\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) 0.414214 + 2.41421i 0.0721053 + 0.420261i
\(34\) 1.00000i 0.171499i
\(35\) −8.48528 + 4.24264i −1.43427 + 0.717137i
\(36\) −1.00000 2.82843i −0.166667 0.471405i
\(37\) −2.00000 2.00000i −0.328798 0.328798i 0.523331 0.852129i \(-0.324689\pi\)
−0.852129 + 0.523331i \(0.824689\pi\)
\(38\) 5.65685 + 5.65685i 0.917663 + 0.917663i
\(39\) −2.82843 + 4.00000i −0.452911 + 0.640513i
\(40\) 2.00000 1.00000i 0.316228 0.158114i
\(41\) 8.48528i 1.32518i 0.748983 + 0.662589i \(0.230542\pi\)
−0.748983 + 0.662589i \(0.769458\pi\)
\(42\) 7.24264 1.24264i 1.11756 0.191744i
\(43\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(44\) 1.41421 0.213201
\(45\) −0.121320 6.70711i −0.0180854 0.999836i
\(46\) 0 0
\(47\) 2.82843 2.82843i 0.412568 0.412568i −0.470064 0.882632i \(-0.655769\pi\)
0.882632 + 0.470064i \(0.155769\pi\)
\(48\) −1.70711 + 0.292893i −0.246400 + 0.0422755i
\(49\) 11.0000i 1.57143i
\(50\) 4.94975 0.707107i 0.700000 0.100000i
\(51\) 1.00000 1.41421i 0.140028 0.198030i
\(52\) 2.00000 + 2.00000i 0.277350 + 0.277350i
\(53\) −5.65685 5.65685i −0.777029 0.777029i 0.202296 0.979324i \(-0.435160\pi\)
−0.979324 + 0.202296i \(0.935160\pi\)
\(54\) −1.41421 + 5.00000i −0.192450 + 0.680414i
\(55\) 3.00000 + 1.00000i 0.404520 + 0.134840i
\(56\) 4.24264i 0.566947i
\(57\) −2.34315 13.6569i −0.310357 1.80889i
\(58\) 3.00000 3.00000i 0.393919 0.393919i
\(59\) 9.89949 1.28880 0.644402 0.764687i \(-0.277106\pi\)
0.644402 + 0.764687i \(0.277106\pi\)
\(60\) −3.82843 0.585786i −0.494248 0.0756247i
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) −7.07107 + 7.07107i −0.898027 + 0.898027i
\(63\) −11.4853 5.48528i −1.44701 0.691080i
\(64\) 1.00000i 0.125000i
\(65\) 2.82843 + 5.65685i 0.350823 + 0.701646i
\(66\) −2.00000 1.41421i −0.246183 0.174078i
\(67\) 10.0000 + 10.0000i 1.22169 + 1.22169i 0.967029 + 0.254665i \(0.0819652\pi\)
0.254665 + 0.967029i \(0.418035\pi\)
\(68\) −0.707107 0.707107i −0.0857493 0.0857493i
\(69\) 0 0
\(70\) 3.00000 9.00000i 0.358569 1.07571i
\(71\) 11.3137i 1.34269i 0.741145 + 0.671345i \(0.234283\pi\)
−0.741145 + 0.671345i \(0.765717\pi\)
\(72\) 2.70711 + 1.29289i 0.319036 + 0.152369i
\(73\) −3.00000 + 3.00000i −0.351123 + 0.351123i −0.860527 0.509404i \(-0.829866\pi\)
0.509404 + 0.860527i \(0.329866\pi\)
\(74\) 2.82843 0.328798
\(75\) −7.70711 3.94975i −0.889940 0.456078i
\(76\) −8.00000 −0.917663
\(77\) 4.24264 4.24264i 0.483494 0.483494i
\(78\) −0.828427 4.82843i −0.0938009 0.546712i
\(79\) 14.0000i 1.57512i −0.616236 0.787562i \(-0.711343\pi\)
0.616236 0.787562i \(-0.288657\pi\)
\(80\) −0.707107 + 2.12132i −0.0790569 + 0.237171i
\(81\) 7.00000 5.65685i 0.777778 0.628539i
\(82\) −6.00000 6.00000i −0.662589 0.662589i
\(83\) 8.48528 + 8.48528i 0.931381 + 0.931381i 0.997792 0.0664117i \(-0.0211551\pi\)
−0.0664117 + 0.997792i \(0.521155\pi\)
\(84\) −4.24264 + 6.00000i −0.462910 + 0.654654i
\(85\) −1.00000 2.00000i −0.108465 0.216930i
\(86\) 0 0
\(87\) −7.24264 + 1.24264i −0.776493 + 0.133225i
\(88\) −1.00000 + 1.00000i −0.106600 + 0.106600i
\(89\) 2.82843 0.299813 0.149906 0.988700i \(-0.452103\pi\)
0.149906 + 0.988700i \(0.452103\pi\)
\(90\) 4.82843 + 4.65685i 0.508961 + 0.490876i
\(91\) 12.0000 1.25794
\(92\) 0 0
\(93\) 17.0711 2.92893i 1.77019 0.303716i
\(94\) 4.00000i 0.412568i
\(95\) −16.9706 5.65685i −1.74114 0.580381i
\(96\) 1.00000 1.41421i 0.102062 0.144338i
\(97\) −3.00000 3.00000i −0.304604 0.304604i 0.538208 0.842812i \(-0.319101\pi\)
−0.842812 + 0.538208i \(0.819101\pi\)
\(98\) −7.77817 7.77817i −0.785714 0.785714i
\(99\) 1.41421 + 4.00000i 0.142134 + 0.402015i
\(100\) −3.00000 + 4.00000i −0.300000 + 0.400000i
\(101\) 4.24264i 0.422159i 0.977469 + 0.211079i \(0.0676978\pi\)
−0.977469 + 0.211079i \(0.932302\pi\)
\(102\) 0.292893 + 1.70711i 0.0290008 + 0.169029i
\(103\) −3.00000 + 3.00000i −0.295599 + 0.295599i −0.839287 0.543688i \(-0.817027\pi\)
0.543688 + 0.839287i \(0.317027\pi\)
\(104\) −2.82843 −0.277350
\(105\) −13.2426 + 9.72792i −1.29235 + 0.949348i
\(106\) 8.00000 0.777029
\(107\) −14.1421 + 14.1421i −1.36717 + 1.36717i −0.502726 + 0.864446i \(0.667670\pi\)
−0.864446 + 0.502726i \(0.832330\pi\)
\(108\) −2.53553 4.53553i −0.243982 0.436432i
\(109\) 2.00000i 0.191565i 0.995402 + 0.0957826i \(0.0305354\pi\)
−0.995402 + 0.0957826i \(0.969465\pi\)
\(110\) −2.82843 + 1.41421i −0.269680 + 0.134840i
\(111\) −4.00000 2.82843i −0.379663 0.268462i
\(112\) 3.00000 + 3.00000i 0.283473 + 0.283473i
\(113\) 1.41421 + 1.41421i 0.133038 + 0.133038i 0.770490 0.637452i \(-0.220012\pi\)
−0.637452 + 0.770490i \(0.720012\pi\)
\(114\) 11.3137 + 8.00000i 1.05963 + 0.749269i
\(115\) 0 0
\(116\) 4.24264i 0.393919i
\(117\) −3.65685 + 7.65685i −0.338076 + 0.707876i
\(118\) −7.00000 + 7.00000i −0.644402 + 0.644402i
\(119\) −4.24264 −0.388922
\(120\) 3.12132 2.29289i 0.284936 0.209312i
\(121\) 9.00000 0.818182
\(122\) −7.07107 + 7.07107i −0.640184 + 0.640184i
\(123\) 2.48528 + 14.4853i 0.224090 + 1.30609i
\(124\) 10.0000i 0.898027i
\(125\) −9.19239 + 6.36396i −0.822192 + 0.569210i
\(126\) 12.0000 4.24264i 1.06904 0.377964i
\(127\) −3.00000 3.00000i −0.266207 0.266207i 0.561363 0.827570i \(-0.310277\pi\)
−0.827570 + 0.561363i \(0.810277\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) 0 0
\(130\) −6.00000 2.00000i −0.526235 0.175412i
\(131\) 9.89949i 0.864923i −0.901652 0.432461i \(-0.857645\pi\)
0.901652 0.432461i \(-0.142355\pi\)
\(132\) 2.41421 0.414214i 0.210130 0.0360527i
\(133\) −24.0000 + 24.0000i −2.08106 + 2.08106i
\(134\) −14.1421 −1.22169
\(135\) −2.17157 11.4142i −0.186899 0.982379i
\(136\) 1.00000 0.0857493
\(137\) −4.24264 + 4.24264i −0.362473 + 0.362473i −0.864723 0.502249i \(-0.832506\pi\)
0.502249 + 0.864723i \(0.332506\pi\)
\(138\) 0 0
\(139\) 12.0000i 1.01783i 0.860818 + 0.508913i \(0.169953\pi\)
−0.860818 + 0.508913i \(0.830047\pi\)
\(140\) 4.24264 + 8.48528i 0.358569 + 0.717137i
\(141\) 4.00000 5.65685i 0.336861 0.476393i
\(142\) −8.00000 8.00000i −0.671345 0.671345i
\(143\) −2.82843 2.82843i −0.236525 0.236525i
\(144\) −2.82843 + 1.00000i −0.235702 + 0.0833333i
\(145\) −3.00000 + 9.00000i −0.249136 + 0.747409i
\(146\) 4.24264i 0.351123i
\(147\) 3.22183 + 18.7782i 0.265732 + 1.54880i
\(148\) −2.00000 + 2.00000i −0.164399 + 0.164399i
