Properties

Label 510.2.l.f.137.2
Level $510$
Weight $2$
Character 510.137
Analytic conductor $4.072$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [510,2,Mod(137,510)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(510, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("510.137");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.l (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.07237050309\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 137.2
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 510.137
Dual form 510.2.l.f.443.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.707107 + 0.707107i) q^{2} +(1.10721 + 1.33195i) q^{3} -1.00000i q^{4} +(1.73205 + 1.41421i) q^{5} +(-1.72474 - 0.158919i) q^{6} +(-1.00000 - 1.00000i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-0.548188 + 2.94949i) q^{9} +O(q^{10})\) \(q+(-0.707107 + 0.707107i) q^{2} +(1.10721 + 1.33195i) q^{3} -1.00000i q^{4} +(1.73205 + 1.41421i) q^{5} +(-1.72474 - 0.158919i) q^{6} +(-1.00000 - 1.00000i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-0.548188 + 2.94949i) q^{9} +(-2.22474 + 0.224745i) q^{10} +1.41421i q^{11} +(1.33195 - 1.10721i) q^{12} +(-1.77526 + 1.77526i) q^{13} +1.41421 q^{14} +(0.0340742 + 3.87283i) q^{15} -1.00000 q^{16} +(0.707107 - 0.707107i) q^{17} +(-1.69798 - 2.47323i) q^{18} +2.55051i q^{19} +(1.41421 - 1.73205i) q^{20} +(0.224745 - 2.43916i) q^{21} +(-1.00000 - 1.00000i) q^{22} +(1.73205 + 1.73205i) q^{23} +(-0.158919 + 1.72474i) q^{24} +(1.00000 + 4.89898i) q^{25} -2.51059i q^{26} +(-4.53553 + 2.53553i) q^{27} +(-1.00000 + 1.00000i) q^{28} +6.61037 q^{29} +(-2.76260 - 2.71441i) q^{30} +3.00000 q^{31} +(0.707107 - 0.707107i) q^{32} +(-1.88366 + 1.56583i) q^{33} +1.00000i q^{34} +(-0.317837 - 3.14626i) q^{35} +(2.94949 + 0.548188i) q^{36} +(-6.89898 - 6.89898i) q^{37} +(-1.80348 - 1.80348i) q^{38} +(-4.33013 - 0.398979i) q^{39} +(0.224745 + 2.22474i) q^{40} -5.51399i q^{41} +(1.56583 + 1.88366i) q^{42} +(-2.55051 + 2.55051i) q^{43} +1.41421 q^{44} +(-5.12070 + 4.33341i) q^{45} -2.44949 q^{46} +(-3.53553 + 3.53553i) q^{47} +(-1.10721 - 1.33195i) q^{48} -5.00000i q^{49} +(-4.17121 - 2.75699i) q^{50} +(1.72474 + 0.158919i) q^{51} +(1.77526 + 1.77526i) q^{52} +(7.95315 + 7.95315i) q^{53} +(1.41421 - 5.00000i) q^{54} +(-2.00000 + 2.44949i) q^{55} -1.41421i q^{56} +(-3.39716 + 2.82394i) q^{57} +(-4.67423 + 4.67423i) q^{58} -0.317837 q^{59} +(3.87283 - 0.0340742i) q^{60} +8.34847 q^{61} +(-2.12132 + 2.12132i) q^{62} +(3.49768 - 2.40130i) q^{63} +1.00000i q^{64} +(-5.58542 + 0.564242i) q^{65} +(0.224745 - 2.43916i) q^{66} +(-10.4495 - 10.4495i) q^{67} +(-0.707107 - 0.707107i) q^{68} +(-0.389270 + 4.22474i) q^{69} +(2.44949 + 2.00000i) q^{70} +4.56048i q^{71} +(-2.47323 + 1.69798i) q^{72} +(0.325765 - 0.325765i) q^{73} +9.75663 q^{74} +(-5.41800 + 6.75613i) q^{75} +2.55051 q^{76} +(1.41421 - 1.41421i) q^{77} +(3.34398 - 2.77974i) q^{78} -6.89898i q^{79} +(-1.73205 - 1.41421i) q^{80} +(-8.39898 - 3.23375i) q^{81} +(3.89898 + 3.89898i) q^{82} +(-5.65685 - 5.65685i) q^{83} +(-2.43916 - 0.224745i) q^{84} +(2.22474 - 0.224745i) q^{85} -3.60697i q^{86} +(7.31904 + 8.80469i) q^{87} +(-1.00000 + 1.00000i) q^{88} +15.8742 q^{89} +(0.556696 - 6.68506i) q^{90} +3.55051 q^{91} +(1.73205 - 1.73205i) q^{92} +(3.32162 + 3.99585i) q^{93} -5.00000i q^{94} +(-3.60697 + 4.41761i) q^{95} +(1.72474 + 0.158919i) q^{96} +(4.12372 + 4.12372i) q^{97} +(3.53553 + 3.53553i) q^{98} +(-4.17121 - 0.775255i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} - 4 q^{6} - 8 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q + 4 q^{3} - 4 q^{6} - 8 q^{7} - 8 q^{10} - 4 q^{12} - 24 q^{13} + 8 q^{15} - 8 q^{16} + 8 q^{18} - 8 q^{21} - 8 q^{22} + 8 q^{25} - 8 q^{27} - 8 q^{28} - 8 q^{30} + 24 q^{31} - 4 q^{33} + 4 q^{36} - 16 q^{37} - 8 q^{40} + 4 q^{42} - 40 q^{43} + 12 q^{45} - 4 q^{48} + 4 q^{51} + 24 q^{52} - 16 q^{55} + 32 q^{57} - 8 q^{58} + 16 q^{60} + 8 q^{61} + 4 q^{63} - 8 q^{66} - 64 q^{67} - 8 q^{72} + 32 q^{73} - 20 q^{75} + 40 q^{76} - 28 q^{81} - 8 q^{82} + 8 q^{85} + 40 q^{87} - 8 q^{88} - 20 q^{90} + 48 q^{91} + 12 q^{93} + 4 q^{96} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/510\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(307\) \(341\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.707107 + 0.707107i −0.500000 + 0.500000i
\(3\) 1.10721 + 1.33195i 0.639246 + 0.769002i
\(4\) 1.00000i 0.500000i
\(5\) 1.73205 + 1.41421i 0.774597 + 0.632456i
\(6\) −1.72474 0.158919i −0.704124 0.0648783i
\(7\) −1.00000 1.00000i −0.377964 0.377964i 0.492403 0.870367i \(-0.336119\pi\)
−0.870367 + 0.492403i \(0.836119\pi\)
\(8\) 0.707107 + 0.707107i 0.250000 + 0.250000i
\(9\) −0.548188 + 2.94949i −0.182729 + 0.983163i
\(10\) −2.22474 + 0.224745i −0.703526 + 0.0710706i
\(11\) 1.41421i 0.426401i 0.977008 + 0.213201i \(0.0683888\pi\)
−0.977008 + 0.213201i \(0.931611\pi\)
\(12\) 1.33195 1.10721i 0.384501 0.319623i
\(13\) −1.77526 + 1.77526i −0.492367 + 0.492367i −0.909051 0.416684i \(-0.863192\pi\)
0.416684 + 0.909051i \(0.363192\pi\)
\(14\) 1.41421 0.377964
\(15\) 0.0340742 + 3.87283i 0.00879791 + 0.999961i
\(16\) −1.00000 −0.250000
\(17\) 0.707107 0.707107i 0.171499 0.171499i
\(18\) −1.69798 2.47323i −0.400217 0.582946i
\(19\) 2.55051i 0.585127i 0.956246 + 0.292564i \(0.0945083\pi\)
−0.956246 + 0.292564i \(0.905492\pi\)
\(20\) 1.41421 1.73205i 0.316228 0.387298i
\(21\) 0.224745 2.43916i 0.0490434 0.532268i
\(22\) −1.00000 1.00000i −0.213201 0.213201i
\(23\) 1.73205 + 1.73205i 0.361158 + 0.361158i 0.864239 0.503081i \(-0.167800\pi\)
−0.503081 + 0.864239i \(0.667800\pi\)
\(24\) −0.158919 + 1.72474i −0.0324391 + 0.352062i
\(25\) 1.00000 + 4.89898i 0.200000 + 0.979796i
\(26\) 2.51059i 0.492367i
\(27\) −4.53553 + 2.53553i −0.872864 + 0.487964i
\(28\) −1.00000 + 1.00000i −0.188982 + 0.188982i
\(29\) 6.61037 1.22751 0.613757 0.789495i \(-0.289657\pi\)
0.613757 + 0.789495i \(0.289657\pi\)
\(30\) −2.76260 2.71441i −0.504380 0.495582i
\(31\) 3.00000 0.538816 0.269408 0.963026i \(-0.413172\pi\)
0.269408 + 0.963026i \(0.413172\pi\)
\(32\) 0.707107 0.707107i 0.125000 0.125000i
\(33\) −1.88366 + 1.56583i −0.327904 + 0.272575i
\(34\) 1.00000i 0.171499i
\(35\) −0.317837 3.14626i −0.0537243 0.531816i
\(36\) 2.94949 + 0.548188i 0.491582 + 0.0913647i
\(37\) −6.89898 6.89898i −1.13419 1.13419i −0.989474 0.144711i \(-0.953775\pi\)
−0.144711 0.989474i \(-0.546225\pi\)
\(38\) −1.80348 1.80348i −0.292564 0.292564i
\(39\) −4.33013 0.398979i −0.693375 0.0638878i
\(40\) 0.224745 + 2.22474i 0.0355353 + 0.351763i
\(41\) 5.51399i 0.861141i −0.902557 0.430570i \(-0.858312\pi\)
0.902557 0.430570i \(-0.141688\pi\)
\(42\) 1.56583 + 1.88366i 0.241612 + 0.290656i
\(43\) −2.55051 + 2.55051i −0.388949 + 0.388949i −0.874313 0.485363i \(-0.838687\pi\)
0.485363 + 0.874313i \(0.338687\pi\)
\(44\) 1.41421 0.213201
\(45\) −5.12070 + 4.33341i −0.763349 + 0.645987i
\(46\) −2.44949 −0.361158
\(47\) −3.53553 + 3.53553i −0.515711 + 0.515711i −0.916271 0.400560i \(-0.868816\pi\)
0.400560 + 0.916271i \(0.368816\pi\)
\(48\) −1.10721 1.33195i −0.159811 0.192251i
\(49\) 5.00000i 0.714286i
\(50\) −4.17121 2.75699i −0.589898 0.389898i
\(51\) 1.72474 + 0.158919i 0.241513 + 0.0222531i
\(52\) 1.77526 + 1.77526i 0.246184 + 0.246184i
\(53\) 7.95315 + 7.95315i 1.09245 + 1.09245i 0.995267 + 0.0971822i \(0.0309829\pi\)
