Properties

Label 510.2.z.b
Level 510510
Weight 22
Character orbit 510.z
Analytic conductor 4.0724.072
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [510,2,Mod(53,510)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(510, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 6, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("510.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 510=23517 510 = 2 \cdot 3 \cdot 5 \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 510.z (of order 88, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.072370503094.07237050309
Analytic rank: 00
Dimension: 44
Coefficient field: Q(ζ8)\Q(\zeta_{8})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4+1 x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C8]\mathrm{SU}(2)[C_{8}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ8\zeta_{8}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qζ82q2+(ζ83ζ8+1)q3q4+(ζ83+2ζ8)q5+(ζ83ζ82ζ8)q6+(2ζ832ζ82++1)q7++(9ζ83+6ζ82++3)q99+O(q100) q - \zeta_{8}^{2} q^{2} + ( - \zeta_{8}^{3} - \zeta_{8} + 1) q^{3} - q^{4} + ( - \zeta_{8}^{3} + 2 \zeta_{8}) q^{5} + (\zeta_{8}^{3} - \zeta_{8}^{2} - \zeta_{8}) q^{6} + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8}^{2} + \cdots + 1) q^{7} + \cdots + ( - 9 \zeta_{8}^{3} + 6 \zeta_{8}^{2} + \cdots + 3) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+4q34q4+4q74q9+12q114q12+12q138q14+4q15+4q16+4q198q214q23+16q25+12q2620q274q288q29++12q99+O(q100) 4 q + 4 q^{3} - 4 q^{4} + 4 q^{7} - 4 q^{9} + 12 q^{11} - 4 q^{12} + 12 q^{13} - 8 q^{14} + 4 q^{15} + 4 q^{16} + 4 q^{19} - 8 q^{21} - 4 q^{23} + 16 q^{25} + 12 q^{26} - 20 q^{27} - 4 q^{28} - 8 q^{29}+ \cdots + 12 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/510Z)×\left(\mathbb{Z}/510\mathbb{Z}\right)^\times.

nn 241241 307307 341341
χ(n)\chi(n) ζ8\zeta_{8} ζ82\zeta_{8}^{2} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
53.1
0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
−0.707107 0.707107i
1.00000i 1.00000 + 1.41421i −1.00000 2.12132 0.707107i −1.41421 + 1.00000i 1.70711 + 4.12132i 1.00000i −1.00000 + 2.82843i 0.707107 + 2.12132i
77.1 1.00000i 1.00000 1.41421i −1.00000 2.12132 + 0.707107i −1.41421 1.00000i 1.70711 4.12132i 1.00000i −1.00000 2.82843i 0.707107 2.12132i
83.1 1.00000i 1.00000 1.41421i −1.00000 −2.12132 + 0.707107i 1.41421 + 1.00000i 0.292893 0.121320i 1.00000i −1.00000 2.82843i −0.707107 2.12132i
467.1 1.00000i 1.00000 + 1.41421i −1.00000 −2.12132 0.707107i 1.41421 1.00000i 0.292893 + 0.121320i 1.00000i −1.00000 + 2.82843i −0.707107 + 2.12132i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
255.v even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 510.2.z.b yes 4
3.b odd 2 1 510.2.z.a yes 4
5.c odd 4 1 510.2.w.a 4
15.e even 4 1 510.2.w.b yes 4
17.d even 8 1 510.2.w.b yes 4
51.g odd 8 1 510.2.w.a 4
85.n odd 8 1 510.2.z.a yes 4
255.v even 8 1 inner 510.2.z.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.w.a 4 5.c odd 4 1
510.2.w.a 4 51.g odd 8 1
510.2.w.b yes 4 15.e even 4 1
510.2.w.b yes 4 17.d even 8 1
510.2.z.a yes 4 3.b odd 2 1
510.2.z.a yes 4 85.n odd 8 1
510.2.z.b yes 4 1.a even 1 1 trivial
510.2.z.b yes 4 255.v even 8 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(510,[χ])S_{2}^{\mathrm{new}}(510, [\chi]):

T744T73+22T7212T7+2 T_{7}^{4} - 4T_{7}^{3} + 22T_{7}^{2} - 12T_{7} + 2 Copy content Toggle raw display
T11412T113+54T112108T11+162 T_{11}^{4} - 12T_{11}^{3} + 54T_{11}^{2} - 108T_{11} + 162 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
33 (T22T+3)2 (T^{2} - 2 T + 3)^{2} Copy content Toggle raw display
55 T48T2+25 T^{4} - 8T^{2} + 25 Copy content Toggle raw display
77 T44T3++2 T^{4} - 4 T^{3} + \cdots + 2 Copy content Toggle raw display
1111 T412T3++162 T^{4} - 12 T^{3} + \cdots + 162 Copy content Toggle raw display
1313 T412T3++196 T^{4} - 12 T^{3} + \cdots + 196 Copy content Toggle raw display
1717 T4+2T2+289 T^{4} + 2T^{2} + 289 Copy content Toggle raw display
1919 T44T3++1156 T^{4} - 4 T^{3} + \cdots + 1156 Copy content Toggle raw display
2323 T4+4T3++98 T^{4} + 4 T^{3} + \cdots + 98 Copy content Toggle raw display
2929 T4+8T3++2 T^{4} + 8 T^{3} + \cdots + 2 Copy content Toggle raw display
3131 T4+2T2++2 T^{4} + 2 T^{2} + \cdots + 2 Copy content Toggle raw display
3737 T4+4T3++98 T^{4} + 4 T^{3} + \cdots + 98 Copy content Toggle raw display
4141 T44T3++98 T^{4} - 4 T^{3} + \cdots + 98 Copy content Toggle raw display
4343 (T2+12T+4)2 (T^{2} + 12 T + 4)^{2} Copy content Toggle raw display
4747 T412T3++4 T^{4} - 12 T^{3} + \cdots + 4 Copy content Toggle raw display
5353 (T2+8T+8)2 (T^{2} + 8 T + 8)^{2} Copy content Toggle raw display
5959 T4+20T3++2116 T^{4} + 20 T^{3} + \cdots + 2116 Copy content Toggle raw display
6161 T424T3++1058 T^{4} - 24 T^{3} + \cdots + 1058 Copy content Toggle raw display
6767 T4+12T3++196 T^{4} + 12 T^{3} + \cdots + 196 Copy content Toggle raw display
7171 T4+16T3++4802 T^{4} + 16 T^{3} + \cdots + 4802 Copy content Toggle raw display
7373 T424T3++7938 T^{4} - 24 T^{3} + \cdots + 7938 Copy content Toggle raw display
7979 T432T3++28322 T^{4} - 32 T^{3} + \cdots + 28322 Copy content Toggle raw display
8383 (T212T+4)2 (T^{2} - 12 T + 4)^{2} Copy content Toggle raw display
8989 (T2+200)2 (T^{2} + 200)^{2} Copy content Toggle raw display
9797 T4+50T2++1250 T^{4} + 50 T^{2} + \cdots + 1250 Copy content Toggle raw display
show more
show less