\(149\) 1.41421 0.115857 0.0579284 0.998321i \(-0.481550\pi\)
0.0579284 + 0.998321i \(0.481550\pi\)
\(150\) 8.24264 2.65685i 0.673009 0.216931i
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 5.65685 5.65685i 0.458831 0.458831i
\(153\) 1.29289 2.70711i 0.104524 0.218857i
\(154\) 6.00000i 0.483494i
\(155\) 7.07107 21.2132i 0.567962 1.70389i
\(156\) 4.00000 + 2.82843i 0.320256 + 0.226455i
\(157\) −10.0000 10.0000i −0.798087 0.798087i 0.184707 0.982794i \(-0.440866\pi\)
−0.982794 + 0.184707i \(0.940866\pi\)
\(158\) 9.89949 + 9.89949i 0.787562 + 0.787562i
\(159\) −11.3137 8.00000i −0.897235 0.634441i
\(160\) −1.00000 2.00000i −0.0790569 0.158114i
\(161\) 0 0
\(162\) −0.949747 + 8.94975i −0.0746192 + 0.703159i
\(163\) 4.00000 4.00000i 0.313304 0.313304i −0.532884 0.846188i \(-0.678892\pi\)
0.846188 + 0.532884i \(0.178892\pi\)
\(164\) 8.48528 0.662589
\(165\) 5.41421 + 0.828427i 0.421496 + 0.0644930i
\(166\) −12.0000 −0.931381
\(167\) 11.3137 11.3137i 0.875481 0.875481i −0.117582 0.993063i \(-0.537514\pi\)
0.993063 + 0.117582i \(0.0375143\pi\)
\(168\) −1.24264 7.24264i −0.0958718 0.558782i
\(169\) 5.00000i 0.384615i
\(170\) 2.12132 + 0.707107i 0.162698 + 0.0542326i
\(171\) −8.00000 22.6274i −0.611775 1.73036i
\(172\) 0 0
\(173\) −9.89949 9.89949i −0.752645 0.752645i 0.222327 0.974972i \(-0.428635\pi\)
−0.974972 + 0.222327i \(0.928635\pi\)
\(174\) 4.24264 6.00000i 0.321634 0.454859i
\(175\) 3.00000 + 21.0000i 0.226779 + 1.58745i
\(176\) 1.41421i 0.106600i
\(177\) 16.8995 2.89949i 1.27024 0.217939i
\(178\) −2.00000 + 2.00000i −0.149906 + 0.149906i
\(179\) 21.2132 1.58555 0.792775 0.609515i \(-0.208636\pi\)
0.792775 + 0.609515i \(0.208636\pi\)
\(180\) −6.70711 + 0.121320i −0.499918 + 0.00904268i
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) −8.48528 + 8.48528i −0.628971 + 0.628971i
\(183\) 17.0711 2.92893i 1.26193 0.216513i
\(184\) 0 0
\(185\) −5.65685 + 2.82843i −0.415900 + 0.207950i
\(186\) −10.0000 + 14.1421i −0.733236 + 1.03695i
\(187\) 1.00000 + 1.00000i 0.0731272 + 0.0731272i
\(188\) −2.82843 2.82843i −0.206284 0.206284i
\(189\) −21.2132 6.00000i −1.54303 0.436436i
\(190\) 16.0000 8.00000i 1.16076 0.580381i
\(191\) 2.82843i 0.204658i −0.994751 0.102329i \(-0.967371\pi\)
0.994751 0.102329i \(-0.0326294\pi\)
\(192\) 0.292893 + 1.70711i 0.0211377 + 0.123200i
\(193\) 3.00000 3.00000i 0.215945 0.215945i −0.590842 0.806787i \(-0.701204\pi\)
0.806787 + 0.590842i \(0.201204\pi\)
\(194\) 4.24264 0.304604
\(195\) 6.48528 + 8.82843i 0.464421 + 0.632217i
\(196\) 11.0000 0.785714
\(197\) −11.3137 + 11.3137i −0.806068 + 0.806068i −0.984036 0.177968i \(-0.943048\pi\)
0.177968 + 0.984036i \(0.443048\pi\)
\(198\) −3.82843 1.82843i −0.272074 0.129941i
\(199\) 16.0000i 1.13421i 0.823646 + 0.567105i \(0.191937\pi\)
−0.823646 + 0.567105i \(0.808063\pi\)
\(200\) −0.707107 4.94975i −0.0500000 0.350000i
\(201\) 20.0000 + 14.1421i 1.41069 + 0.997509i
\(202\) −3.00000 3.00000i −0.211079 0.211079i
\(203\) 12.7279 + 12.7279i 0.893325 + 0.893325i
\(204\) −1.41421 1.00000i −0.0990148 0.0700140i
\(205\) 18.0000 + 6.00000i 1.25717 + 0.419058i
\(206\) 4.24264i 0.295599i
\(207\) 0 0
\(208\) 2.00000 2.00000i 0.138675 0.138675i
\(209\) 11.3137 0.782586
\(210\) 2.48528 16.2426i 0.171501 1.12085i
\(211\) −8.00000 −0.550743 −0.275371 0.961338i \(-0.588801\pi\)
−0.275371 + 0.961338i \(0.588801\pi\)
\(212\) −5.65685 + 5.65685i −0.388514 + 0.388514i
\(213\) 3.31371 + 19.3137i 0.227052 + 1.32335i
\(214\) 20.0000i 1.36717i
\(215\) 0 0
\(216\) 5.00000 + 1.41421i 0.340207 + 0.0962250i
\(217\) −30.0000 30.0000i −2.03653 2.03653i
\(218\) −1.41421 1.41421i −0.0957826 0.0957826i
\(219\) −4.24264 + 6.00000i −0.286691 + 0.405442i
\(220\) 1.00000 3.00000i 0.0674200 0.202260i
\(221\) 2.82843i 0.190261i
\(222\) 4.82843 0.828427i 0.324063 0.0556004i
\(223\) 3.00000 3.00000i 0.200895 0.200895i −0.599489 0.800383i \(-0.704629\pi\)
0.800383 + 0.599489i \(0.204629\pi\)
\(224\) −4.24264 −0.283473
\(225\) −14.3137 4.48528i −0.954247 0.299019i
\(226\) −2.00000 −0.133038
\(227\) 1.41421 1.41421i 0.0938647 0.0938647i −0.658615 0.752480i \(-0.728857\pi\)
0.752480 + 0.658615i \(0.228857\pi\)
\(228\) −13.6569 + 2.34315i −0.904447 + 0.155179i
\(229\) 2.00000i 0.132164i −0.997814 0.0660819i \(-0.978950\pi\)
0.997814 0.0660819i \(-0.0210498\pi\)
\(230\) 0 0
\(231\) 6.00000 8.48528i 0.394771 0.558291i
\(232\) −3.00000 3.00000i −0.196960 0.196960i
\(233\) 7.07107 + 7.07107i 0.463241 + 0.463241i 0.899716 0.436475i \(-0.143773\pi\)
−0.436475 + 0.899716i \(0.643773\pi\)
\(234\) −2.82843 8.00000i −0.184900 0.522976i
\(235\) −4.00000 8.00000i −0.260931 0.521862i
\(236\) 9.89949i 0.644402i
\(237\) −4.10051 23.8995i −0.266356 1.55244i
\(238\) 3.00000 3.00000i 0.194461 0.194461i
\(239\) 2.82843 0.182956 0.0914779 0.995807i \(-0.470841\pi\)
0.0914779 + 0.995807i \(0.470841\pi\)
\(240\) −0.585786 + 3.82843i −0.0378124 + 0.247124i
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) −6.36396 + 6.36396i −0.409091 + 0.409091i
\(243\) 10.2929 11.7071i 0.660289 0.751011i
\(244\) 10.0000i 0.640184i
\(245\) 23.3345 + 7.77817i 1.49079 + 0.496929i
\(246\) −12.0000 8.48528i −0.765092 0.541002i
\(247\) 16.0000 + 16.0000i 1.01806 + 1.01806i
\(248\) 7.07107 + 7.07107i 0.449013 + 0.449013i
\(249\) 16.9706 + 12.0000i 1.07547 + 0.760469i
\(250\) 2.00000 11.0000i 0.126491 0.695701i
\(251\) 15.5563i 0.981908i −0.871185 0.490954i \(-0.836648\pi\)
0.871185 0.490954i \(-0.163352\pi\)
\(252\) −5.48528 + 11.4853i −0.345540 + 0.723505i
\(253\) 0 0
\(254\) 4.24264 0.266207
\(255\) −2.29289 3.12132i −0.143587 0.195465i
\(256\) 1.00000 0.0625000
\(257\) 4.24264 4.24264i 0.264649 0.264649i −0.562291 0.826940i \(-0.690080\pi\)
0.826940 + 0.562291i \(0.190080\pi\)
\(258\) 0 0
\(259\) 12.0000i 0.745644i
\(260\) 5.65685 2.82843i 0.350823 0.175412i
\(261\) −12.0000 + 4.24264i −0.742781 + 0.262613i
\(262\) 7.00000 + 7.00000i 0.432461 + 0.432461i
\(263\) −11.3137 11.3137i −0.697633 0.697633i 0.266266 0.963899i \(-0.414210\pi\)
−0.963899 + 0.266266i \(0.914210\pi\)
\(264\) −1.41421 + 2.00000i −0.0870388 + 0.123091i
\(265\) −16.0000 + 8.00000i −0.982872 + 0.491436i
\(266\) 33.9411i 2.08106i
\(267\) 4.82843 0.828427i 0.295495 0.0506989i
\(268\) 10.0000 10.0000i 0.610847 0.610847i