0.0971822 + 0.995267i \(0.469017\pi\)
\(54\) 1.41421 5.00000i 0.192450 0.680414i
\(55\) −2.00000 + 2.44949i −0.269680 + 0.330289i
\(56\) 1.41421i 0.188982i
\(57\) −3.39716 + 2.82394i −0.449964 + 0.374040i
\(58\) −4.67423 + 4.67423i −0.613757 + 0.613757i
\(59\) −0.317837 −0.0413789 −0.0206894 0.999786i \(-0.506586\pi\)
−0.0206894 + 0.999786i \(0.506586\pi\)
\(60\) 3.87283 0.0340742i 0.499981 0.00439896i
\(61\) 8.34847 1.06891 0.534456 0.845196i \(-0.320517\pi\)
0.534456 + 0.845196i \(0.320517\pi\)
\(62\) −2.12132 + 2.12132i −0.269408 + 0.269408i
\(63\) 3.49768 2.40130i 0.440666 0.302536i
\(64\) 1.00000i 0.125000i
\(65\) −5.58542 + 0.564242i −0.692786 + 0.0699856i
\(66\) 0.224745 2.43916i 0.0276642 0.300240i
\(67\) −10.4495 10.4495i −1.27661 1.27661i −0.942554 0.334055i \(-0.891583\pi\)
−0.334055 0.942554i \(-0.608417\pi\)
\(68\) −0.707107 0.707107i −0.0857493 0.0857493i
\(69\) −0.389270 + 4.22474i −0.0468625 + 0.508600i
\(70\) 2.44949 + 2.00000i 0.292770 + 0.239046i
\(71\) 4.56048i 0.541229i 0.962688 + 0.270615i \(0.0872269\pi\)
−0.962688 + 0.270615i \(0.912773\pi\)
\(72\) −2.47323 + 1.69798i −0.291473 + 0.200108i
\(73\) 0.325765 0.325765i 0.0381280 0.0381280i −0.687786 0.725914i \(-0.741417\pi\)
0.725914 + 0.687786i \(0.241417\pi\)
\(74\) 9.75663 1.13419
\(75\) −5.41800 + 6.75613i −0.625616 + 0.780131i
\(76\) 2.55051 0.292564
\(77\) 1.41421 1.41421i 0.161165 0.161165i
\(78\) 3.34398 2.77974i 0.378632 0.314744i
\(79\) 6.89898i 0.776196i −0.921618 0.388098i \(-0.873132\pi\)
0.921618 0.388098i \(-0.126868\pi\)
\(80\) −1.73205 1.41421i −0.193649 0.158114i
\(81\) −8.39898 3.23375i −0.933220 0.359306i
\(82\) 3.89898 + 3.89898i 0.430570 + 0.430570i
\(83\) −5.65685 5.65685i −0.620920 0.620920i 0.324846 0.945767i \(-0.394687\pi\)
−0.945767 + 0.324846i \(0.894687\pi\)
\(84\) −2.43916 0.224745i −0.266134 0.0245217i
\(85\) 2.22474 0.224745i 0.241307 0.0243770i
\(86\) 3.60697i 0.388949i
\(87\) 7.31904 + 8.80469i 0.784683 + 0.943961i
\(88\) −1.00000 + 1.00000i −0.106600 + 0.106600i
\(89\) 15.8742 1.68266 0.841330 0.540522i \(-0.181773\pi\)
0.841330 + 0.540522i \(0.181773\pi\)
\(90\) 0.556696 6.68506i 0.0586809 0.704668i
\(91\) 3.55051 0.372195
\(92\) 1.73205 1.73205i 0.180579 0.180579i
\(93\) 3.32162 + 3.99585i 0.344436 + 0.414351i
\(94\) 5.00000i 0.515711i
\(95\) −3.60697 + 4.41761i −0.370067 + 0.453238i
\(96\) 1.72474 + 0.158919i 0.176031 + 0.0162196i
\(97\) 4.12372 + 4.12372i 0.418701 + 0.418701i 0.884756 0.466055i \(-0.154325\pi\)
−0.466055 + 0.884756i \(0.654325\pi\)
\(98\) 3.53553 + 3.53553i 0.357143 + 0.357143i
\(99\) −4.17121 0.775255i −0.419222 0.0779161i
\(100\) 4.89898 1.00000i 0.489898 0.100000i
\(101\) 4.87832i 0.485411i −0.970100 0.242705i \(-0.921965\pi\)
0.970100 0.242705i \(-0.0780348\pi\)
\(102\) −1.33195 + 1.10721i −0.131883 + 0.109630i
\(103\) 11.7980 11.7980i 1.16249 1.16249i 0.178558 0.983929i \(-0.442857\pi\)
0.983929 0.178558i \(-0.0571432\pi\)
\(104\) −2.51059 −0.246184
\(105\) 3.83876 3.90691i 0.374625 0.381275i
\(106\) −11.2474 −1.09245
\(107\) −1.27135 + 1.27135i −0.122906 + 0.122906i −0.765884 0.642978i \(-0.777698\pi\)
0.642978 + 0.765884i \(0.277698\pi\)
\(108\) 2.53553 + 4.53553i 0.243982 + 0.436432i
\(109\) 4.34847i 0.416508i −0.978075 0.208254i \(-0.933222\pi\)
0.978075 0.208254i \(-0.0667780\pi\)
\(110\) −0.317837 3.14626i −0.0303046 0.299985i
\(111\) 1.55051 16.8277i 0.147168 1.59721i
\(112\) 1.00000 + 1.00000i 0.0944911 + 0.0944911i
\(113\) 11.8780 + 11.8780i 1.11738 + 1.11738i 0.992124 + 0.125260i \(0.0399764\pi\)
0.125260 + 0.992124i \(0.460024\pi\)
\(114\) 0.405324 4.39898i 0.0379620 0.412002i
\(115\) 0.550510 + 5.44949i 0.0513353 + 0.508168i
\(116\) 6.61037i 0.613757i
\(117\) −4.26292 6.20927i −0.394107 0.574047i
\(118\) 0.224745 0.224745i 0.0206894 0.0206894i
\(119\) −1.41421 −0.129641
\(120\) −2.71441 + 2.76260i −0.247791 + 0.252190i
\(121\) 9.00000 0.818182
\(122\) −5.90326 + 5.90326i −0.534456 + 0.534456i
\(123\) 7.34437 6.10512i 0.662219 0.550481i
\(124\) 3.00000i 0.269408i
\(125\) −5.19615 + 9.89949i −0.464758 + 0.885438i
\(126\) −0.775255 + 4.17121i −0.0690652 + 0.371601i
\(127\) 1.22474 + 1.22474i 0.108679 + 0.108679i 0.759355 0.650677i \(-0.225515\pi\)
−0.650677 + 0.759355i \(0.725515\pi\)
\(128\) −0.707107 0.707107i −0.0625000 0.0625000i
\(129\) −6.22110 0.573214i −0.547737 0.0504687i
\(130\) 3.55051 4.34847i 0.311400 0.381386i
\(131\) 16.0492i 1.40222i −0.713052 0.701111i \(-0.752688\pi\)
0.713052 0.701111i \(-0.247312\pi\)
\(132\) 1.56583 + 1.88366i 0.136288 + 0.163952i
\(133\) 2.55051 2.55051i 0.221157 0.221157i
\(134\) 14.7778 1.27661
\(135\) −11.4416 2.02254i −0.984733 0.174073i
\(136\) 1.00000 0.0857493
\(137\) 6.75323 6.75323i 0.576967 0.576967i −0.357099 0.934067i \(-0.616234\pi\)
0.934067 + 0.357099i \(0.116234\pi\)
\(138\) −2.71209 3.26260i −0.230868 0.277731i
\(139\) 17.7980i 1.50960i −0.655953 0.754802i \(-0.727733\pi\)
0.655953 0.754802i \(-0.272267\pi\)
\(140\) −3.14626 + 0.317837i −0.265908 + 0.0268622i
\(141\) −8.62372 0.794593i −0.726249 0.0669168i
\(142\) −3.22474 3.22474i −0.270615 0.270615i
\(143\) −2.51059 2.51059i −0.209946 0.209946i
\(144\) 0.548188 2.94949i 0.0456823 0.245791i
\(145\) 11.4495 + 9.34847i 0.950828 + 0.776348i
\(146\) 0.460702i 0.0381280i
\(147\) 6.65976 5.53603i 0.549287 0.456604i
\(148\) −6.89898 + 6.89898i −0.567093 + 0.567093i
\(149\) 9.61377 0.787590 0.393795 0.919198i \(-0.371162\pi\)
0.393795 + 0.919198i \(0.371162\pi\)
\(150\) −0.946206 8.60841i −0.0772574 0.702874i
\(151\) 15.3485 1.24904 0.624520 0.781009i \(-0.285294\pi\)
0.624520 + 0.781009i \(0.285294\pi\)
\(152\) −1.80348 + 1.80348i −0.146282 + 0.146282i
\(153\) 1.69798 + 2.47323i 0.137273 + 0.199949i
\(154\) 2.00000i 0.161165i
\(155\) 5.19615 + 4.24264i 0.417365 + 0.340777i
\(156\) −0.398979 + 4.33013i −0.0319439 + 0.346688i
\(157\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(158\) 4.87832 + 4.87832i 0.388098 + 0.388098i
\(159\) −1.78743 + 19.3990i −0.141752 + 1.53844i
\(160\) 2.22474 0.224745i 0.175882 0.0177676i
\(161\) 3.46410i 0.273009i
\(162\) 8.22558 3.65237i 0.646263 0.286957i
\(163\) 2.44949 2.44949i 0.191859 0.191859i −0.604640 0.796499i \(-0.706683\pi\)
0.796499 + 0.604640i \(0.206683\pi\)
\(164\) −5.51399 −0.430570
\(165\) −5.47701 + 0.0481882i −0.426385 + 0.00375144i
\(166\) 8.00000 0.620920
\(167\) 3.60697 3.60697i 0.279115 0.279115i −0.553640 0.832756i \(-0.686762\pi\)
0.832756 + 0.553640i \(0.186762\pi\)
\(168\) 1.88366 1.56583i 0.145328 0.120806i
\(169\) 6.69694i 0.515149i
\(170\) −1.41421 + 1.73205i −0.108465 + 0.132842i
\(171\) −7.52270 1.39816i −0.575276 0.106920i
\(172\) 2.55051 + 2.55051i 0.194475 + 0.194475i
\(173\) 1.87492 + 1.87492i 0.142547 + 0.142547i 0.774779 0.632232i \(-0.217861\pi\)
−0.632232 + 0.774779i \(0.717861\pi\)
\(174\) −11.4012 1.05051i −0.864322 0.0796390i
\(175\) 3.89898 5.89898i 0.294735 0.445921i
\(176\) 1.41421i 0.106600i
\(177\) −0.351911 0.423344i −0.0264513 0.0318205i
\(178\) −11.2247 + 11.2247i −0.841330 + 0.841330i
\(179\) −20.1489 −1.50600 −0.753001 0.658019i \(-0.771395\pi\)
−0.753001 + 0.658019i \(0.771395\pi\)
\(180\) 4.33341 + 5.12070i 0.322993 + 0.381674i
\(181\) −20.6969 −1.53839 −0.769196 0.639013i \(-0.779343\pi\)
−0.769196 + 0.639013i \(0.779343\pi\)
\(182\) −2.51059 + 2.51059i −0.186097 + 0.186097i
\(183\) 9.24348 + 11.1198i 0.683298 + 0.821996i
\(184\) 2.44949i 0.180579i
