Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [510,2,Mod(53,510)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(510, base_ring=CyclotomicField(8))
chi = DirichletCharacter(H, H._module([4, 6, 7]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("510.53");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 510.z (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a primitive root of unity . We also show the integral -expansion of the trace form.
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
53.1 |
|
1.00000i | 1.00000 | + | 1.41421i | −1.00000 | 2.12132 | − | 0.707107i | −1.41421 | + | 1.00000i | 1.70711 | + | 4.12132i | − | 1.00000i | −1.00000 | + | 2.82843i | 0.707107 | + | 2.12132i | |||||||||||||||||
77.1 | − | 1.00000i | 1.00000 | − | 1.41421i | −1.00000 | 2.12132 | + | 0.707107i | −1.41421 | − | 1.00000i | 1.70711 | − | 4.12132i | 1.00000i | −1.00000 | − | 2.82843i | 0.707107 | − | 2.12132i | ||||||||||||||||||
83.1 | 1.00000i | 1.00000 | − | 1.41421i | −1.00000 | −2.12132 | + | 0.707107i | 1.41421 | + | 1.00000i | 0.292893 | − | 0.121320i | − | 1.00000i | −1.00000 | − | 2.82843i | −0.707107 | − | 2.12132i | ||||||||||||||||||
467.1 | − | 1.00000i | 1.00000 | + | 1.41421i | −1.00000 | −2.12132 | − | 0.707107i | 1.41421 | − | 1.00000i | 0.292893 | + | 0.121320i | 1.00000i | −1.00000 | + | 2.82843i | −0.707107 | + | 2.12132i | ||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
255.v | even | 8 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 510.2.z.b | yes | 4 |
3.b | odd | 2 | 1 | 510.2.z.a | yes | 4 | |
5.c | odd | 4 | 1 | 510.2.w.a | ✓ | 4 | |
15.e | even | 4 | 1 | 510.2.w.b | yes | 4 | |
17.d | even | 8 | 1 | 510.2.w.b | yes | 4 | |
51.g | odd | 8 | 1 | 510.2.w.a | ✓ | 4 | |
85.n | odd | 8 | 1 | 510.2.z.a | yes | 4 | |
255.v | even | 8 | 1 | inner | 510.2.z.b | yes | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
510.2.w.a | ✓ | 4 | 5.c | odd | 4 | 1 | |
510.2.w.a | ✓ | 4 | 51.g | odd | 8 | 1 | |
510.2.w.b | yes | 4 | 15.e | even | 4 | 1 | |
510.2.w.b | yes | 4 | 17.d | even | 8 | 1 | |
510.2.z.a | yes | 4 | 3.b | odd | 2 | 1 | |
510.2.z.a | yes | 4 | 85.n | odd | 8 | 1 | |
510.2.z.b | yes | 4 | 1.a | even | 1 | 1 | trivial |
510.2.z.b | yes | 4 | 255.v | even | 8 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|