\(269\) −18.3848 −1.12094 −0.560470 0.828175i \(-0.689379\pi\)
−0.560470 + 0.828175i \(0.689379\pi\)
\(270\) 9.60660 + 6.53553i 0.584639 + 0.397740i
\(271\) 8.00000 0.485965 0.242983 0.970031i \(-0.421874\pi\)
0.242983 + 0.970031i \(0.421874\pi\)
\(272\) −0.707107 + 0.707107i −0.0428746 + 0.0428746i
\(273\) 20.4853 3.51472i 1.23983 0.212720i
\(274\) 6.00000i 0.362473i
\(275\) 4.24264 5.65685i 0.255841 0.341121i
\(276\) 0 0
\(277\) −10.0000 10.0000i −0.600842 0.600842i 0.339694 0.940536i \(-0.389676\pi\)
−0.940536 + 0.339694i \(0.889676\pi\)
\(278\) −8.48528 8.48528i −0.508913 0.508913i
\(279\) 28.2843 10.0000i 1.69334 0.598684i
\(280\) −9.00000 3.00000i −0.537853 0.179284i
\(281\) 19.7990i 1.18111i −0.806998 0.590554i \(-0.798909\pi\)
0.806998 0.590554i \(-0.201091\pi\)
\(282\) 1.17157 + 6.82843i 0.0697661 + 0.406627i
\(283\) 20.0000 20.0000i 1.18888 1.18888i 0.211498 0.977378i \(-0.432166\pi\)
0.977378 0.211498i \(-0.0678343\pi\)
\(284\) 11.3137 0.671345
\(285\) −30.6274 4.68629i −1.81421 0.277592i
\(286\) 4.00000 0.236525
\(287\) 25.4558 25.4558i 1.50261 1.50261i
\(288\) 1.29289 2.70711i 0.0761845 0.159518i
\(289\) 1.00000i 0.0588235i
\(290\) −4.24264 8.48528i −0.249136 0.498273i
\(291\) −6.00000 4.24264i −0.351726 0.248708i
\(292\) 3.00000 + 3.00000i 0.175562 + 0.175562i
\(293\) 2.82843 + 2.82843i 0.165238 + 0.165238i 0.784883 0.619644i \(-0.212723\pi\)
−0.619644 + 0.784883i \(0.712723\pi\)
\(294\) −15.5563 11.0000i −0.907265 0.641533i
\(295\) 7.00000 21.0000i 0.407556 1.22267i
\(296\) 2.82843i 0.164399i
\(297\) 3.58579 + 6.41421i 0.208068 + 0.372190i
\(298\) −1.00000 + 1.00000i −0.0579284 + 0.0579284i
\(299\) 0 0
\(300\) −3.94975 + 7.70711i −0.228039 + 0.444970i
\(301\) 0 0
\(302\) 0 0
\(303\) 1.24264 + 7.24264i 0.0713878 + 0.416079i
\(304\) 8.00000i 0.458831i
\(305\) 7.07107 21.2132i 0.404888 1.21466i
\(306\) 1.00000 + 2.82843i 0.0571662 + 0.161690i
\(307\) 8.00000 + 8.00000i 0.456584 + 0.456584i 0.897532 0.440948i \(-0.145358\pi\)
−0.440948 + 0.897532i \(0.645358\pi\)
\(308\) −4.24264 4.24264i −0.241747 0.241747i
\(309\) −4.24264 + 6.00000i −0.241355 + 0.341328i
\(310\) 10.0000 + 20.0000i 0.567962 + 1.13592i
\(311\) 5.65685i 0.320771i 0.987054 + 0.160385i \(0.0512737\pi\)
−0.987054 + 0.160385i \(0.948726\pi\)
\(312\) −4.82843 + 0.828427i −0.273356 + 0.0469005i
\(313\) −21.0000 + 21.0000i −1.18699 + 1.18699i −0.209095 + 0.977895i \(0.567052\pi\)
−0.977895 + 0.209095i \(0.932948\pi\)
\(314\) 14.1421 0.798087
\(315\) −19.7574 + 20.4853i −1.11320 + 1.15421i
\(316\) −14.0000 −0.787562
\(317\) 1.41421 1.41421i 0.0794301 0.0794301i −0.666276 0.745706i \(-0.732113\pi\)
0.745706 + 0.666276i \(0.232113\pi\)
\(318\) 13.6569 2.34315i 0.765838 0.131397i
\(319\) 6.00000i 0.335936i
\(320\) 2.12132 + 0.707107i 0.118585 + 0.0395285i
\(321\) −20.0000 + 28.2843i −1.11629 + 1.57867i
\(322\) 0 0
\(323\) −5.65685 5.65685i −0.314756 0.314756i
\(324\) −5.65685 7.00000i −0.314270 0.388889i
\(325\) 14.0000 2.00000i 0.776580 0.110940i
\(326\) 5.65685i 0.313304i
\(327\) 0.585786 + 3.41421i 0.0323941 + 0.188806i
\(328\) −6.00000 + 6.00000i −0.331295 + 0.331295i
\(329\) −16.9706 −0.935617
\(330\) −4.41421 + 3.24264i −0.242994 + 0.178501i
\(331\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(332\) 8.48528 8.48528i 0.465690 0.465690i
\(333\) −7.65685 3.65685i −0.419593 0.200394i
\(334\) 16.0000i 0.875481i
\(335\) 28.2843 14.1421i 1.54533 0.772667i
\(336\) 6.00000 + 4.24264i 0.327327 + 0.231455i
\(337\) 1.00000 + 1.00000i 0.0544735 + 0.0544735i 0.733819 0.679345i \(-0.237736\pi\)
−0.679345 + 0.733819i \(0.737736\pi\)
\(338\) −3.53553 3.53553i −0.192308 0.192308i
\(339\) 2.82843 + 2.00000i 0.153619 + 0.108625i
\(340\) −2.00000 + 1.00000i −0.108465 + 0.0542326i
\(341\) 14.1421i 0.765840i
\(342\) 21.6569 + 10.3431i 1.17107 + 0.559293i
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 14.0000 0.752645
\(347\) −9.89949 + 9.89949i −0.531433 + 0.531433i −0.920999 0.389566i \(-0.872625\pi\)
0.389566 + 0.920999i \(0.372625\pi\)
\(348\) 1.24264 + 7.24264i 0.0666125 + 0.388246i
\(349\) 6.00000i 0.321173i 0.987022 + 0.160586i \(0.0513385\pi\)
−0.987022 + 0.160586i \(0.948662\pi\)
\(350\) −16.9706 12.7279i −0.907115 0.680336i
\(351\) −4.00000 + 14.1421i −0.213504 + 0.754851i
\(352\) 1.00000 + 1.00000i 0.0533002 + 0.0533002i
\(353\) 15.5563 + 15.5563i 0.827981 + 0.827981i 0.987237 0.159256i \(-0.0509096\pi\)
−0.159256 + 0.987237i \(0.550910\pi\)
\(354\) −9.89949 + 14.0000i −0.526152 + 0.744092i
\(355\) 24.0000 + 8.00000i 1.27379 + 0.424596i
\(356\) 2.82843i 0.149906i
\(357\) −7.24264 + 1.24264i −0.383321 + 0.0657675i
\(358\) −15.0000 + 15.0000i −0.792775 + 0.792775i
\(359\) −5.65685 −0.298557 −0.149279 0.988795i \(-0.547695\pi\)
−0.149279 + 0.988795i \(0.547695\pi\)
\(360\) 4.65685 4.82843i 0.245438 0.254480i
\(361\) −45.0000 −2.36842
\(362\) 1.41421 1.41421i 0.0743294 0.0743294i
\(363\) 15.3640 2.63604i 0.806399 0.138356i
\(364\) 12.0000i 0.628971i
\(365\) 4.24264 + 8.48528i 0.222070 + 0.444140i
\(366\) −10.0000 + 14.1421i −0.522708 + 0.739221i
\(367\) −5.00000 5.00000i −0.260998 0.260998i 0.564462 0.825459i \(-0.309084\pi\)
−0.825459 + 0.564462i \(0.809084\pi\)
\(368\) 0 0
\(369\) 8.48528 + 24.0000i 0.441726 + 1.24939i
\(370\) 2.00000 6.00000i 0.103975 0.311925i
\(371\) 33.9411i 1.76214i
\(372\) −2.92893 17.0711i −0.151858 0.885094i
\(373\) 6.00000 6.00000i 0.310668 0.310668i −0.534500 0.845168i \(-0.679500\pi\)
0.845168 + 0.534500i \(0.179500\pi\)
\(374\) −1.41421 −0.0731272
\(375\) −13.8284 + 13.5563i −0.714097 + 0.700047i
\(376\) 4.00000 0.206284
\(377\) 8.48528 8.48528i 0.437014 0.437014i
\(378\) 19.2426 10.7574i 0.989735 0.553299i
\(379\) 28.0000i 1.43826i −0.694874 0.719132i \(-0.744540\pi\)
0.694874 0.719132i \(-0.255460\pi\)
\(380\) −5.65685 + 16.9706i −0.290191 + 0.870572i
\(381\) −6.00000 4.24264i −0.307389 0.217357i
\(382\) 2.00000 + 2.00000i 0.102329 + 0.102329i
\(383\) −11.3137 11.3137i −0.578103 0.578103i 0.356277 0.934380i \(-0.384046\pi\)
−0.934380 + 0.356277i \(0.884046\pi\)
\(384\) −1.41421 1.00000i −0.0721688 0.0510310i
\(385\) −6.00000 12.0000i −0.305788 0.611577i
\(386\) 4.24264i 0.215945i
\(387\) 0 0
\(388\) −3.00000 + 3.00000i −0.152302 + 0.152302i