\(185\) −2.19275 21.7060i −0.161214 1.59586i
\(186\) −5.17423 0.476756i −0.379393 0.0349574i
\(187\) 1.00000 + 1.00000i 0.0731272 + 0.0731272i
\(188\) 3.53553 + 3.53553i 0.257855 + 0.257855i
\(189\) 7.07107 + 2.00000i 0.514344 + 0.145479i
\(190\) −0.573214 5.67423i −0.0415853 0.411652i
\(191\) 2.82843i 0.204658i 0.994751 + 0.102329i \(0.0326294\pi\)
−0.994751 + 0.102329i \(0.967371\pi\)
\(192\) −1.33195 + 1.10721i −0.0961253 + 0.0799057i
\(193\) −0.651531 + 0.651531i −0.0468982 + 0.0468982i −0.730167 0.683269i \(-0.760558\pi\)
0.683269 + 0.730167i \(0.260558\pi\)
\(194\) −5.83183 −0.418701
\(195\) −6.93576 6.81478i −0.496680 0.488016i
\(196\) −5.00000 −0.357143
\(197\) 1.73205 1.73205i 0.123404 0.123404i −0.642708 0.766111i \(-0.722189\pi\)
0.766111 + 0.642708i \(0.222189\pi\)
\(198\) 3.49768 2.40130i 0.248569 0.170653i
\(199\) 16.7980i 1.19078i 0.803438 + 0.595388i \(0.203002\pi\)
−0.803438 + 0.595388i \(0.796998\pi\)
\(200\) −2.75699 + 4.17121i −0.194949 + 0.294949i
\(201\) 2.34847 25.4880i 0.165648 1.79778i
\(202\) 3.44949 + 3.44949i 0.242705 + 0.242705i
\(203\) −6.61037 6.61037i −0.463957 0.463957i
\(204\) 0.158919 1.72474i 0.0111265 0.120756i
\(205\) 7.79796 9.55051i 0.544633 0.667037i
\(206\) 16.6848i 1.16249i
\(207\) −6.05816 + 4.15918i −0.421071 + 0.289083i
\(208\) 1.77526 1.77526i 0.123092 0.123092i
\(209\) −3.60697 −0.249499
\(210\) 0.0481882 + 5.47701i 0.00332530 + 0.377950i
\(211\) −15.5505 −1.07054 −0.535271 0.844681i \(-0.679790\pi\)
−0.535271 + 0.844681i \(0.679790\pi\)
\(212\) 7.95315 7.95315i 0.546224 0.546224i
\(213\) −6.07433 + 5.04939i −0.416207 + 0.345979i
\(214\) 1.79796i 0.122906i
\(215\) −8.02458 + 0.810647i −0.547272 + 0.0552857i
\(216\) −5.00000 1.41421i −0.340207 0.0962250i
\(217\) −3.00000 3.00000i −0.203653 0.203653i
\(218\) 3.07483 + 3.07483i 0.208254 + 0.208254i
\(219\) 0.794593 + 0.0732141i 0.0536936 + 0.00494735i
\(220\) 2.44949 + 2.00000i 0.165145 + 0.134840i
\(221\) 2.51059i 0.168881i
\(222\) 10.8026 + 12.9954i 0.725023 + 0.872191i
\(223\) −7.87628 + 7.87628i −0.527434 + 0.527434i −0.919807 0.392372i \(-0.871655\pi\)
0.392372 + 0.919807i \(0.371655\pi\)
\(224\) −1.41421 −0.0944911
\(225\) −14.9977 + 0.263927i −0.999845 + 0.0175951i
\(226\) −16.7980 −1.11738
\(227\) −16.5813 + 16.5813i −1.10054 + 1.10054i −0.106194 + 0.994345i \(0.533866\pi\)
−0.994345 + 0.106194i \(0.966134\pi\)
\(228\) 2.82394 + 3.39716i 0.187020 + 0.224982i
\(229\) 0.202041i 0.0133512i −0.999978 0.00667562i \(-0.997875\pi\)
0.999978 0.00667562i \(-0.00212493\pi\)
\(230\) −4.24264 3.46410i −0.279751 0.228416i
\(231\) 3.44949 + 0.317837i 0.226960 + 0.0209122i
\(232\) 4.67423 + 4.67423i 0.306879 + 0.306879i
\(233\) −9.04952 9.04952i −0.592854 0.592854i 0.345547 0.938401i \(-0.387693\pi\)
−0.938401 + 0.345547i \(0.887693\pi\)
\(234\) 7.40496 + 1.37628i 0.484077 + 0.0899700i
\(235\) −11.1237 + 1.12372i −0.725632 + 0.0733037i
\(236\) 0.317837i 0.0206894i
\(237\) 9.18910 7.63859i 0.596896 0.496180i
\(238\) 1.00000 1.00000i 0.0648204 0.0648204i
\(239\) 11.6637 0.754459 0.377230 0.926120i \(-0.376877\pi\)
0.377230 + 0.926120i \(0.376877\pi\)
\(240\) −0.0340742 3.87283i −0.00219948 0.249990i
\(241\) 17.5505 1.13053 0.565264 0.824910i \(-0.308774\pi\)
0.565264 + 0.824910i \(0.308774\pi\)
\(242\) −6.36396 + 6.36396i −0.409091 + 0.409091i
\(243\) −4.99221 14.7675i −0.320250 0.947333i
\(244\) 8.34847i 0.534456i
\(245\) 7.07107 8.66025i 0.451754 0.553283i
\(246\) −0.876276 + 9.51023i −0.0558693 + 0.606350i
\(247\) −4.52781 4.52781i −0.288097 0.288097i
\(248\) 2.12132 + 2.12132i 0.134704 + 0.134704i
\(249\) 1.27135 13.7980i 0.0805685 0.874410i
\(250\) −3.32577 10.6742i −0.210340 0.675098i
\(251\) 26.7272i 1.68701i 0.537125 + 0.843503i \(0.319510\pi\)
−0.537125 + 0.843503i \(0.680490\pi\)
\(252\) −2.40130 3.49768i −0.151268 0.220333i
\(253\) −2.44949 + 2.44949i −0.153998 + 0.153998i
\(254\) −1.73205 −0.108679
\(255\) 2.76260 + 2.71441i 0.173001 + 0.169983i
\(256\) 1.00000 0.0625000
\(257\) −6.75323 + 6.75323i −0.421255 + 0.421255i −0.885636 0.464381i \(-0.846277\pi\)
0.464381 + 0.885636i \(0.346277\pi\)
\(258\) 4.80430 3.99366i 0.299103 0.248634i
\(259\) 13.7980i 0.857363i
\(260\) 0.564242 + 5.58542i 0.0349928 + 0.346393i
\(261\) −3.62372 + 19.4972i −0.224303 + 1.20685i
\(262\) 11.3485 + 11.3485i 0.701111 + 0.701111i
\(263\) −19.4418 19.4418i −1.19883 1.19883i −0.974516 0.224319i \(-0.927984\pi\)
−0.224319 0.974516i \(-0.572016\pi\)
\(264\) −2.43916 0.224745i −0.150120 0.0138321i
\(265\) 2.52781 + 25.0227i 0.155282 + 1.53713i
\(266\) 3.60697i 0.221157i
\(267\) 17.5760 + 21.1436i 1.07563 + 1.29397i
\(268\) −10.4495 + 10.4495i −0.638304 + 0.638304i
\(269\) 5.97469 0.364283 0.182142 0.983272i \(-0.441697\pi\)
0.182142 + 0.983272i \(0.441697\pi\)
\(270\) 9.52056 6.66025i 0.579403 0.405330i
\(271\) 2.24745 0.136523 0.0682614 0.997667i \(-0.478255\pi\)
0.0682614 + 0.997667i \(0.478255\pi\)
\(272\) −0.707107 + 0.707107i −0.0428746 + 0.0428746i
\(273\) 3.93115 + 4.72911i 0.237924 + 0.286219i
\(274\) 9.55051i 0.576967i
\(275\) −6.92820 + 1.41421i −0.417786 + 0.0852803i
\(276\) 4.22474 + 0.389270i 0.254300 + 0.0234313i
\(277\) 13.3485 + 13.3485i 0.802032 + 0.802032i 0.983413 0.181381i \(-0.0580568\pi\)
−0.181381 + 0.983413i \(0.558057\pi\)
\(278\) 12.5851 + 12.5851i 0.754802 + 0.754802i
\(279\) −1.64456 + 8.84847i −0.0984575 + 0.529744i
\(280\) 2.00000 2.44949i 0.119523 0.146385i
\(281\) 25.3451i 1.51196i −0.654594 0.755981i \(-0.727160\pi\)
0.654594 0.755981i \(-0.272840\pi\)
\(282\) 6.65976 5.53603i 0.396583 0.329666i
\(283\) −1.77526 + 1.77526i −0.105528 + 0.105528i −0.757899 0.652371i \(-0.773774\pi\)
0.652371 + 0.757899i \(0.273774\pi\)
\(284\) 4.56048 0.270615
\(285\) −9.87770 + 0.0869065i −0.585105 + 0.00514790i
\(286\) 3.55051 0.209946
\(287\) −5.51399 + 5.51399i −0.325481 + 0.325481i
\(288\) 1.69798 + 2.47323i 0.100054 + 0.145737i
\(289\) 1.00000i 0.0588235i
\(290\) −14.7064 + 1.48565i −0.863588 + 0.0872401i
\(291\) −0.926786 + 10.0584i −0.0543292 + 0.589635i
\(292\) −0.325765 0.325765i −0.0190640 0.0190640i
\(293\) −5.12472 5.12472i −0.299389 0.299389i 0.541385 0.840775i \(-0.317900\pi\)
−0.840775 + 0.541385i \(0.817900\pi\)
\(294\) −0.794593 + 8.62372i −0.0463416 + 0.502946i
\(295\) −0.550510 0.449490i −0.0320519 0.0261703i
\(296\) 9.75663i 0.567093i
\(297\) −3.58579 6.41421i −0.208068 0.372190i
\(298\) −6.79796 + 6.79796i −0.393795 + 0.393795i
\(299\) −6.14966 −0.355644
\(300\) 6.75613 + 5.41800i 0.390065 + 0.312808i
\(301\) 5.10102 0.294018
\(302\) −10.8530 + 10.8530i −0.624520 + 0.624520i
\(303\) 6.49768 5.40130i 0.373282 0.310297i
\(304\) 2.55051i 0.146282i
\(305\) 14.4600 + 11.8065i 0.827976 + 0.676039i
\(306\) −2.94949 0.548188i −0.168611 0.0313378i
\(307\) −12.0000 12.0000i −0.684876 0.684876i 0.276219 0.961095i \(-0.410919\pi\)
−0.961095 + 0.276219i \(0.910919\pi\)
\(308\) −1.41421 1.41421i −0.0805823 0.0805823i
\(309\) 28.7771 + 2.65153i 1.63707 + 0.150840i
\(310\) −6.67423 + 0.674235i −0.379071 + 0.0382940i
\(311\) 32.0983i 1.82013i 0.414467 + 0.910064i \(0.363968\pi\)
−0.414467 + 0.910064i \(0.636032\pi\)
\(312\) −2.77974 3.34398i −0.157372 0.189316i
\(313\) −14.6969 + 14.6969i −0.830720 + 0.830720i −0.987615 0.156895i \(-0.949852\pi\)
0.156895 + 0.987615i \(0.449852\pi\)
\(314\) 0 0
\(315\) 9.45411 + 0.787287i 0.532679 + 0.0443586i
\(316\) −6.89898 −0.388098