\(389\) 15.5563 0.788738 0.394369 0.918952i \(-0.370963\pi\)
0.394369 + 0.918952i \(0.370963\pi\)
\(390\) −10.8284 1.65685i −0.548319 0.0838981i
\(391\) 0 0
\(392\) −7.77817 + 7.77817i −0.392857 + 0.392857i
\(393\) −2.89949 16.8995i −0.146260 0.852467i
\(394\) 16.0000i 0.806068i
\(395\) −29.6985 9.89949i −1.49429 0.498098i
\(396\) 4.00000 1.41421i 0.201008 0.0710669i
\(397\) 18.0000 + 18.0000i 0.903394 + 0.903394i 0.995728 0.0923340i \(-0.0294327\pi\)
−0.0923340 + 0.995728i \(0.529433\pi\)
\(398\) −11.3137 11.3137i −0.567105 0.567105i
\(399\) −33.9411 + 48.0000i −1.69918 + 2.40301i
\(400\) 4.00000 + 3.00000i 0.200000 + 0.150000i
\(401\) 28.2843i 1.41245i 0.707988 + 0.706225i \(0.249603\pi\)
−0.707988 + 0.706225i \(0.750397\pi\)
\(402\) −24.1421 + 4.14214i −1.20410 + 0.206591i
\(403\) −20.0000 + 20.0000i −0.996271 + 0.996271i
\(404\) 4.24264 0.211079
\(405\) −7.05025 18.8492i −0.350330 0.936626i
\(406\) −18.0000 −0.893325
\(407\) 2.82843 2.82843i 0.140200 0.140200i
\(408\) 1.70711 0.292893i 0.0845144 0.0145004i
\(409\) 16.0000i 0.791149i 0.918434 + 0.395575i \(0.129455\pi\)
−0.918434 + 0.395575i \(0.870545\pi\)
\(410\) −16.9706 + 8.48528i −0.838116 + 0.419058i
\(411\) −6.00000 + 8.48528i −0.295958 + 0.418548i
\(412\) 3.00000 + 3.00000i 0.147799 + 0.147799i
\(413\) −29.6985 29.6985i −1.46137 1.46137i
\(414\) 0 0
\(415\) 24.0000 12.0000i 1.17811 0.589057i
\(416\) 2.82843i 0.138675i
\(417\) 3.51472 + 20.4853i 0.172117 + 1.00317i
\(418\) −8.00000 + 8.00000i −0.391293 + 0.391293i
\(419\) −38.1838 −1.86540 −0.932700 0.360654i \(-0.882553\pi\)
−0.932700 + 0.360654i \(0.882553\pi\)
\(420\) 9.72792 + 13.2426i 0.474674 + 0.646175i
\(421\) 26.0000 1.26716 0.633581 0.773676i \(-0.281584\pi\)
0.633581 + 0.773676i \(0.281584\pi\)
\(422\) 5.65685 5.65685i 0.275371 0.275371i
\(423\) 5.17157 10.8284i 0.251450 0.526496i
\(424\) 8.00000i 0.388514i
\(425\) −4.94975 + 0.707107i −0.240098 + 0.0342997i
\(426\) −16.0000 11.3137i −0.775203 0.548151i
\(427\) −30.0000 30.0000i −1.45180 1.45180i
\(428\) 14.1421 + 14.1421i 0.683586 + 0.683586i
\(429\) −5.65685 4.00000i −0.273115 0.193122i
\(430\) 0 0
\(431\) 31.1127i 1.49865i −0.662205 0.749323i \(-0.730379\pi\)
0.662205 0.749323i \(-0.269621\pi\)
\(432\) −4.53553 + 2.53553i −0.218216 + 0.121991i
\(433\) 3.00000 3.00000i 0.144171 0.144171i −0.631337 0.775508i \(-0.717494\pi\)
0.775508 + 0.631337i \(0.217494\pi\)
\(434\) 42.4264 2.03653
\(435\) −2.48528 + 16.2426i −0.119160 + 0.778775i
\(436\) 2.00000 0.0957826
\(437\) 0 0
\(438\) −1.24264 7.24264i −0.0593757 0.346067i
\(439\) 32.0000i 1.52728i 0.645644 + 0.763638i \(0.276589\pi\)
−0.645644 + 0.763638i \(0.723411\pi\)
\(440\) 1.41421 + 2.82843i 0.0674200 + 0.134840i
\(441\) 11.0000 + 31.1127i 0.523810 + 1.48156i
\(442\) −2.00000 2.00000i −0.0951303 0.0951303i
\(443\) 29.6985 + 29.6985i 1.41102 + 1.41102i 0.753020 + 0.657997i \(0.228596\pi\)
0.657997 + 0.753020i \(0.271404\pi\)
\(444\) −2.82843 + 4.00000i −0.134231 + 0.189832i
\(445\) 2.00000 6.00000i 0.0948091 0.284427i
\(446\) 4.24264i 0.200895i
\(447\) 2.41421 0.414214i 0.114188 0.0195916i
\(448\) 3.00000 3.00000i 0.141737 0.141737i
\(449\) −16.9706 −0.800890 −0.400445 0.916321i \(-0.631145\pi\)
−0.400445 + 0.916321i \(0.631145\pi\)
\(450\) 13.2929 6.94975i 0.626633 0.327614i
\(451\) −12.0000 −0.565058
\(452\) 1.41421 1.41421i 0.0665190 0.0665190i
\(453\) 0 0
\(454\) 2.00000i 0.0938647i
\(455\) 8.48528 25.4558i 0.397796 1.19339i
\(456\) 8.00000 11.3137i 0.374634 0.529813i
\(457\) 13.0000 + 13.0000i 0.608114 + 0.608114i 0.942453 0.334339i \(-0.108513\pi\)
−0.334339 + 0.942453i \(0.608513\pi\)
\(458\) 1.41421 + 1.41421i 0.0660819 + 0.0660819i
\(459\) 1.41421 5.00000i 0.0660098 0.233380i
\(460\) 0 0
\(461\) 35.3553i 1.64666i 0.567561 + 0.823331i \(0.307887\pi\)
−0.567561 + 0.823331i \(0.692113\pi\)
\(462\) 1.75736 + 10.2426i 0.0817598 + 0.476531i
\(463\) 9.00000 9.00000i 0.418265 0.418265i −0.466340 0.884606i \(-0.654428\pi\)
0.884606 + 0.466340i \(0.154428\pi\)
\(464\) 4.24264 0.196960
\(465\) 5.85786 38.2843i 0.271652 1.77539i
\(466\) −10.0000 −0.463241
\(467\) 2.82843 2.82843i 0.130884 0.130884i −0.638630 0.769514i \(-0.720499\pi\)
0.769514 + 0.638630i \(0.220499\pi\)
\(468\) 7.65685 + 3.65685i 0.353938 + 0.169038i
\(469\) 60.0000i 2.77054i
\(470\) 8.48528 + 2.82843i 0.391397 + 0.130466i
\(471\) −20.0000 14.1421i −0.921551 0.651635i
\(472\) 7.00000 + 7.00000i 0.322201 + 0.322201i
\(473\) 0 0
\(474\) 19.7990 + 14.0000i 0.909398 + 0.643041i
\(475\) −24.0000 + 32.0000i −1.10120 + 1.46826i
\(476\) 4.24264i 0.194461i
\(477\) −21.6569 10.3431i −0.991599 0.473580i
\(478\) −2.00000 + 2.00000i −0.0914779 + 0.0914779i
\(479\) −28.2843 −1.29234 −0.646171 0.763193i \(-0.723631\pi\)
−0.646171 + 0.763193i \(0.723631\pi\)
\(480\) −2.29289 3.12132i −0.104656 0.142468i
\(481\) 8.00000 0.364769
\(482\) 0 0
\(483\) 0 0
\(484\) 9.00000i 0.409091i
\(485\) −8.48528 + 4.24264i −0.385297 + 0.192648i
\(486\) 1.00000 + 15.5563i 0.0453609 + 0.705650i
\(487\) 23.0000 + 23.0000i 1.04223 + 1.04223i 0.999068 + 0.0431614i \(0.0137430\pi\)
0.0431614 + 0.999068i \(0.486257\pi\)
\(488\) 7.07107 + 7.07107i 0.320092 + 0.320092i
\(489\) 5.65685 8.00000i 0.255812 0.361773i
\(490\) −22.0000 + 11.0000i −0.993859 + 0.496929i
\(491\) 26.8701i 1.21263i 0.795225 + 0.606314i \(0.207353\pi\)
−0.795225 + 0.606314i \(0.792647\pi\)
\(492\) 14.4853 2.48528i 0.653047 0.112045i
\(493\) −3.00000 + 3.00000i −0.135113 + 0.135113i
\(494\) −22.6274 −1.01806
\(495\) 9.48528 0.171573i 0.426332 0.00771163i
\(496\) −10.0000 −0.449013
\(497\) 33.9411 33.9411i 1.52247 1.52247i
\(498\) −20.4853 + 3.51472i −0.917967 + 0.157498i
\(499\) 28.0000i 1.25345i −0.779240 0.626726i \(-0.784395\pi\)
0.779240 0.626726i \(-0.215605\pi\)
\(500\) 6.36396 + 9.19239i 0.284605 + 0.411096i
\(501\) 16.0000 22.6274i 0.714827 1.01092i
\(502\) 11.0000 + 11.0000i 0.490954 + 0.490954i
\(503\) 14.1421 + 14.1421i 0.630567 + 0.630567i 0.948210 0.317644i \(-0.102892\pi\)
−0.317644 + 0.948210i \(0.602892\pi\)
\(504\) −4.24264 12.0000i −0.188982 0.534522i
\(505\) 9.00000 + 3.00000i 0.400495 + 0.133498i
\(506\) 0 0
\(507\) 1.46447 + 8.53553i 0.0650392 + 0.379076i
\(508\) −3.00000 + 3.00000i −0.133103 + 0.133103i
\(509\) −18.3848 −0.814891 −0.407445 0.913230i \(-0.633580\pi\)