\(317\) −13.5065 + 13.5065i −0.758598 + 0.758598i −0.976067 0.217469i \(-0.930220\pi\)
0.217469 + 0.976067i \(0.430220\pi\)
\(318\) −12.4532 14.9811i −0.698343 0.840096i
\(319\) 9.34847i 0.523414i
\(320\) −1.41421 + 1.73205i −0.0790569 + 0.0968246i
\(321\) −3.10102 0.285729i −0.173082 0.0159478i
\(322\) 2.44949 + 2.44949i 0.136505 + 0.136505i
\(323\) 1.80348 + 1.80348i 0.100348 + 0.100348i
\(324\) −3.23375 + 8.39898i −0.179653 + 0.466610i
\(325\) −10.4722 6.92168i −0.580893 0.383946i
\(326\) 3.46410i 0.191859i
\(327\) 5.79195 4.81465i 0.320296 0.266251i
\(328\) 3.89898 3.89898i 0.215285 0.215285i
\(329\) 7.07107 0.389841
\(330\) 3.83876 3.90691i 0.211317 0.215068i
\(331\) −21.0454 −1.15676 −0.578380 0.815767i \(-0.696315\pi\)
−0.578380 + 0.815767i \(0.696315\pi\)
\(332\) −5.65685 + 5.65685i −0.310460 + 0.310460i
\(333\) 24.1304 16.5665i 1.32234 0.907840i
\(334\) 5.10102i 0.279115i
\(335\) −3.32124 32.8769i −0.181459 1.79625i
\(336\) −0.224745 + 2.43916i −0.0122608 + 0.133067i
\(337\) −19.4722 19.4722i −1.06072 1.06072i −0.998033 0.0626846i \(-0.980034\pi\)
−0.0626846 0.998033i \(-0.519966\pi\)
\(338\) −4.73545 4.73545i −0.257575 0.257575i
\(339\) −2.66951 + 28.9722i −0.144988 + 1.57355i
\(340\) −0.224745 2.22474i −0.0121885 0.120654i
\(341\) 4.24264i 0.229752i
\(342\) 6.30800 4.33071i 0.341098 0.234178i
\(343\) −12.0000 + 12.0000i −0.647939 + 0.647939i
\(344\) −3.60697 −0.194475
\(345\) −6.64893 + 6.76696i −0.357966 + 0.364321i
\(346\) −2.65153 −0.142547
\(347\) 22.5881 22.5881i 1.21259 1.21259i 0.242421 0.970171i \(-0.422058\pi\)
0.970171 0.242421i \(-0.0779416\pi\)
\(348\) 8.80469 7.31904i 0.471981 0.392342i
\(349\) 18.4495i 0.987579i −0.869582 0.493789i \(-0.835611\pi\)
0.869582 0.493789i \(-0.164389\pi\)
\(350\) 1.41421 + 6.92820i 0.0755929 + 0.370328i
\(351\) 3.55051 12.5529i 0.189512 0.670027i
\(352\) 1.00000 + 1.00000i 0.0533002 + 0.0533002i
\(353\) −1.09638 1.09638i −0.0583542 0.0583542i 0.677327 0.735682i \(-0.263138\pi\)
−0.735682 + 0.677327i \(0.763138\pi\)
\(354\) 0.548188 + 0.0505103i 0.0291359 + 0.00268459i
\(355\) −6.44949 + 7.89898i −0.342303 + 0.419234i
\(356\) 15.8742i 0.841330i
\(357\) −1.56583 1.88366i −0.0828723 0.0996940i
\(358\) 14.2474 14.2474i 0.753001 0.753001i
\(359\) −0.142865 −0.00754010 −0.00377005 0.999993i \(-0.501200\pi\)
−0.00377005 + 0.999993i \(0.501200\pi\)
\(360\) −6.68506 0.556696i −0.352334 0.0293405i
\(361\) 12.4949 0.657626
\(362\) 14.6349 14.6349i 0.769196 0.769196i
\(363\) 9.96486 + 11.9876i 0.523019 + 0.629184i
\(364\) 3.55051i 0.186097i
\(365\) 1.02494 0.103540i 0.0536480 0.00541955i
\(366\) −14.3990 1.32673i −0.752647 0.0693491i
\(367\) −6.24745 6.24745i −0.326114 0.326114i 0.524993 0.851107i \(-0.324068\pi\)
−0.851107 + 0.524993i \(0.824068\pi\)
\(368\) −1.73205 1.73205i −0.0902894 0.0902894i
\(369\) 16.2635 + 3.02270i 0.846642 + 0.157356i
\(370\) 16.8990 + 13.7980i 0.878536 + 0.717322i
\(371\) 15.9063i 0.825814i
\(372\) 3.99585 3.32162i 0.207175 0.172218i
\(373\) 16.8990 16.8990i 0.874996 0.874996i −0.118016 0.993012i \(-0.537653\pi\)
0.993012 + 0.118016i \(0.0376533\pi\)
\(374\) −1.41421 −0.0731272
\(375\) −18.9389 + 4.03976i −0.977998 + 0.208612i
\(376\) −5.00000 −0.257855
\(377\) −11.7351 + 11.7351i −0.604388 + 0.604388i
\(378\) −6.41421 + 3.58579i −0.329912 + 0.184433i
\(379\) 15.5959i 0.801108i −0.916273 0.400554i \(-0.868818\pi\)
0.916273 0.400554i \(-0.131182\pi\)
\(380\) 4.41761 + 3.60697i 0.226619 + 0.185033i
\(381\) −0.275255 + 2.98735i −0.0141017 + 0.153046i
\(382\) −2.00000 2.00000i −0.102329 0.102329i
\(383\) −9.82806 9.82806i −0.502191 0.502191i 0.409928 0.912118i \(-0.365554\pi\)
−0.912118 + 0.409928i \(0.865554\pi\)
\(384\) 0.158919 1.72474i 0.00810978 0.0880155i
\(385\) 4.44949 0.449490i 0.226767 0.0229081i
\(386\) 0.921404i 0.0468982i
\(387\) −6.12454 8.92086i −0.311328 0.453473i
\(388\) 4.12372 4.12372i 0.209350 0.209350i
\(389\) −22.4846 −1.14001 −0.570006 0.821641i \(-0.693059\pi\)
−0.570006 + 0.821641i \(0.693059\pi\)
\(390\) 9.72310 0.0855463i 0.492348 0.00433180i
\(391\) 2.44949 0.123876
\(392\) 3.53553 3.53553i 0.178571 0.178571i
\(393\) 21.3767 17.7697i 1.07831 0.896364i
\(394\) 2.44949i 0.123404i
\(395\) 9.75663 11.9494i 0.490909 0.601239i
\(396\) −0.775255 + 4.17121i −0.0389580 + 0.209611i
\(397\) −1.69694 1.69694i −0.0851669 0.0851669i 0.663240 0.748407i \(-0.269181\pi\)
−0.748407 + 0.663240i \(0.769181\pi\)
\(398\) −11.8780 11.8780i −0.595388 0.595388i
\(399\) 6.22110 + 0.573214i 0.311444 + 0.0286966i
\(400\) −1.00000 4.89898i −0.0500000 0.244949i
\(401\) 25.9487i 1.29581i −0.761719 0.647907i \(-0.775645\pi\)
0.761719 0.647907i \(-0.224355\pi\)
\(402\) 16.3621 + 19.6833i 0.816067 + 0.981715i
\(403\) −5.32577 + 5.32577i −0.265295 + 0.265295i
\(404\) −4.87832 −0.242705
\(405\) −9.97425 17.4790i −0.495624 0.868537i
\(406\) 9.34847 0.463957
\(407\) 9.75663 9.75663i 0.483618 0.483618i
\(408\) 1.10721 + 1.33195i 0.0548149 + 0.0659414i
\(409\) 25.0000i 1.23617i −0.786111 0.618085i \(-0.787909\pi\)
0.786111 0.618085i \(-0.212091\pi\)
\(410\) 1.23924 + 12.2672i 0.0612017 + 0.605835i
\(411\) 16.4722 + 1.51775i 0.812513 + 0.0748653i
\(412\) −11.7980 11.7980i −0.581244 0.581244i
\(413\) 0.317837 + 0.317837i 0.0156397 + 0.0156397i
\(414\) 1.34278 7.22474i 0.0659941 0.355077i
\(415\) −1.79796 17.7980i −0.0882583 0.873667i
\(416\) 2.51059i 0.123092i
\(417\) 23.7060 19.7060i 1.16089 0.965008i
\(418\) 2.55051 2.55051i 0.124750 0.124750i
\(419\) −6.14966 −0.300431 −0.150215 0.988653i \(-0.547997\pi\)
−0.150215 + 0.988653i \(0.547997\pi\)
\(420\) −3.90691 3.83876i −0.190638 0.187312i
\(421\) 16.8990 0.823606 0.411803 0.911273i \(-0.364899\pi\)
0.411803 + 0.911273i \(0.364899\pi\)
\(422\) 10.9959 10.9959i 0.535271 0.535271i
\(423\) −8.48988 12.3662i −0.412792 0.601263i
\(424\) 11.2474i 0.546224i
\(425\) 4.17121 + 2.75699i 0.202333 + 0.133734i
\(426\) 0.724745 7.86566i 0.0351140 0.381093i
\(427\) −8.34847 8.34847i −0.404011 0.404011i
\(428\) 1.27135 + 1.27135i 0.0614530 + 0.0614530i
\(429\) 0.564242 6.12372i 0.0272419 0.295656i
\(430\) 5.10102 6.24745i 0.245993 0.301279i
\(431\) 39.3123i 1.89360i 0.321816 + 0.946802i \(0.395707\pi\)
−0.321816 + 0.946802i \(0.604293\pi\)
\(432\) 4.53553 2.53553i 0.218216 0.121991i
\(433\) −13.8990 + 13.8990i −0.667942 + 0.667942i −0.957239 0.289297i \(-0.906578\pi\)
0.289297 + 0.957239i \(0.406578\pi\)
\(434\) 4.24264 0.203653
\(435\) 0.225243 + 25.6008i 0.0107996 + 1.22747i
\(436\) −4.34847 −0.208254
\(437\) −4.41761 + 4.41761i −0.211323 + 0.211323i
\(438\) −0.613632 + 0.510092i −0.0293205 + 0.0243731i
\(439\) 6.89898i 0.329270i 0.986355 + 0.164635i \(0.0526447\pi\)
−0.986355 + 0.164635i \(0.947355\pi\)
\(440\) −3.14626 + 0.317837i −0.149992 + 0.0151523i
\(441\) 14.7474 + 2.74094i 0.702259 + 0.130521i
\(442\) −1.77526 1.77526i −0.0844403 0.0844403i
\(443\) −16.5099 16.5099i −0.784407 0.784407i 0.196164 0.980571i \(-0.437152\pi\)
−0.980571 + 0.196164i \(0.937152\pi\)
\(444\) −16.8277 1.55051i −0.798607 0.0735840i
\(445\) 27.4949 + 22.4495i 1.30338 + 1.06421i
\(446\) 11.1387i 0.527434i
\(447\) 10.6444 + 12.8051i 0.503464 + 0.605659i
\(448\) 1.00000 1.00000i 0.0472456 0.0472456i
\(449\) −10.2494 −0.483701 −0.241850 0.970314i \(-0.577754\pi\)
−0.241850 + 0.970314i \(0.577754\pi\)
\(450\) 10.4183 10.7916i 0.491125 0.508720i
\(451\) 7.79796 0.367192
\(452\) 11.8780 11.8780i 0.558692 0.558692i
\(453\) 16.9939 + 20.4434i 0.798444 + 0.960515i