−0.407445 + 0.913230i \(0.633580\pi\)
\(510\) 3.82843 + 0.585786i 0.169526 + 0.0259391i
\(511\) 18.0000 0.796273
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −20.2843 36.2843i −0.895572 1.60199i
\(514\) 6.00000i 0.264649i
\(515\) 4.24264 + 8.48528i 0.186953 + 0.373906i
\(516\) 0 0
\(517\) 4.00000 + 4.00000i 0.175920 + 0.175920i
\(518\) −8.48528 8.48528i −0.372822 0.372822i
\(519\) −19.7990 14.0000i −0.869079 0.614532i
\(520\) −2.00000 + 6.00000i −0.0877058 + 0.263117i
\(521\) 22.6274i 0.991325i −0.868515 0.495663i \(-0.834925\pi\)
0.868515 0.495663i \(-0.165075\pi\)
\(522\) 5.48528 11.4853i 0.240084 0.502697i
\(523\) 6.00000 6.00000i 0.262362 0.262362i −0.563651 0.826013i \(-0.690604\pi\)
0.826013 + 0.563651i \(0.190604\pi\)
\(524\) −9.89949 −0.432461
\(525\) 11.2721 + 34.9706i 0.491954 + 1.52624i
\(526\) 16.0000 0.697633
\(527\) 7.07107 7.07107i 0.308021 0.308021i
\(528\) −0.414214 2.41421i −0.0180263 0.105065i
\(529\) 23.0000i 1.00000i
\(530\) 5.65685 16.9706i 0.245718 0.737154i
\(531\) 28.0000 9.89949i 1.21510 0.429601i
\(532\) 24.0000 + 24.0000i 1.04053 + 1.04053i
\(533\) −16.9706 16.9706i −0.735077 0.735077i
\(534\) −2.82843 + 4.00000i −0.122398 + 0.173097i
\(535\) 20.0000 + 40.0000i 0.864675 + 1.72935i
\(536\) 14.1421i 0.610847i
\(537\) 36.2132 6.21320i 1.56272 0.268120i
\(538\) 13.0000 13.0000i 0.560470 0.560470i
\(539\) −15.5563 −0.670059
\(540\) −11.4142 + 2.17157i −0.491190 + 0.0934496i
\(541\) 6.00000 0.257960 0.128980 0.991647i \(-0.458830\pi\)
0.128980 + 0.991647i \(0.458830\pi\)
\(542\) −5.65685 + 5.65685i −0.242983 + 0.242983i
\(543\) −3.41421 + 0.585786i −0.146518 + 0.0251385i
\(544\) 1.00000i 0.0428746i
\(545\) 4.24264 + 1.41421i 0.181735 + 0.0605783i
\(546\) −12.0000 + 16.9706i −0.513553 + 0.726273i
\(547\) −26.0000 26.0000i −1.11168 1.11168i −0.992923 0.118756i \(-0.962109\pi\)
−0.118756 0.992923i \(-0.537891\pi\)
\(548\) 4.24264 + 4.24264i 0.181237 + 0.181237i
\(549\) 28.2843 10.0000i 1.20714 0.426790i
\(550\) 1.00000 + 7.00000i 0.0426401 + 0.298481i
\(551\) 33.9411i 1.44594i
\(552\) 0 0
\(553\) −42.0000 + 42.0000i −1.78602 + 1.78602i
\(554\) 14.1421 0.600842
\(555\) −8.82843 + 6.48528i −0.374746 + 0.275285i
\(556\) 12.0000 0.508913
\(557\) −8.48528 + 8.48528i −0.359533 + 0.359533i −0.863641 0.504108i \(-0.831821\pi\)
0.504108 + 0.863641i \(0.331821\pi\)
\(558\) −12.9289 + 27.0711i −0.547325 + 1.14601i
\(559\) 0 0
\(560\) 8.48528 4.24264i 0.358569 0.179284i
\(561\) 2.00000 + 1.41421i 0.0844401 + 0.0597081i
\(562\) 14.0000 + 14.0000i 0.590554 + 0.590554i
\(563\) −7.07107 7.07107i −0.298010 0.298010i 0.542224 0.840234i \(-0.317582\pi\)
−0.840234 + 0.542224i \(0.817582\pi\)
\(564\) −5.65685 4.00000i −0.238197 0.168430i
\(565\) 4.00000 2.00000i 0.168281 0.0841406i
\(566\) 28.2843i 1.18888i
\(567\) −37.9706 4.02944i −1.59461 0.169220i
\(568\) −8.00000 + 8.00000i −0.335673 + 0.335673i
\(569\) −2.82843 −0.118574 −0.0592869 0.998241i \(-0.518883\pi\)
−0.0592869 + 0.998241i \(0.518883\pi\)
\(570\) 24.9706 18.3431i 1.04590 0.768310i
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) −2.82843 + 2.82843i −0.118262 + 0.118262i
\(573\) −0.828427 4.82843i −0.0346080 0.201710i
\(574\) 36.0000i 1.50261i
\(575\) 0 0
\(576\) 1.00000 + 2.82843i 0.0416667 + 0.117851i
\(577\) 9.00000 + 9.00000i 0.374675 + 0.374675i 0.869177 0.494502i \(-0.164649\pi\)
−0.494502 + 0.869177i \(0.664649\pi\)
\(578\) 0.707107 + 0.707107i 0.0294118 + 0.0294118i
\(579\) 4.24264 6.00000i 0.176318 0.249351i
\(580\) 9.00000 + 3.00000i 0.373705 + 0.124568i
\(581\) 50.9117i 2.11217i
\(582\) 7.24264 1.24264i 0.300217 0.0515091i
\(583\) 8.00000 8.00000i 0.331326 0.331326i
\(584\) −4.24264 −0.175562
\(585\) 13.6569 + 13.1716i 0.564641 + 0.544578i
\(586\) −4.00000 −0.165238
\(587\) −8.48528 + 8.48528i −0.350225 + 0.350225i −0.860193 0.509968i \(-0.829657\pi\)
0.509968 + 0.860193i \(0.329657\pi\)
\(588\) 18.7782 3.22183i 0.774399 0.132866i
\(589\) 80.0000i 3.29634i
\(590\) 9.89949 + 19.7990i 0.407556 + 0.815112i
\(591\) −16.0000 + 22.6274i −0.658152 + 0.930768i
\(592\) 2.00000 + 2.00000i 0.0821995 + 0.0821995i
\(593\) −4.24264 4.24264i −0.174224 0.174224i 0.614608 0.788833i \(-0.289314\pi\)
−0.788833 + 0.614608i \(0.789314\pi\)
\(594\) −7.07107 2.00000i −0.290129 0.0820610i
\(595\) −3.00000 + 9.00000i −0.122988 + 0.368964i
\(596\) 1.41421i 0.0579284i
\(597\) 4.68629 + 27.3137i 0.191797 + 1.11788i
\(598\) 0 0
\(599\) −11.3137 −0.462266 −0.231133 0.972922i \(-0.574243\pi\)
−0.231133 + 0.972922i \(0.574243\pi\)
\(600\) −2.65685 8.24264i −0.108466 0.336504i
\(601\) −2.00000 −0.0815817 −0.0407909 0.999168i \(-0.512988\pi\)
−0.0407909 + 0.999168i \(0.512988\pi\)
\(602\) 0 0
\(603\) 38.2843 + 18.2843i 1.55906 + 0.744593i
\(604\) 0 0
\(605\) 6.36396 19.0919i 0.258732 0.776195i
\(606\) −6.00000 4.24264i −0.243733 0.172345i
\(607\) −19.0000 19.0000i −0.771186 0.771186i 0.207128 0.978314i \(-0.433588\pi\)
−0.978314 + 0.207128i \(0.933588\pi\)
\(608\) −5.65685 5.65685i −0.229416 0.229416i
\(609\) 25.4558 + 18.0000i 1.03152 + 0.729397i
\(610\) 10.0000 + 20.0000i 0.404888 + 0.809776i
\(611\) 11.3137i 0.457704i
\(612\) −2.70711 1.29289i −0.109428 0.0522621i
\(613\) 16.0000 16.0000i 0.646234 0.646234i −0.305847 0.952081i \(-0.598940\pi\)
0.952081 + 0.305847i \(0.0989395\pi\)
\(614\) −11.3137 −0.456584
\(615\) 32.4853 + 4.97056i 1.30993 + 0.200432i
\(616\) 6.00000 0.241747
\(617\) −4.24264 + 4.24264i −0.170802 + 0.170802i −0.787332 0.616530i \(-0.788538\pi\)
0.616530 + 0.787332i \(0.288538\pi\)
\(618\) −1.24264 7.24264i −0.0499863 0.291342i
\(619\) 40.0000i 1.60774i −0.594808 0.803868i \(-0.702772\pi\)
0.594808 0.803868i \(-0.297228\pi\)
\(620\) −21.2132 7.07107i −0.851943 0.283981i
\(621\) 0 0
\(622\) −4.00000 4.00000i −0.160385 0.160385i
\(623\) −8.48528 8.48528i −0.339956 0.339956i
\(624\) 2.82843 4.00000i 0.113228 0.160128i
\(625\) 7.00000 + 24.0000i 0.280000 + 0.960000i
\(626\) 29.6985i 1.18699i
\(627\) 19.3137 3.31371i 0.771315 0.132337i
\(628\) −10.0000 + 10.0000i −0.399043 + 0.399043i
\(629\) −2.82843 −0.112777
\(630\) −0.514719 28.4558i −0.0205069 1.13371i
\(631\) −30.0000 −1.19428 −0.597141 0.802137i \(-0.703697\pi\)
−0.597141 + 0.802137i \(0.703697\pi\)
\(632\) 9.89949 9.89949i 0.393781 0.393781i