\(454\) 23.4495i 1.10054i
\(455\) 6.14966 + 5.02118i 0.288301 + 0.235397i
\(456\) −4.39898 0.405324i −0.206001 0.0189810i
\(457\) −20.7980 20.7980i −0.972887 0.972887i 0.0267545 0.999642i \(-0.491483\pi\)
−0.999642 + 0.0267545i \(0.991483\pi\)
\(458\) 0.142865 + 0.142865i 0.00667562 + 0.00667562i
\(459\) −1.41421 + 5.00000i −0.0660098 + 0.233380i
\(460\) 5.44949 0.550510i 0.254084 0.0256677i
\(461\) 28.4914i 1.32697i 0.748188 + 0.663487i \(0.230924\pi\)
−0.748188 + 0.663487i \(0.769076\pi\)
\(462\) −2.66390 + 2.21441i −0.123936 + 0.103024i
\(463\) 21.9217 21.9217i 1.01879 1.01879i 0.0189669 0.999820i \(-0.493962\pi\)
0.999820 0.0189669i \(-0.00603772\pi\)
\(464\) −6.61037 −0.306879
\(465\) 0.102223 + 11.6185i 0.00474046 + 0.538795i
\(466\) 12.7980 0.592854
\(467\) −12.1244 + 12.1244i −0.561048 + 0.561048i −0.929605 0.368557i \(-0.879852\pi\)
0.368557 + 0.929605i \(0.379852\pi\)
\(468\) −6.20927 + 4.26292i −0.287024 + 0.197054i
\(469\) 20.8990i 0.965025i
\(470\) 7.07107 8.66025i 0.326164 0.399468i
\(471\) 0 0
\(472\) −0.224745 0.224745i −0.0103447 0.0103447i
\(473\) −3.60697 3.60697i −0.165848 0.165848i
\(474\) −1.09638 + 11.8990i −0.0503582 + 0.546538i
\(475\) −12.4949 + 2.55051i −0.573305 + 0.117025i
\(476\) 1.41421i 0.0648204i
\(477\) −27.8175 + 19.0979i −1.27368 + 0.874433i
\(478\) −8.24745 + 8.24745i −0.377230 + 0.377230i
\(479\) −4.21053 −0.192384 −0.0961921 0.995363i \(-0.530666\pi\)
−0.0961921 + 0.995363i \(0.530666\pi\)
\(480\) 2.76260 + 2.71441i 0.126095 + 0.123895i
\(481\) 24.4949 1.11687
\(482\) −12.4101 + 12.4101i −0.565264 + 0.565264i
\(483\) 4.61401 3.83548i 0.209945 0.174520i
\(484\) 9.00000i 0.409091i
\(485\) 1.31067 + 12.9743i 0.0595146 + 0.589134i
\(486\) 13.9722 + 6.91215i 0.633792 + 0.313541i
\(487\) 14.6515 + 14.6515i 0.663924 + 0.663924i 0.956303 0.292378i \(-0.0944467\pi\)
−0.292378 + 0.956303i \(0.594447\pi\)
\(488\) 5.90326 + 5.90326i 0.267228 + 0.267228i
\(489\) 5.97469 + 0.550510i 0.270185 + 0.0248949i
\(490\) 1.12372 + 11.1237i 0.0507647 + 0.502519i
\(491\) 28.3164i 1.27790i 0.769248 + 0.638950i \(0.220631\pi\)
−0.769248 + 0.638950i \(0.779369\pi\)
\(492\) −6.10512 7.34437i −0.275240 0.331110i
\(493\) 4.67423 4.67423i 0.210517 0.210517i
\(494\) 6.40329 0.288097
\(495\) −6.12837 7.24176i −0.275450 0.325493i
\(496\) −3.00000 −0.134704
\(497\) 4.56048 4.56048i 0.204565 0.204565i
\(498\) 8.85765 + 10.6556i 0.396921 + 0.477489i
\(499\) 15.1464i 0.678047i −0.940778 0.339024i \(-0.889903\pi\)
0.940778 0.339024i \(-0.110097\pi\)
\(500\) 9.89949 + 5.19615i 0.442719 + 0.232379i
\(501\) 8.79796 + 0.810647i 0.393064 + 0.0362170i
\(502\) −18.8990 18.8990i −0.843503 0.843503i
\(503\) 26.4094 + 26.4094i 1.17753 + 1.17753i 0.980370 + 0.197165i \(0.0631733\pi\)
0.197165 + 0.980370i \(0.436827\pi\)
\(504\) 4.17121 + 0.775255i 0.185800 + 0.0345326i
\(505\) 6.89898 8.44949i 0.307001 0.375997i
\(506\) 3.46410i 0.153998i
\(507\) −8.92000 + 7.41489i −0.396151 + 0.329307i
\(508\) 1.22474 1.22474i 0.0543393 0.0543393i
\(509\) −33.6554 −1.49175 −0.745875 0.666086i \(-0.767968\pi\)
−0.745875 + 0.666086i \(0.767968\pi\)
\(510\) −3.87283 + 0.0340742i −0.171492 + 0.00150883i
\(511\) −0.651531 −0.0288220
\(512\) −0.707107 + 0.707107i −0.0312500 + 0.0312500i
\(513\) −6.46691 11.5679i −0.285521 0.510736i
\(514\) 9.55051i 0.421255i
\(515\) 37.1195 3.74983i 1.63568 0.165237i
\(516\) −0.573214 + 6.22110i −0.0252343 + 0.273869i
\(517\) −5.00000 5.00000i −0.219900 0.219900i
\(518\) −9.75663 9.75663i −0.428682 0.428682i
\(519\) −0.421378 + 4.57321i −0.0184964 + 0.200742i
\(520\) −4.34847 3.55051i −0.190693 0.155700i
\(521\) 33.6554i 1.47447i 0.675637 + 0.737235i \(0.263869\pi\)
−0.675637 + 0.737235i \(0.736131\pi\)
\(522\) −11.2242 16.3490i −0.491272 0.715575i
\(523\) 22.2474 22.2474i 0.972813 0.972813i −0.0268271 0.999640i \(-0.508540\pi\)
0.999640 + 0.0268271i \(0.00854035\pi\)
\(524\) −16.0492 −0.701111
\(525\) 12.1741 1.33814i 0.531322 0.0584011i
\(526\) 27.4949 1.19883
\(527\) 2.12132 2.12132i 0.0924062 0.0924062i
\(528\) 1.88366 1.56583i 0.0819759 0.0681438i
\(529\) 17.0000i 0.739130i
\(530\) −19.4812 15.9063i −0.846207 0.690925i
\(531\) 0.174235 0.937458i 0.00756114 0.0406822i
\(532\) −2.55051 2.55051i −0.110579 0.110579i
\(533\) 9.78874 + 9.78874i 0.423997 + 0.423997i
\(534\) −27.3789 2.52270i −1.18480 0.109168i
\(535\) −4.00000 + 0.404082i −0.172935 + 0.0174700i
\(536\) 14.7778i 0.638304i
\(537\) −22.3090 26.8374i −0.962706 1.15812i
\(538\) −4.22474 + 4.22474i −0.182142 + 0.182142i
\(539\) 7.07107 0.304572
\(540\) −2.02254 + 11.4416i −0.0870363 + 0.492366i
\(541\) 0.898979 0.0386501 0.0193251 0.999813i \(-0.493848\pi\)
0.0193251 + 0.999813i \(0.493848\pi\)
\(542\) −1.58919 + 1.58919i −0.0682614 + 0.0682614i
\(543\) −22.9158 27.5673i −0.983410 1.18303i
\(544\) 1.00000i 0.0428746i
\(545\) 6.14966 7.53177i 0.263423 0.322626i
\(546\) −6.12372 0.564242i −0.262071 0.0241473i
\(547\) 8.42679 + 8.42679i 0.360303 + 0.360303i 0.863925 0.503621i \(-0.167999\pi\)
−0.503621 + 0.863925i \(0.667999\pi\)
\(548\) −6.75323 6.75323i −0.288484 0.288484i
\(549\) −4.57653 + 24.6237i −0.195322 + 1.05091i
\(550\) 3.89898 5.89898i 0.166253 0.251533i
\(551\) 16.8598i 0.718252i
\(552\) −3.26260 + 2.71209i −0.138866 + 0.115434i
\(553\) −6.89898 + 6.89898i −0.293374 + 0.293374i
\(554\) −18.8776 −0.802032
\(555\) 26.4835 26.9537i 1.12416 1.14412i
\(556\) −17.7980 −0.754802
\(557\) −11.2744 + 11.2744i −0.477711 + 0.477711i −0.904399 0.426688i \(-0.859680\pi\)
0.426688 + 0.904399i \(0.359680\pi\)
\(558\) −5.09393 7.41970i −0.215643 0.314101i
\(559\) 9.05561i 0.383012i
\(560\) 0.317837 + 3.14626i 0.0134311 + 0.132954i
\(561\) −0.224745 + 2.43916i −0.00948874 + 0.102981i
\(562\) 17.9217 + 17.9217i 0.755981 + 0.755981i
\(563\) 2.51059 + 2.51059i 0.105809 + 0.105809i 0.758029 0.652221i \(-0.226162\pi\)
−0.652221 + 0.758029i \(0.726162\pi\)
\(564\) −0.794593 + 8.62372i −0.0334584 + 0.363124i
\(565\) 3.77526 + 37.3712i 0.158826 + 1.57222i
\(566\) 2.51059i 0.105528i
\(567\) 5.16523 + 11.6327i 0.216919 + 0.488529i
\(568\) −3.22474 + 3.22474i −0.135307 + 0.135307i
\(569\) −10.5031 −0.440311 −0.220156 0.975465i \(-0.570657\pi\)
−0.220156 + 0.975465i \(0.570657\pi\)
\(570\) 6.92314 7.04604i 0.289978 0.295126i
\(571\) 4.20204 0.175850 0.0879250 0.996127i \(-0.471976\pi\)
0.0879250 + 0.996127i \(0.471976\pi\)
\(572\) −2.51059 + 2.51059i −0.104973 + 0.104973i
\(573\) −3.76733 + 3.13165i −0.157382 + 0.130827i
\(574\) 7.79796i 0.325481i
\(575\) −6.75323 + 10.2173i −0.281629 + 0.426092i
\(576\) −2.94949 0.548188i −0.122895 0.0228412i
\(577\) 3.79796 + 3.79796i 0.158111 + 0.158111i 0.781729 0.623618i \(-0.214338\pi\)
−0.623618 + 0.781729i \(0.714338\pi\)
\(578\) 0.707107 + 0.707107i 0.0294118 + 0.0294118i
\(579\) −1.58919 0.146428i −0.0660443 0.00608535i
\(580\) 9.34847 11.4495i 0.388174 0.475414i
\(581\) 11.3137i 0.469372i
\(582\) −6.45704 7.76771i −0.267653 0.321982i
\(583\) −11.2474 + 11.2474i −0.465822 + 0.465822i
\(584\) 0.460702 0.0190640
\(585\) 1.39764 16.7835i 0.0577851 0.693910i
\(586\) 7.24745 0.299389
\(587\) 30.2234 30.2234i 1.24745 1.24745i 0.290613 0.956841i \(-0.406141\pi\)
0.956841 0.290613i \(-0.0938591\pi\)
\(588\) −5.53603 6.65976i −0.228302 0.274644i
\(589\) 7.65153i 0.315276i
\(590\) 0.707107 0.0714323i 0.0291111 0.00294082i
\(591\) 4.22474 + 0.389270i 0.173783 + 0.0160124i
\(592\) 6.89898 + 6.89898i 0.283546 + 0.283546i