\(633\) −13.6569 + 2.34315i −0.542811 + 0.0931317i
\(634\) 2.00000i 0.0794301i
\(635\) −8.48528 + 4.24264i −0.336728 + 0.168364i
\(636\) −8.00000 + 11.3137i −0.317221 + 0.448618i
\(637\) −22.0000 22.0000i −0.871672 0.871672i
\(638\) 4.24264 + 4.24264i 0.167968 + 0.167968i
\(639\) 11.3137 + 32.0000i 0.447563 + 1.26590i
\(640\) −2.00000 + 1.00000i −0.0790569 + 0.0395285i
\(641\) 19.7990i 0.782013i −0.920388 0.391007i \(-0.872127\pi\)
0.920388 0.391007i \(-0.127873\pi\)
\(642\) −5.85786 34.1421i −0.231191 1.34748i
\(643\) 28.0000 28.0000i 1.10421 1.10421i 0.110316 0.993897i \(-0.464814\pi\)
0.993897 0.110316i \(-0.0351862\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 8.00000 0.314756
\(647\) −8.48528 + 8.48528i −0.333591 + 0.333591i −0.853948 0.520358i \(-0.825799\pi\)
0.520358 + 0.853948i \(0.325799\pi\)
\(648\) 8.94975 + 0.949747i 0.351579 + 0.0373096i
\(649\) 14.0000i 0.549548i
\(650\) −8.48528 + 11.3137i −0.332820 + 0.443760i
\(651\) −60.0000 42.4264i −2.35159 1.66282i
\(652\) −4.00000 4.00000i −0.156652 0.156652i
\(653\) −4.24264 4.24264i −0.166027 0.166027i 0.619203 0.785231i \(-0.287456\pi\)
−0.785231 + 0.619203i \(0.787456\pi\)
\(654\) −2.82843 2.00000i −0.110600 0.0782062i
\(655\) −21.0000 7.00000i −0.820538 0.273513i
\(656\) 8.48528i 0.331295i
\(657\) −5.48528 + 11.4853i −0.214001 + 0.448084i
\(658\) 12.0000 12.0000i 0.467809 0.467809i
\(659\) −24.0416 −0.936529 −0.468264 0.883588i \(-0.655121\pi\)
−0.468264 + 0.883588i \(0.655121\pi\)
\(660\) 0.828427 5.41421i 0.0322465 0.210748i
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 0 0
\(663\) 0.828427 + 4.82843i 0.0321734 + 0.187521i
\(664\) 12.0000i 0.465690i
\(665\) 33.9411 + 67.8823i 1.31618 + 2.63236i
\(666\) 8.00000 2.82843i 0.309994 0.109599i
\(667\) 0 0
\(668\) −11.3137 11.3137i −0.437741 0.437741i
\(669\) 4.24264 6.00000i 0.164030 0.231973i
\(670\) −10.0000 + 30.0000i −0.386334 + 1.15900i
\(671\) 14.1421i 0.545951i
\(672\) −7.24264 + 1.24264i −0.279391 + 0.0479359i
\(673\) −17.0000 + 17.0000i −0.655302 + 0.655302i −0.954265 0.298963i \(-0.903359\pi\)
0.298963 + 0.954265i \(0.403359\pi\)
\(674\) −1.41421 −0.0544735
\(675\) −25.7487 3.46447i −0.991069 0.133347i
\(676\) 5.00000 0.192308
\(677\) 9.89949 9.89949i 0.380468 0.380468i −0.490802 0.871271i \(-0.663296\pi\)
0.871271 + 0.490802i \(0.163296\pi\)
\(678\) −3.41421 + 0.585786i −0.131122 + 0.0224970i
\(679\) 18.0000i 0.690777i
\(680\) 0.707107 2.12132i 0.0271163 0.0813489i
\(681\) 2.00000 2.82843i 0.0766402 0.108386i
\(682\) −10.0000 10.0000i −0.382920 0.382920i
\(683\) −25.4558 25.4558i −0.974041 0.974041i 0.0256307 0.999671i \(-0.491841\pi\)
−0.999671 + 0.0256307i \(0.991841\pi\)
\(684\) −22.6274 + 8.00000i −0.865181 + 0.305888i
\(685\) 6.00000 + 12.0000i 0.229248 + 0.458496i
\(686\) 16.9706i 0.647939i
\(687\) −0.585786 3.41421i −0.0223491 0.130260i
\(688\) 0 0
\(689\) 22.6274 0.862036
\(690\) 0 0
\(691\) −36.0000 −1.36950 −0.684752 0.728776i \(-0.740090\pi\)
−0.684752 + 0.728776i \(0.740090\pi\)
\(692\) −9.89949 + 9.89949i −0.376322 + 0.376322i
\(693\) 7.75736 16.2426i 0.294678 0.617007i
\(694\) 14.0000i 0.531433i
\(695\) 25.4558 + 8.48528i 0.965595 + 0.321865i
\(696\) −6.00000 4.24264i −0.227429 0.160817i
\(697\) 6.00000 + 6.00000i 0.227266 + 0.227266i
\(698\) −4.24264 4.24264i −0.160586 0.160586i
\(699\) 14.1421 + 10.0000i 0.534905 + 0.378235i
\(700\) 21.0000 3.00000i 0.793725 0.113389i
\(701\) 7.07107i 0.267071i 0.991044 + 0.133535i \(0.0426329\pi\)
−0.991044 + 0.133535i \(0.957367\pi\)
\(702\) −7.17157 12.8284i −0.270674 0.484178i
\(703\) −16.0000 + 16.0000i −0.603451 + 0.603451i
\(704\) −1.41421 −0.0533002
\(705\) −9.17157 12.4853i −0.345421 0.470223i
\(706\) −22.0000 −0.827981
\(707\) 12.7279 12.7279i 0.478683 0.478683i
\(708\) −2.89949 16.8995i −0.108970 0.635122i
\(709\) 34.0000i 1.27690i 0.769665 + 0.638448i \(0.220423\pi\)
−0.769665 + 0.638448i \(0.779577\pi\)
\(710\) −22.6274 + 11.3137i −0.849192 + 0.424596i
\(711\) −14.0000 39.5980i −0.525041 1.48504i
\(712\) 2.00000 + 2.00000i 0.0749532 + 0.0749532i
\(713\) 0 0
\(714\) 4.24264 6.00000i 0.158777 0.224544i
\(715\) −8.00000 + 4.00000i −0.299183 + 0.149592i
\(716\) 21.2132i 0.792775i
\(717\) 4.82843 0.828427i 0.180321 0.0309382i
\(718\) 4.00000 4.00000i 0.149279 0.149279i
\(719\) −19.7990 −0.738378 −0.369189 0.929354i \(-0.620364\pi\)
−0.369189 + 0.929354i \(0.620364\pi\)
\(720\) 0.121320 + 6.70711i 0.00452134 + 0.249959i
\(721\) 18.0000 0.670355
\(722\) 31.8198 31.8198i 1.18421 1.18421i
\(723\) 0 0
\(724\) 2.00000i 0.0743294i
\(725\) 16.9706 + 12.7279i 0.630271 + 0.472703i
\(726\) −9.00000 + 12.7279i −0.334021 + 0.472377i
\(727\) 17.0000 + 17.0000i 0.630495 + 0.630495i 0.948192 0.317697i \(-0.102910\pi\)
−0.317697 + 0.948192i \(0.602910\pi\)
\(728\) 8.48528 + 8.48528i 0.314485 + 0.314485i
\(729\) 14.1421 23.0000i 0.523783 0.851852i
\(730\) −9.00000 3.00000i −0.333105 0.111035i
\(731\) 0 0
\(732\) −2.92893 17.0711i −0.108256 0.630965i
\(733\) 16.0000 16.0000i 0.590973 0.590973i −0.346921 0.937894i \(-0.612773\pi\)
0.937894 + 0.346921i \(0.112773\pi\)
\(734\) 7.07107 0.260998
\(735\) 42.1127 + 6.44365i 1.55335 + 0.237678i
\(736\) 0 0
\(737\) −14.1421 + 14.1421i −0.520932 + 0.520932i
\(738\) −22.9706 10.9706i −0.845558 0.403832i
\(739\) 40.0000i 1.47142i −0.677295 0.735712i \(-0.736848\pi\)
0.677295 0.735712i \(-0.263152\pi\)
\(740\) 2.82843 + 5.65685i 0.103975 + 0.207950i
\(741\) 32.0000 + 22.6274i 1.17555 + 0.831239i
\(742\) −24.0000 24.0000i −0.881068 0.881068i
\(743\) 33.9411 + 33.9411i 1.24518 + 1.24518i 0.957824 + 0.287355i \(0.0927759\pi\)
0.287355 + 0.957824i \(0.407224\pi\)
\(744\) 14.1421 + 10.0000i 0.518476 + 0.366618i
\(745\) 1.00000 3.00000i 0.0366372 0.109911i
\(746\) 8.48528i 0.310668i
\(747\) 32.4853 + 15.5147i 1.18857 + 0.567654i
\(748\) 1.00000 1.00000i 0.0365636 0.0365636i
\(749\) 84.8528 3.10045
\(750\) 0.192388 19.3640i 0.00702502 0.707072i
\(751\) 6.00000 0.218943 0.109472 0.993990i \(-0.465084\pi\)
0.109472 + 0.993990i \(0.465084\pi\)
\(752\) −2.82843 + 2.82843i −0.103142 + 0.103142i
\(753\) −4.55635 26.5563i −0.166043 0.967767i
\(754\) 12.0000i 0.437014i
\(755\) 0 0
\(756\) −6.00000 + 21.2132i −0.218218 + 0.771517i
\(757\) 12.0000 + 12.0000i 0.436147 + 0.436147i 0.890713 0.454566i \(-0.150206\pi\)