\(593\) −31.9555 31.9555i −1.31225 1.31225i −0.919751 0.392502i \(-0.871610\pi\)
−0.392502 0.919751i \(-0.628390\pi\)
\(594\) 7.07107 + 2.00000i 0.290129 + 0.0820610i
\(595\) −2.44949 2.00000i −0.100419 0.0819920i
\(596\) 9.61377i 0.393795i
\(597\) −22.3741 + 18.5988i −0.915709 + 0.761198i
\(598\) 4.34847 4.34847i 0.177822 0.177822i
\(599\) 13.9993 0.571995 0.285997 0.958230i \(-0.407675\pi\)
0.285997 + 0.958230i \(0.407675\pi\)
\(600\) −8.60841 + 0.946206i −0.351437 + 0.0386287i
\(601\) 35.1464 1.43365 0.716826 0.697252i \(-0.245594\pi\)
0.716826 + 0.697252i \(0.245594\pi\)
\(602\) −3.60697 + 3.60697i −0.147009 + 0.147009i
\(603\) 36.5489 25.0924i 1.48839 1.02184i
\(604\) 15.3485i 0.624520i
\(605\) 15.5885 + 12.7279i 0.633761 + 0.517464i
\(606\) −0.775255 + 8.41385i −0.0314926 + 0.341789i
\(607\) 18.7980 + 18.7980i 0.762986 + 0.762986i 0.976861 0.213875i \(-0.0686086\pi\)
−0.213875 + 0.976861i \(0.568609\pi\)
\(608\) 1.80348 + 1.80348i 0.0731409 + 0.0731409i
\(609\) 1.48565 16.1237i 0.0602014 0.653366i
\(610\) −18.5732 + 1.87628i −0.752007 + 0.0759682i
\(611\) 12.5529i 0.507838i
\(612\) 2.47323 1.69798i 0.0999745 0.0686366i
\(613\) −28.9217 + 28.9217i −1.16814 + 1.16814i −0.185490 + 0.982646i \(0.559387\pi\)
−0.982646 + 0.185490i \(0.940613\pi\)
\(614\) 16.9706 0.684876
\(615\) 21.3548 0.187885i 0.861107 0.00757624i
\(616\) 2.00000 0.0805823
\(617\) 16.7563 16.7563i 0.674582 0.674582i −0.284187 0.958769i \(-0.591724\pi\)
0.958769 + 0.284187i \(0.0917237\pi\)
\(618\) −22.2234 + 18.4736i −0.893956 + 0.743115i
\(619\) 12.6969i 0.510333i 0.966897 + 0.255167i \(0.0821303\pi\)
−0.966897 + 0.255167i \(0.917870\pi\)
\(620\) 4.24264 5.19615i 0.170389 0.208683i
\(621\) −12.2474 3.46410i −0.491473 0.139010i
\(622\) −22.6969 22.6969i −0.910064 0.910064i
\(623\) −15.8742 15.8742i −0.635986 0.635986i
\(624\) 4.33013 + 0.398979i 0.173344 + 0.0159720i
\(625\) −23.0000 + 9.79796i −0.920000 + 0.391918i
\(626\) 20.7846i 0.830720i
\(627\) −3.99366 4.80430i −0.159491 0.191865i
\(628\) 0 0
\(629\) −9.75663 −0.389022
\(630\) −7.24176 + 6.12837i −0.288519 + 0.244160i
\(631\) −43.6413 −1.73733 −0.868667 0.495397i \(-0.835023\pi\)
−0.868667 + 0.495397i \(0.835023\pi\)
\(632\) 4.87832 4.87832i 0.194049 0.194049i
\(633\) −17.2176 20.7125i −0.684339 0.823249i
\(634\) 19.1010i 0.758598i
\(635\) 0.389270 + 3.85337i 0.0154477 + 0.152916i
\(636\) 19.3990 + 1.78743i 0.769220 + 0.0708762i
\(637\) 8.87628 + 8.87628i 0.351691 + 0.351691i
\(638\) −6.61037 6.61037i −0.261707 0.261707i
\(639\) −13.4511 2.50000i −0.532117 0.0988985i
\(640\) −0.224745 2.22474i −0.00888382 0.0879408i
\(641\) 3.46410i 0.136824i 0.997657 + 0.0684119i \(0.0217932\pi\)
−0.997657 + 0.0684119i \(0.978207\pi\)
\(642\) 2.39479 1.99071i 0.0945150 0.0785671i
\(643\) −30.4949 + 30.4949i −1.20260 + 1.20260i −0.229229 + 0.973373i \(0.573620\pi\)
−0.973373 + 0.229229i \(0.926380\pi\)
\(644\) −3.46410 −0.136505
\(645\) −9.96461 9.79079i −0.392356 0.385512i
\(646\) −2.55051 −0.100348
\(647\) −0.0714323 + 0.0714323i −0.00280829 + 0.00280829i −0.708510 0.705701i \(-0.750632\pi\)
0.705701 + 0.708510i \(0.250632\pi\)
\(648\) −3.65237 8.22558i −0.143479 0.323131i
\(649\) 0.449490i 0.0176440i
\(650\) 12.2993 2.51059i 0.482419 0.0984734i
\(651\) 0.674235 7.31747i 0.0264253 0.286794i
\(652\) −2.44949 2.44949i −0.0959294 0.0959294i
\(653\) 8.05669 + 8.05669i 0.315283 + 0.315283i 0.846952 0.531669i \(-0.178435\pi\)
−0.531669 + 0.846952i \(0.678435\pi\)
\(654\) −0.691053 + 7.50000i −0.0270223 + 0.293273i
\(655\) 22.6969 27.7980i 0.886843 1.08616i
\(656\) 5.51399i 0.215285i
\(657\) 0.782261 + 1.13942i 0.0305189 + 0.0444531i
\(658\) −5.00000 + 5.00000i −0.194920 + 0.194920i
\(659\) −20.7525 −0.808403 −0.404201 0.914670i \(-0.632450\pi\)
−0.404201 + 0.914670i \(0.632450\pi\)
\(660\) 0.0481882 + 5.47701i 0.00187572 + 0.213192i
\(661\) −7.10102 −0.276198 −0.138099 0.990418i \(-0.544099\pi\)
−0.138099 + 0.990418i \(0.544099\pi\)
\(662\) 14.8814 14.8814i 0.578380 0.578380i
\(663\) −3.34398 + 2.77974i −0.129870 + 0.107956i
\(664\) 8.00000i 0.310460i
\(665\) 8.02458 0.810647i 0.311180 0.0314355i
\(666\) −5.34847 + 28.7771i −0.207249 + 1.11509i
\(667\) 11.4495 + 11.4495i 0.443326 + 0.443326i
\(668\) −3.60697 3.60697i −0.139558 0.139558i
\(669\) −19.2115 1.77015i −0.742759 0.0684381i
\(670\) 25.5959 + 20.8990i 0.988857 + 0.807398i
\(671\) 11.8065i 0.455786i
\(672\) −1.56583 1.88366i −0.0604031 0.0726639i
\(673\) −33.9217 + 33.9217i −1.30758 + 1.30758i −0.384431 + 0.923154i \(0.625602\pi\)
−0.923154 + 0.384431i \(0.874398\pi\)
\(674\) 27.5378 1.06072
\(675\) −16.9571 19.6840i −0.652678 0.757636i
\(676\) 6.69694 0.257575
\(677\) 24.5023 24.5023i 0.941701 0.941701i −0.0566907 0.998392i \(-0.518055\pi\)
0.998392 + 0.0566907i \(0.0180549\pi\)
\(678\) −18.5988 22.3741i −0.714283 0.859271i
\(679\) 8.24745i 0.316508i
\(680\) 1.73205 + 1.41421i 0.0664211 + 0.0542326i
\(681\) −40.4444 3.72656i −1.54983 0.142802i
\(682\) −3.00000 3.00000i −0.114876 0.114876i
\(683\) 24.4309 + 24.4309i 0.934822 + 0.934822i 0.998002 0.0631798i \(-0.0201241\pi\)
−0.0631798 + 0.998002i \(0.520124\pi\)
\(684\) −1.39816 + 7.52270i −0.0534600 + 0.287638i
\(685\) 21.2474 2.14643i 0.811823 0.0820108i
\(686\) 16.9706i 0.647939i
\(687\) 0.269109 0.223701i 0.0102671 0.00853473i
\(688\) 2.55051 2.55051i 0.0972373 0.0972373i
\(689\) −28.2377 −1.07577
\(690\) −0.0834643 9.48647i −0.00317743 0.361144i
\(691\) −26.6969 −1.01560 −0.507800 0.861475i \(-0.669541\pi\)
−0.507800 + 0.861475i \(0.669541\pi\)
\(692\) 1.87492 1.87492i 0.0712736 0.0712736i
\(693\) 3.39595 + 4.94646i 0.129002 + 0.187901i
\(694\) 31.9444i 1.21259i
\(695\) 25.1701 30.8270i 0.954757 1.16933i
\(696\) −1.05051 + 11.4012i −0.0398195 + 0.432161i
\(697\) −3.89898 3.89898i −0.147684 0.147684i
\(698\) 13.0458 + 13.0458i 0.493789 + 0.493789i
\(699\) 2.03383 22.0732i 0.0769267 0.834886i
\(700\) −5.89898 3.89898i −0.222960 0.147368i
\(701\) 32.0983i 1.21234i 0.795336 + 0.606168i \(0.207294\pi\)
−0.795336 + 0.606168i \(0.792706\pi\)
\(702\) 6.36569 + 11.3869i 0.240257 + 0.429770i
\(703\) 17.5959 17.5959i 0.663643 0.663643i
\(704\) −1.41421 −0.0533002
\(705\) −13.8130 13.5721i −0.520228 0.511153i
\(706\) 1.55051 0.0583542
\(707\) −4.87832 + 4.87832i −0.183468 + 0.183468i
\(708\) −0.423344 + 0.351911i −0.0159102 + 0.0132256i
\(709\) 17.2474i 0.647742i −0.946101 0.323871i \(-0.895016\pi\)
0.946101 0.323871i \(-0.104984\pi\)
\(710\) −1.02494 10.1459i −0.0384655 0.380769i
\(711\) 20.3485 + 3.78194i 0.763127 + 0.141834i
\(712\) 11.2247 + 11.2247i 0.420665 + 0.420665i
\(713\) 5.19615 + 5.19615i 0.194597 + 0.194597i
\(714\) 2.43916 + 0.224745i 0.0912832 + 0.00841087i
\(715\) −0.797959 7.89898i −0.0298420 0.295405i
\(716\) 20.1489i 0.753001i
\(717\) 12.9141 + 15.5354i 0.482285 + 0.580181i
\(718\) 0.101021 0.101021i 0.00377005 0.00377005i
\(719\) −3.00340 −0.112008 −0.0560040 0.998431i \(-0.517836\pi\)
−0.0560040 + 0.998431i \(0.517836\pi\)
\(720\) 5.12070 4.33341i 0.190837 0.161497i
\(721\) −23.5959 −0.878758
\(722\) −8.83523 + 8.83523i −0.328813 + 0.328813i
\(723\) 19.4320 + 23.3764i 0.722685 + 0.869379i
\(724\) 20.6969i 0.769196i
\(725\) 6.61037 + 32.3840i 0.245503 + 1.20271i
\(726\) −15.5227 1.43027i −0.576102 0.0530822i
\(727\) −36.3712 36.3712i −1.34893 1.34893i −0.886823 0.462109i \(-0.847093\pi\)
−0.462109 0.886823i \(-0.652907\pi\)
\(728\) 2.51059 + 2.51059i 0.0930487 + 0.0930487i
\(729\) 14.1421 23.0000i 0.523783 0.851852i
\(730\) −0.651531 + 0.797959i −0.0241142 + 0.0295338i
\(731\) 3.60697i 0.133408i
\(732\) 11.1198 9.24348i 0.410998 0.341649i
\(733\) −23.3939 + 23.3939i −0.864073 + 0.864073i −0.991808 0.127736i \(-0.959229\pi\)
0.127736 + 0.991808i \(0.459229\pi\)
\(734\) 8.83523 0.326114
\(735\) 19.3642 0.170371i 0.714258 0.00628422i
\(736\) 2.44949 0.0902894
\(737\) 14.7778 14.7778i 0.544348 0.544348i
\(738\) −13.6374 + 9.36263i −0.501999 + 0.344643i
\(739\) 23.0454i 0.847739i 0.905723 + 0.423870i \(0.139328\pi\)
−0.905723 + 0.423870i \(0.860672\pi\)
\(740\) −21.7060 + 2.19275i −0.797929 + 0.0806072i
\(741\) 1.01760 11.0440i 0.0373825 0.405713i
\(742\) 11.2474 + 11.2474i 0.412907 + 0.412907i
\(743\) −9.29593 9.29593i −0.341035 0.341035i 0.515722 0.856756i \(-0.327524\pi\)
−0.856756 + 0.515722i \(0.827524\pi\)
\(744\) −0.476756 + 5.17423i −0.0174787 + 0.189697i
\(745\) 16.6515 + 13.5959i 0.610065 + 0.498116i
\(746\) 23.8988i 0.874996i
\(747\) 19.7859 13.5838i 0.723927 0.497006i
\(748\) 1.00000 1.00000i 0.0365636 0.0365636i
\(749\) 2.54270 0.0929082
\(750\) 10.5353 16.2483i 0.384693 0.593305i
\(751\) −15.0000 −0.547358 −0.273679 0.961821i \(-0.588241\pi\)
−0.273679 + 0.961821i \(0.588241\pi\)
\(752\) 3.53553 3.53553i 0.128928 0.128928i
\(753\) −35.5993 + 29.5925i −1.29731 + 1.07841i
\(754\) 16.5959i 0.604388i
\(755\) 26.5843 + 21.7060i 0.967503 + 0.789963i
\(756\) 2.00000 7.07107i 0.0727393 0.257172i
\(757\) 33.3712 + 33.3712i 1.21290 + 1.21290i 0.970070 + 0.242826i \(0.0780744\pi\)
0.242826 + 0.970070i \(0.421926\pi\)
\(758\) 11.0280 + 11.0280i 0.400554 + 0.400554i
\(759\) −5.97469 0.550510i −0.216868 0.0199823i
\(760\) −5.67423 + 0.573214i −0.205826 + 0.0207927i
\(761\) 42.2049i 1.52993i −0.644074 0.764963i \(-0.722757\pi\)
0.644074 0.764963i \(-0.277243\pi\)
\(762\) −1.91774 2.30701i −0.0694723 0.0835741i
\(763\) −4.34847 + 4.34847i −0.157425 + 0.157425i
\(764\) 2.82843 0.102329
\(765\) −0.556696 + 6.68506i −0.0201274 + 0.241699i
\(766\) 13.8990 0.502191
\(767\) 0.564242 0.564242i 0.0203736 0.0203736i
\(768\) 1.10721 + 1.33195i 0.0399529 + 0.0480627i
\(769\) 50.3939i 1.81725i 0.417613 + 0.908625i \(0.362867\pi\)
−0.417613 + 0.908625i \(0.637133\pi\)
\(770\) −2.82843 + 3.46410i −0.101929 + 0.124838i
\(771\) −16.4722 1.51775i −0.593232 0.0546606i
\(772\) 0.651531 + 0.651531i 0.0234491 + 0.0234491i
\(773\) −2.33562 2.33562i −0.0840063 0.0840063i 0.663855 0.747861i \(-0.268919\pi\)
−0.747861 + 0.663855i \(0.768919\pi\)
\(774\) 10.6387 + 1.97730i 0.382401 + 0.0710724i
\(775\) 3.00000 + 14.6969i 0.107763 + 0.527930i
\(776\) 5.83183i 0.209350i
\(777\) −18.3782 + 15.2772i −0.659315 + 0.548066i
\(778\) 15.8990 15.8990i 0.570006 0.570006i
\(779\) 14.0635 0.503877
\(780\) −6.81478 + 6.93576i −0.244008 + 0.248340i
\(781\) −6.44949 −0.230781
\(782\) −1.73205 + 1.73205i −0.0619380 + 0.0619380i
\(783\) −29.9815 + 16.7608i −1.07145 + 0.598982i
\(784\) 5.00000i 0.178571i
\(785\) 0 0
\(786\) −2.55051 + 27.6807i −0.0909737 + 0.987338i
\(787\) 4.92168 + 4.92168i 0.175439 + 0.175439i 0.789364 0.613925i \(-0.210410\pi\)
−0.613925 + 0.789364i \(0.710410\pi\)
\(788\) −1.73205 1.73205i −0.0617018 0.0617018i
\(789\) 4.36945 47.4217i 0.155557 1.68826i
\(790\) 1.55051 + 15.3485i 0.0551647 + 0.546074i
\(791\) 23.7559i 0.844663i
\(792\) −2.40130 3.49768i −0.0853265 0.124285i
\(793\) −14.8207 + 14.8207i −0.526297 + 0.526297i
\(794\) 2.39983 0.0851669
\(795\) −30.5302 + 31.0722i −1.08280 + 1.10202i
\(796\) 16.7980 0.595388
\(797\) 21.7060 21.7060i 0.768866 0.768866i −0.209041 0.977907i \(-0.567034\pi\)
0.977907 + 0.209041i \(0.0670341\pi\)
\(798\) −4.80430 + 3.99366i −0.170070 + 0.141374i
\(799\) 5.00000i 0.176887i
\(800\) 4.17121 + 2.75699i 0.147474 + 0.0974745i
\(801\) −8.70204 + 46.8208i −0.307472 + 1.65433i
\(802\) 18.3485 + 18.3485i 0.647907 + 0.647907i
\(803\) 0.460702 + 0.460702i 0.0162578 + 0.0162578i
\(804\) −25.4880 2.34847i −0.898891 0.0828241i
\(805\) 4.89898 6.00000i 0.172666 0.211472i
\(806\) 7.53177i 0.265295i
\(807\) 6.61522 + 7.95800i 0.232867 + 0.280135i
\(808\) 3.44949 3.44949i 0.121353 0.121353i
\(809\) −24.8202 −0.872631 −0.436315 0.899794i \(-0.643717\pi\)
−0.436315 + 0.899794i \(0.643717\pi\)
\(810\) 19.4124 + 5.30664i 0.682081 + 0.186456i
\(811\) −32.0454 −1.12527 −0.562633 0.826707i \(-0.690212\pi\)
−0.562633 + 0.826707i \(0.690212\pi\)
\(812\) −6.61037 + 6.61037i −0.231978 + 0.231978i
\(813\) 2.48839 + 2.99349i 0.0872716 + 0.104986i
\(814\) 13.7980i 0.483618i
\(815\) 7.70674 0.778539i 0.269955 0.0272710i
\(816\) −1.72474 0.158919i −0.0603781 0.00556326i
\(817\) −6.50510 6.50510i −0.227585 0.227585i
\(818\) 17.6777 + 17.6777i 0.618085 + 0.618085i
\(819\) −1.94635 + 10.4722i −0.0680109 + 0.365928i
\(820\) −9.55051 7.79796i −0.333518 0.272317i
\(821\) 16.0171i 0.558999i 0.960146 + 0.279499i \(0.0901685\pi\)
−0.960146 + 0.279499i \(0.909831\pi\)
\(822\) −12.7208 + 10.5744i −0.443689 + 0.368824i
\(823\) 3.55051 3.55051i 0.123763 0.123763i −0.642512 0.766275i \(-0.722108\pi\)
0.766275 + 0.642512i \(0.222108\pi\)
\(824\) 16.6848 0.581244
\(825\) −9.55461 7.66220i −0.332649 0.266764i
\(826\) −0.449490 −0.0156397
\(827\) 31.1769 31.1769i 1.08413 1.08413i 0.0880078 0.996120i \(-0.471950\pi\)
0.996120 0.0880078i \(-0.0280500\pi\)
\(828\) 4.15918 + 6.05816i 0.144541 + 0.210535i
\(829\) 21.1464i 0.734446i −0.930133 0.367223i \(-0.880309\pi\)
0.930133 0.367223i \(-0.119691\pi\)
\(830\) 13.8564 + 11.3137i 0.480963 + 0.392705i
\(831\) −3.00000 + 32.5590i −0.104069 + 1.12946i
\(832\) −1.77526 1.77526i −0.0615459 0.0615459i
\(833\) −3.53553 3.53553i −0.122499 0.122499i
\(834\) −2.82843 + 30.6969i −0.0979404 + 1.06295i
\(835\) 11.3485 1.14643i 0.392730 0.0396738i
\(836\) 3.60697i 0.124750i
\(837\) −13.6066 + 7.60660i −0.470313 + 0.262923i
\(838\) 4.34847 4.34847i 0.150215 0.150215i
\(839\) 46.7012 1.61230 0.806151 0.591709i \(-0.201547\pi\)
0.806151 + 0.591709i \(0.201547\pi\)
\(840\) 5.47701 0.0481882i 0.188975 0.00166265i
\(841\) 14.6969 0.506791
\(842\) −11.9494 + 11.9494i −0.411803 + 0.411803i
\(843\) 33.7584 28.0622i 1.16270 0.966515i
\(844\) 15.5505i 0.535271i
\(845\) −9.47090 + 11.5994i −0.325809 + 0.399033i
\(846\) 14.7474 + 2.74094i 0.507028 + 0.0942355i
\(847\) −9.00000 9.00000i −0.309244 0.309244i
\(848\) −7.95315 7.95315i −0.273112 0.273112i
\(849\) −4.33013 0.398979i −0.148610 0.0136929i
\(850\) −4.89898 + 1.00000i −0.168034 + 0.0342997i
\(851\) 23.8988i 0.819239i
\(852\) 5.04939 + 6.07433i 0.172989 + 0.208103i
\(853\) −27.1464 + 27.1464i −0.929476 + 0.929476i −0.997672 0.0681959i \(-0.978276\pi\)
0.0681959 + 0.997672i \(0.478276\pi\)
\(854\) 11.8065 0.404011
\(855\) −11.0524 13.0604i −0.377984 0.446656i
\(856\) −1.79796 −0.0614530
\(857\) −1.83559 + 1.83559i −0.0627026 + 0.0627026i −0.737763 0.675060i \(-0.764118\pi\)
0.675060 + 0.737763i \(0.264118\pi\)
\(858\) 3.93115 + 4.72911i 0.134207 + 0.161449i
\(859\) 14.7526i 0.503351i 0.967812 + 0.251675i \(0.0809815\pi\)
−0.967812 + 0.251675i \(0.919019\pi\)
\(860\) 0.810647 + 8.02458i 0.0276428 + 0.273636i
\(861\) −13.4495 1.23924i −0.458357 0.0422332i
\(862\) −27.7980 27.7980i −0.946802 0.946802i
\(863\) 13.8564 + 13.8564i 0.471678 + 0.471678i 0.902457 0.430780i \(-0.141761\pi\)
−0.430780 + 0.902457i \(0.641761\pi\)
\(864\) −1.41421 + 5.00000i −0.0481125 + 0.170103i