−0.454566 + 0.890713i \(0.650206\pi\)
\(758\) 19.7990 + 19.7990i 0.719132 + 0.719132i
\(759\) 0 0
\(760\) −8.00000 16.0000i −0.290191 0.580381i
\(761\) 19.7990i 0.717713i 0.933393 + 0.358856i \(0.116833\pi\)
−0.933393 + 0.358856i \(0.883167\pi\)
\(762\) 7.24264 1.24264i 0.262373 0.0450161i
\(763\) 6.00000 6.00000i 0.217215 0.217215i
\(764\) −2.82843 −0.102329
\(765\) −4.82843 4.65685i −0.174572 0.168369i
\(766\) 16.0000 0.578103
\(767\) −19.7990 + 19.7990i −0.714900 + 0.714900i
\(768\) 1.70711 0.292893i 0.0615999 0.0105689i
\(769\) 2.00000i 0.0721218i 0.999350 + 0.0360609i \(0.0114810\pi\)
−0.999350 + 0.0360609i \(0.988519\pi\)
\(770\) 12.7279 + 4.24264i 0.458682 + 0.152894i
\(771\) 6.00000 8.48528i 0.216085 0.305590i
\(772\) −3.00000 3.00000i −0.107972 0.107972i
\(773\) −18.3848 18.3848i −0.661254 0.661254i 0.294421 0.955676i \(-0.404873\pi\)
−0.955676 + 0.294421i \(0.904873\pi\)
\(774\) 0 0
\(775\) −40.0000 30.0000i −1.43684 1.07763i
\(776\) 4.24264i 0.152302i
\(777\) 3.51472 + 20.4853i 0.126090 + 0.734905i
\(778\) −11.0000 + 11.0000i −0.394369 + 0.394369i
\(779\) 67.8823 2.43213
\(780\) 8.82843 6.48528i 0.316108 0.232210i
\(781\) −16.0000 −0.572525
\(782\) 0 0
\(783\) −19.2426 + 10.7574i −0.687676 + 0.384437i
\(784\) 11.0000i 0.392857i
\(785\) −28.2843 + 14.1421i −1.00951 + 0.504754i
\(786\) 14.0000 + 9.89949i 0.499363 + 0.353103i
\(787\) 28.0000 + 28.0000i 0.998092 + 0.998092i 0.999998 0.00190598i \(-0.000606691\pi\)
−0.00190598 + 0.999998i \(0.500607\pi\)
\(788\) 11.3137 + 11.3137i 0.403034 + 0.403034i
\(789\) −22.6274 16.0000i −0.805557 0.569615i
\(790\) 28.0000 14.0000i 0.996195 0.498098i
\(791\) 8.48528i 0.301702i
\(792\) −1.82843 + 3.82843i −0.0649703 + 0.136037i
\(793\) −20.0000 + 20.0000i −0.710221 + 0.710221i
\(794\) −25.4558 −0.903394
\(795\) −24.9706 + 18.3431i −0.885615 + 0.650564i
\(796\) 16.0000 0.567105
\(797\) 26.8701 26.8701i 0.951786 0.951786i −0.0471037 0.998890i \(-0.514999\pi\)
0.998890 + 0.0471037i \(0.0149991\pi\)
\(798\) −9.94113 57.9411i −0.351912 2.05109i
\(799\) 4.00000i 0.141510i
\(800\) −4.94975 + 0.707107i −0.175000 + 0.0250000i
\(801\) 8.00000 2.82843i 0.282666 0.0999376i
\(802\) −20.0000 20.0000i −0.706225 0.706225i
\(803\) −4.24264 4.24264i −0.149720 0.149720i
\(804\) 14.1421 20.0000i 0.498755 0.705346i
\(805\) 0 0
\(806\) 28.2843i 0.996271i
\(807\) −31.3848 + 5.38478i −1.10480 + 0.189553i
\(808\) −3.00000 + 3.00000i −0.105540 + 0.105540i
\(809\) −25.4558 −0.894980 −0.447490 0.894289i \(-0.647682\pi\)
−0.447490 + 0.894289i \(0.647682\pi\)
\(810\) 18.3137 + 8.34315i 0.643478 + 0.293148i
\(811\) −40.0000 −1.40459 −0.702295 0.711886i \(-0.747841\pi\)
−0.702295 + 0.711886i \(0.747841\pi\)
\(812\) 12.7279 12.7279i 0.446663 0.446663i
\(813\) 13.6569 2.34315i 0.478967 0.0821777i
\(814\) 4.00000i 0.140200i
\(815\) −5.65685 11.3137i −0.198151 0.396302i
\(816\) −1.00000 + 1.41421i −0.0350070 + 0.0495074i
\(817\) 0 0
\(818\) −11.3137 11.3137i −0.395575 0.395575i
\(819\) 33.9411 12.0000i 1.18600 0.419314i
\(820\) 6.00000 18.0000i 0.209529 0.628587i
\(821\) 26.8701i 0.937771i 0.883259 + 0.468886i \(0.155344\pi\)
−0.883259 + 0.468886i \(0.844656\pi\)
\(822\) −1.75736 10.2426i −0.0612949 0.357253i
\(823\) 21.0000 21.0000i 0.732014 0.732014i −0.239004 0.971018i \(-0.576821\pi\)
0.971018 + 0.239004i \(0.0768211\pi\)
\(824\) −4.24264 −0.147799
\(825\) 5.58579 10.8995i 0.194472 0.379472i
\(826\) 42.0000 1.46137
\(827\) −26.8701 + 26.8701i −0.934363 + 0.934363i −0.997975 0.0636113i \(-0.979738\pi\)
0.0636113 + 0.997975i \(0.479738\pi\)
\(828\) 0 0
\(829\) 26.0000i 0.903017i 0.892267 + 0.451509i \(0.149114\pi\)
−0.892267 + 0.451509i \(0.850886\pi\)
\(830\) −8.48528 + 25.4558i −0.294528 + 0.883585i
\(831\) −20.0000 14.1421i −0.693792 0.490585i
\(832\) −2.00000 2.00000i −0.0693375 0.0693375i
\(833\) 7.77817 + 7.77817i 0.269498 + 0.269498i
\(834\) −16.9706 12.0000i −0.587643 0.415526i
\(835\) −16.0000 32.0000i −0.553703 1.10741i
\(836\) 11.3137i 0.391293i
\(837\) 45.3553 25.3553i 1.56771 0.876409i
\(838\) 27.0000 27.0000i 0.932700 0.932700i
\(839\) −8.48528 −0.292944 −0.146472 0.989215i \(-0.546792\pi\)
−0.146472 + 0.989215i \(0.546792\pi\)
\(840\) −16.2426 2.48528i −0.560424 0.0857504i
\(841\) −11.0000 −0.379310
\(842\) −18.3848 + 18.3848i −0.633581 + 0.633581i
\(843\) −5.79899 33.7990i −0.199728 1.16410i
\(844\) 8.00000i 0.275371i
\(845\) 10.6066 + 3.53553i 0.364878 + 0.121626i
\(846\) 4.00000 + 11.3137i 0.137523 + 0.388973i
\(847\) −27.0000 27.0000i −0.927731 0.927731i
\(848\) 5.65685 + 5.65685i 0.194257 + 0.194257i
\(849\) 28.2843 40.0000i 0.970714 1.37280i
\(850\) 3.00000 4.00000i 0.102899 0.137199i
\(851\) 0 0
\(852\) 19.3137 3.31371i 0.661677 0.113526i
\(853\) −18.0000 + 18.0000i −0.616308 + 0.616308i −0.944582 0.328274i \(-0.893533\pi\)
0.328274 + 0.944582i \(0.393533\pi\)
\(854\) 42.4264 1.45180
\(855\) −53.6569 + 0.970563i −1.83503 + 0.0331925i
\(856\) −20.0000 −0.683586
\(857\) −12.7279 + 12.7279i −0.434778 + 0.434778i −0.890250 0.455472i \(-0.849470\pi\)
0.455472 + 0.890250i \(0.349470\pi\)
\(858\) 6.82843 1.17157i 0.233119 0.0399968i
\(859\) 20.0000i 0.682391i −0.939992 0.341196i \(-0.889168\pi\)
0.939992 0.341196i \(-0.110832\pi\)
\(860\) 0 0
\(861\) 36.0000 50.9117i 1.22688 1.73507i
\(862\) 22.0000 + 22.0000i 0.749323 + 0.749323i
\(863\) 16.9706 + 16.9706i 0.577685 + 0.577685i 0.934265 0.356580i \(-0.116057\pi\)
−0.356580 + 0.934265i \(0.616057\pi\)
\(864\) 1.41421 5.00000i 0.0481125 0.170103i
\(865\) −28.0000 + 14.0000i −0.952029 + 0.476014i
\(866\) 4.24264i 0.144171i
\(867\) −0.292893 1.70711i −0.00994718 0.0579764i
\(868\) −30.0000 + 30.0000i −1.01827 + 1.01827i
\(869\) 19.7990 0.671635
\(870\) −9.72792 13.2426i −0.329807 0.448968i
\(871\) −40.0000 −1.35535
\(872\) −1.41421 + 1.41421i −0.0478913 + 0.0478913i
\(873\) −11.4853 5.48528i −0.388718 0.185649i
\(874\) 0 0
\(875\) 46.6690 + 8.48528i 1.57770 + 0.286855i
\(876\) 6.00000 + 4.24264i 0.202721 + 0.143346i
\(877\) −40.0000 40.0000i −1.35070 1.35070i −0.884874 0.465830i \(-0.845756\pi\)
−0.465830 0.884874i \(-0.654244\pi\)
\(878\) −22.6274 22.6274i −0.763638 0.763638i
\(879\) 5.65685 + 4.00000i 0.190801 + 0.134917i
\(880\) −3.00000 1.00000i −0.101130 0.0337100i
\(881\) 39.5980i 1.33409i 0.745018 + 0.667045i \(0.232441\pi\)