\(865\) 0.595918 + 5.89898i 0.0202618 + 0.200571i
\(866\) 19.6561i 0.667942i
\(867\) 1.33195 1.10721i 0.0452354 0.0376027i
\(868\) −3.00000 + 3.00000i −0.101827 + 0.101827i
\(869\) 9.75663 0.330971
\(870\) −18.2618 17.9433i −0.619133 0.608334i
\(871\) 37.1010 1.25712
\(872\) 3.07483 3.07483i 0.104127 0.104127i
\(873\) −14.4235 + 9.90231i −0.488160 + 0.335142i
\(874\) 6.24745i 0.211323i
\(875\) 15.0956 4.70334i 0.510326 0.159002i
\(876\) 0.0732141 0.794593i 0.00247368 0.0268468i
\(877\) −21.0000 21.0000i −0.709120 0.709120i 0.257230 0.966350i \(-0.417190\pi\)
−0.966350 + 0.257230i \(0.917190\pi\)
\(878\) −4.87832 4.87832i −0.164635 0.164635i
\(879\) 1.15175 12.5000i 0.0388477 0.421615i
\(880\) 2.00000 2.44949i 0.0674200 0.0825723i
\(881\) 20.7204i 0.698088i −0.937106 0.349044i \(-0.886506\pi\)
0.937106 0.349044i \(-0.113494\pi\)
\(882\) −12.3662 + 8.48988i −0.416390 + 0.285869i
\(883\) 22.0454 22.0454i 0.741887 0.741887i −0.231054 0.972941i \(-0.574217\pi\)
0.972941 + 0.231054i \(0.0742174\pi\)
\(884\) 2.51059 0.0844403
\(885\) −0.0108300 1.23093i −0.000364048 0.0413773i
\(886\) 23.3485 0.784407
\(887\) −6.43539 + 6.43539i −0.216079 + 0.216079i −0.806844 0.590765i \(-0.798826\pi\)
0.590765 + 0.806844i \(0.298826\pi\)
\(888\) 12.9954 10.8026i 0.436096 0.362512i
\(889\) 2.44949i 0.0821532i
\(890\) −35.3160 + 3.56764i −1.18380 + 0.119588i
\(891\) 4.57321 11.8780i 0.153208 0.397926i
\(892\) 7.87628 + 7.87628i 0.263717 + 0.263717i
\(893\) −9.01742 9.01742i −0.301756 0.301756i
\(894\) −16.5813 1.52781i −0.554561 0.0510975i
\(895\) −34.8990 28.4949i −1.16654 0.952479i
\(896\) 1.41421i 0.0472456i
\(897\) −6.80895 8.19105i −0.227344 0.273491i
\(898\) 7.24745 7.24745i 0.241850 0.241850i
\(899\) 19.8311 0.661404
\(900\) 0.263927 + 14.9977i 0.00879757 + 0.499923i
\(901\) 11.2474 0.374707
\(902\) −5.51399 + 5.51399i −0.183596 + 0.183596i
\(903\) 5.64788 + 6.79431i 0.187950 + 0.226100i
\(904\) 16.7980i 0.558692i
\(905\) −35.8481 29.2699i −1.19163 0.972964i
\(906\) −26.4722 2.43916i −0.879480 0.0810356i
\(907\) 36.9671 + 36.9671i 1.22747 + 1.22747i 0.964917 + 0.262555i \(0.0845652\pi\)
0.262555 + 0.964917i \(0.415435\pi\)
\(908\) 16.5813 + 16.5813i 0.550270 + 0.550270i
\(909\) 14.3885 + 2.67423i 0.477238 + 0.0886988i
\(910\) −7.89898 + 0.797959i −0.261849 + 0.0264521i
\(911\) 8.54950i 0.283257i −0.989920 0.141629i \(-0.954766\pi\)
0.989920 0.141629i \(-0.0452339\pi\)
\(912\) 3.39716 2.82394i 0.112491 0.0935100i
\(913\) 8.00000 8.00000i 0.264761 0.264761i
\(914\) 29.4128 0.972887
\(915\) 0.284467 + 32.3322i 0.00940420 + 1.06887i
\(916\) −0.202041 −0.00667562
\(917\) −16.0492 + 16.0492i −0.529990 + 0.529990i
\(918\) −2.53553 4.53553i −0.0836851 0.149695i
\(919\) 57.1918i 1.88658i −0.331963 0.943292i \(-0.607711\pi\)
0.331963 0.943292i \(-0.392289\pi\)
\(920\) −3.46410 + 4.24264i −0.114208 + 0.139876i
\(921\) 2.69694 29.2699i 0.0888671 0.964476i
\(922\) −20.1464 20.1464i −0.663487 0.663487i
\(923\) −8.09601 8.09601i −0.266483 0.266483i
\(924\) 0.317837 3.44949i 0.0104561 0.113480i
\(925\) 26.8990 40.6969i 0.884433 1.33811i
\(926\) 31.0019i 1.01879i
\(927\) 28.3305 + 41.2655i 0.930494 + 1.35534i
\(928\) 4.67423 4.67423i 0.153439 0.153439i
\(929\) −38.6766 −1.26894 −0.634469 0.772949i \(-0.718781\pi\)
−0.634469 + 0.772949i \(0.718781\pi\)
\(930\) −8.28780 8.14324i −0.271768 0.267027i
\(931\) 12.7526 0.417948
\(932\) −9.04952 + 9.04952i −0.296427 + 0.296427i
\(933\) −42.7534 + 35.5395i −1.39968 + 1.16351i
\(934\) 17.1464i 0.561048i
\(935\) 0.317837 + 3.14626i 0.0103944 + 0.102894i
\(936\) 1.37628 7.40496i 0.0449850 0.242039i
\(937\) 17.1010 + 17.1010i 0.558666 + 0.558666i 0.928928 0.370262i \(-0.120732\pi\)
−0.370262 + 0.928928i \(0.620732\pi\)
\(938\) −14.7778 14.7778i −0.482513 0.482513i
\(939\) −35.8481 3.30306i −1.16986 0.107791i
\(940\) 1.12372 + 11.1237i 0.0366518 + 0.362816i
\(941\) 30.1592i 0.983161i −0.870832 0.491581i \(-0.836419\pi\)
0.870832 0.491581i \(-0.163581\pi\)
\(942\) 0 0
\(943\) 9.55051 9.55051i 0.311007 0.311007i
\(944\) 0.317837 0.0103447
\(945\) 9.41902 + 13.4641i 0.306401 + 0.437987i
\(946\) 5.10102 0.165848
\(947\) 21.6667 21.6667i 0.704073 0.704073i −0.261209 0.965282i \(-0.584121\pi\)
0.965282 + 0.261209i \(0.0841213\pi\)
\(948\) −7.63859 9.18910i −0.248090 0.298448i
\(949\) 1.15663i 0.0375459i
\(950\) 7.03174 10.6387i 0.228140 0.345165i
\(951\) −32.9444 3.03551i −1.06829 0.0984331i
\(952\) −1.00000 1.00000i −0.0324102 0.0324102i
\(953\) 27.7128 + 27.7128i 0.897706 + 0.897706i 0.995233 0.0975268i \(-0.0310932\pi\)
−0.0975268 + 0.995233i \(0.531093\pi\)
\(954\) 6.16572 33.1742i 0.199622 1.07406i
\(955\) −4.00000 + 4.89898i −0.129437 + 0.158527i
\(956\) 11.6637i 0.377230i
\(957\) −12.4517 + 10.3507i −0.402506 + 0.334590i
\(958\) 2.97730 2.97730i 0.0961921 0.0961921i
\(959\) −13.5065 −0.436146
\(960\) −3.87283 + 0.0340742i −0.124995 + 0.00109974i
\(961\) −22.0000 −0.709677
\(962\) −17.3205 + 17.3205i −0.558436 + 0.558436i
\(963\) −3.05289 4.44677i −0.0983781 0.143295i
\(964\) 17.5505i 0.565264i
\(965\) −2.04989 + 0.207081i −0.0659882 + 0.00666617i
\(966\) −0.550510 + 5.97469i −0.0177124 + 0.192233i
\(967\) −30.4949 30.4949i −0.980650 0.980650i 0.0191665 0.999816i \(-0.493899\pi\)
−0.999816 + 0.0191665i \(0.993899\pi\)
\(968\) 6.36396 + 6.36396i 0.204545 + 0.204545i
\(969\) −0.405324 + 4.39898i −0.0130209 + 0.141316i
\(970\) −10.1010 8.24745i −0.324324 0.264810i
\(971\) 47.4797i 1.52370i −0.647756 0.761848i \(-0.724292\pi\)
0.647756 0.761848i \(-0.275708\pi\)
\(972\) −14.7675 + 4.99221i −0.473667 + 0.160125i
\(973\) −17.7980 + 17.7980i −0.570576 + 0.570576i
\(974\) −20.7204 −0.663924
\(975\) −2.37553 21.6122i −0.0760780 0.692144i
\(976\) −8.34847 −0.267228
\(977\) 10.3602 10.3602i 0.331452 0.331452i −0.521686 0.853138i \(-0.674697\pi\)
0.853138 + 0.521686i \(0.174697\pi\)
\(978\) −4.61401 + 3.83548i −0.147540 + 0.122645i
\(979\) 22.4495i 0.717489i
\(980\) −8.66025 7.07107i −0.276642 0.225877i
\(981\) 12.8258 + 2.38378i 0.409495 + 0.0761082i
\(982\) −20.0227 20.0227i −0.638950 0.638950i
\(983\) 12.0922 + 12.0922i 0.385683 + 0.385683i 0.873144 0.487462i \(-0.162077\pi\)
−0.487462 + 0.873144i \(0.662077\pi\)
\(984\) 9.51023 + 0.876276i 0.303175 + 0.0279346i
\(985\) 5.44949 0.550510i 0.173635 0.0175407i
\(986\) 6.61037i 0.210517i
\(987\) 7.82913 + 9.41832i 0.249204 + 0.299788i
\(988\) −4.52781 + 4.52781i −0.144049 + 0.144049i
\(989\) −8.83523 −0.280944
\(990\) 9.45411 + 0.787287i 0.300471 + 0.0250216i
\(991\) 2.39388 0.0760440 0.0380220 0.999277i \(-0.487894\pi\)
0.0380220 + 0.999277i \(0.487894\pi\)
\(992\) 2.12132 2.12132i 0.0673520 0.0673520i
\(993\) −23.3016 28.0315i −0.739454 0.889551i
\(994\) 6.44949i 0.204565i
\(995\) −23.7559 + 29.0949i −0.753113 + 0.922371i
\(996\) −13.7980 1.27135i −0.437205 0.0402842i
\(997\) 40.8434 + 40.8434i 1.29352 + 1.29352i 0.932593 + 0.360929i \(0.117540\pi\)
0.360929 + 0.932593i \(0.382460\pi\)
\(998\) 10.7101 + 10.7101i 0.339024 + 0.339024i
\(999\) 48.7832 + 13.7980i 1.54343 + 0.436548i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 510.2.l.f.137.2 8
3.2 odd 2 inner 510.2.l.f.137.3 yes 8
5.3 odd 4 inner 510.2.l.f.443.3 yes 8
15.8 even 4 inner 510.2.l.f.443.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
510.2.l.f.137.2 8 1.1 even 1 trivial
510.2.l.f.137.3 yes 8 3.2 odd 2 inner
510.2.l.f.443.2 yes 8 15.8 even 4 inner
510.2.l.f.443.3 yes 8 5.3 odd 4 inner