−0.745018 + 0.667045i \(0.767559\pi\)
\(882\) −29.7782 14.2218i −1.00268 0.478874i
\(883\) −10.0000 + 10.0000i −0.336527 + 0.336527i −0.855058 0.518532i \(-0.826479\pi\)
0.518532 + 0.855058i \(0.326479\pi\)
\(884\) 2.82843 0.0951303
\(885\) 5.79899 37.8995i 0.194931 1.27398i
\(886\) −42.0000 −1.41102
\(887\) 11.3137 11.3137i 0.379877 0.379877i −0.491181 0.871058i \(-0.663434\pi\)
0.871058 + 0.491181i \(0.163434\pi\)
\(888\) −0.828427 4.82843i −0.0278002 0.162031i
\(889\) 18.0000i 0.603701i
\(890\) 2.82843 + 5.65685i 0.0948091 + 0.189618i
\(891\) 8.00000 + 9.89949i 0.268010 + 0.331646i
\(892\) −3.00000 3.00000i −0.100447 0.100447i
\(893\) −22.6274 22.6274i −0.757198 0.757198i
\(894\) −1.41421 + 2.00000i −0.0472984 + 0.0668900i
\(895\) 15.0000 45.0000i 0.501395 1.50418i
\(896\) 4.24264i 0.141737i
\(897\) 0 0
\(898\) 12.0000 12.0000i 0.400445 0.400445i
\(899\) −42.4264 −1.41500
\(900\) −4.48528 + 14.3137i −0.149509 + 0.477124i
\(901\) −8.00000 −0.266519
\(902\) 8.48528 8.48528i 0.282529 0.282529i
\(903\) 0 0
\(904\) 2.00000i 0.0665190i
\(905\) −1.41421 + 4.24264i −0.0470100 + 0.141030i
\(906\) 0 0
\(907\) 6.00000 + 6.00000i 0.199227 + 0.199227i 0.799668 0.600442i \(-0.205009\pi\)
−0.600442 + 0.799668i \(0.705009\pi\)
\(908\) −1.41421 1.41421i −0.0469323 0.0469323i
\(909\) 4.24264 + 12.0000i 0.140720 + 0.398015i
\(910\) 12.0000 + 24.0000i 0.397796 + 0.795592i
\(911\) 2.82843i 0.0937100i 0.998902 + 0.0468550i \(0.0149199\pi\)
−0.998902 + 0.0468550i \(0.985080\pi\)
\(912\) 2.34315 + 13.6569i 0.0775893 + 0.452224i
\(913\) −12.0000 + 12.0000i −0.397142 + 0.397142i
\(914\) −18.3848 −0.608114
\(915\) 5.85786 38.2843i 0.193655 1.26564i
\(916\) −2.00000 −0.0660819
\(917\) −29.6985 + 29.6985i −0.980730 + 0.980730i
\(918\) 2.53553 + 4.53553i 0.0836851 + 0.149695i
\(919\) 38.0000i 1.25350i 0.779219 + 0.626752i \(0.215616\pi\)
−0.779219 + 0.626752i \(0.784384\pi\)
\(920\) 0 0
\(921\) 16.0000 + 11.3137i 0.527218 + 0.372799i
\(922\) −25.0000 25.0000i −0.823331 0.823331i
\(923\) −22.6274 22.6274i −0.744791 0.744791i
\(924\) −8.48528 6.00000i −0.279145 0.197386i
\(925\) 2.00000 + 14.0000i 0.0657596 + 0.460317i
\(926\) 12.7279i 0.418265i
\(927\) −5.48528 + 11.4853i −0.180160 + 0.377226i
\(928\) −3.00000 + 3.00000i −0.0984798 + 0.0984798i
\(929\) 56.5685 1.85595 0.927977 0.372638i \(-0.121547\pi\)
0.927977 + 0.372638i \(0.121547\pi\)
\(930\) 22.9289 + 31.2132i 0.751869 + 1.02352i
\(931\) 88.0000 2.88408
\(932\) 7.07107 7.07107i 0.231621 0.231621i
\(933\) 1.65685 + 9.65685i 0.0542430 + 0.316151i
\(934\) 4.00000i 0.130884i
\(935\) 2.82843 1.41421i 0.0924995 0.0462497i
\(936\) −8.00000 + 2.82843i −0.261488 + 0.0924500i
\(937\) 23.0000 + 23.0000i 0.751377 + 0.751377i 0.974736 0.223359i \(-0.0717022\pi\)
−0.223359 + 0.974736i \(0.571702\pi\)
\(938\) 42.4264 + 42.4264i 1.38527 + 1.38527i
\(939\) −29.6985 + 42.0000i −0.969173 + 1.37062i
\(940\) −8.00000 + 4.00000i −0.260931 + 0.130466i
\(941\) 18.3848i 0.599327i 0.954045 + 0.299663i \(0.0968743\pi\)
−0.954045 + 0.299663i \(0.903126\pi\)
\(942\) 24.1421 4.14214i 0.786593 0.134958i
\(943\) 0 0
\(944\) −9.89949 −0.322201
\(945\) −27.7279 + 40.7574i −0.901989 + 1.32584i
\(946\) 0 0
\(947\) −32.5269 + 32.5269i −1.05698 + 1.05698i −0.0587074 + 0.998275i \(0.518698\pi\)
−0.998275 + 0.0587074i \(0.981302\pi\)
\(948\) −23.8995 + 4.10051i −0.776220 + 0.133178i
\(949\) 12.0000i 0.389536i
\(950\) −5.65685 39.5980i −0.183533 1.28473i
\(951\) 2.00000 2.82843i 0.0648544 0.0917180i
\(952\) −3.00000 3.00000i −0.0972306 0.0972306i
\(953\) −21.2132 21.2132i −0.687163 0.687163i 0.274441 0.961604i \(-0.411507\pi\)
−0.961604 + 0.274441i \(0.911507\pi\)
\(954\) 22.6274 8.00000i 0.732590 0.259010i
\(955\) −6.00000 2.00000i −0.194155 0.0647185i
\(956\) 2.82843i 0.0914779i
\(957\) −1.75736 10.2426i −0.0568074 0.331098i
\(958\) 20.0000 20.0000i 0.646171 0.646171i
\(959\) 25.4558 0.822012
\(960\) 3.82843 + 0.585786i 0.123562 + 0.0189062i
\(961\) 69.0000 2.22581
\(962\) −5.65685 + 5.65685i −0.182384 + 0.182384i
\(963\) −25.8579 + 54.1421i −0.833258 + 1.74471i
\(964\) 0 0
\(965\) −4.24264 8.48528i −0.136575 0.273151i
\(966\) 0 0
\(967\) −29.0000 29.0000i −0.932577 0.932577i 0.0652893 0.997866i \(-0.479203\pi\)
−0.997866 + 0.0652893i \(0.979203\pi\)
\(968\) 6.36396 + 6.36396i 0.204545 + 0.204545i
\(969\) −11.3137 8.00000i −0.363449 0.256997i
\(970\) 3.00000 9.00000i 0.0963242 0.288973i
\(971\) 52.3259i 1.67922i −0.543191 0.839609i \(-0.682784\pi\)
0.543191 0.839609i \(-0.317216\pi\)
\(972\) −11.7071 10.2929i −0.375506 0.330145i
\(973\) 36.0000 36.0000i 1.15411 1.15411i
\(974\) −32.5269 −1.04223
\(975\) 23.3137 7.51472i 0.746636 0.240664i
\(976\) −10.0000 −0.320092
\(977\) 29.6985 29.6985i 0.950139 0.950139i −0.0486759 0.998815i \(-0.515500\pi\)
0.998815 + 0.0486759i \(0.0155002\pi\)
\(978\) 1.65685 + 9.65685i 0.0529804 + 0.308792i
\(979\) 4.00000i 0.127841i
\(980\) 7.77817 23.3345i 0.248465 0.745394i
\(981\) 2.00000 + 5.65685i 0.0638551 + 0.180609i
\(982\) −19.0000 19.0000i −0.606314 0.606314i
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) −8.48528 + 12.0000i −0.270501 + 0.382546i
\(985\) 16.0000 + 32.0000i 0.509802 + 1.01960i
\(986\) 4.24264i 0.135113i
\(987\) −28.9706 + 4.97056i −0.922143 + 0.158215i
\(988\) 16.0000 16.0000i 0.509028 0.509028i
\(989\) 0 0
\(990\) −6.58579 + 6.82843i −0.209310 + 0.217022i
\(991\) 40.0000 1.27064 0.635321 0.772248i \(-0.280868\pi\)
0.635321 + 0.772248i \(0.280868\pi\)
\(992\) 7.07107 7.07107i 0.224507 0.224507i
\(993\) 0 0
\(994\) 48.0000i 1.52247i
\(995\) 33.9411 + 11.3137i 1.07601 + 0.358669i
\(996\) 12.0000 16.9706i 0.380235 0.537733i
\(997\) 24.0000 + 24.0000i 0.760088 + 0.760088i 0.976338 0.216250i \(-0.0693827\pi\)
−0.216250 + 0.976338i \(0.569383\pi\)
\(998\) 19.7990 + 19.7990i 0.626726 + 0.626726i
\(999\) −14.1421 4.00000i −0.447437 0.126554i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 510.2.l.a.137.1 4
3.2 odd 2 inner 510.2.l.a.137.2 yes 4
5.3 odd 4 inner 510.2.l.a.443.2 yes 4
15.8 even 4 inner 510.2.l.a.443.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.l.a.137.1 4 1.1 even 1 trivial
510.2.l.a.137.2 yes 4 3.2 odd 2 inner
510.2.l.a.443.1 yes 4 15.8 even 4 inner
510.2.l.a.443.2 yes 4 5.3 odd 4 inner