Properties

Label 510.2.z.b
Level $510$
Weight $2$
Character orbit 510.z
Analytic conductor $4.072$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [510,2,Mod(53,510)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(510, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 6, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("510.53");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 510 = 2 \cdot 3 \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 510.z (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.07237050309\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{8}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{8}^{2} q^{2} + ( - \zeta_{8}^{3} - \zeta_{8} + 1) q^{3} - q^{4} + ( - \zeta_{8}^{3} + 2 \zeta_{8}) q^{5} + (\zeta_{8}^{3} - \zeta_{8}^{2} - \zeta_{8}) q^{6} + ( - 2 \zeta_{8}^{3} - 2 \zeta_{8}^{2} + \cdots + 1) q^{7} + \cdots + ( - 9 \zeta_{8}^{3} + 6 \zeta_{8}^{2} + \cdots + 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{4} + 4 q^{7} - 4 q^{9} + 12 q^{11} - 4 q^{12} + 12 q^{13} - 8 q^{14} + 4 q^{15} + 4 q^{16} + 4 q^{19} - 8 q^{21} - 4 q^{23} + 16 q^{25} + 12 q^{26} - 20 q^{27} - 4 q^{28} - 8 q^{29}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/510\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(307\) \(341\)
\(\chi(n)\) \(\zeta_{8}\) \(\zeta_{8}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
0.707107 0.707107i
0.707107 + 0.707107i
−0.707107 + 0.707107i
−0.707107 0.707107i
1.00000i 1.00000 + 1.41421i −1.00000 2.12132 0.707107i −1.41421 + 1.00000i 1.70711 + 4.12132i 1.00000i −1.00000 + 2.82843i 0.707107 + 2.12132i
77.1 1.00000i 1.00000 1.41421i −1.00000 2.12132 + 0.707107i −1.41421 1.00000i 1.70711 4.12132i 1.00000i −1.00000 2.82843i 0.707107 2.12132i
83.1 1.00000i 1.00000 1.41421i −1.00000 −2.12132 + 0.707107i 1.41421 + 1.00000i 0.292893 0.121320i 1.00000i −1.00000 2.82843i −0.707107 2.12132i
467.1 1.00000i 1.00000 + 1.41421i −1.00000 −2.12132 0.707107i 1.41421 1.00000i 0.292893 + 0.121320i 1.00000i −1.00000 + 2.82843i −0.707107 + 2.12132i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
255.v even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 510.2.z.b yes 4
3.b odd 2 1 510.2.z.a yes 4
5.c odd 4 1 510.2.w.a 4
15.e even 4 1 510.2.w.b yes 4
17.d even 8 1 510.2.w.b yes 4
51.g odd 8 1 510.2.w.a 4
85.n odd 8 1 510.2.z.a yes 4
255.v even 8 1 inner 510.2.z.b yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
510.2.w.a 4 5.c odd 4 1
510.2.w.a 4 51.g odd 8 1
510.2.w.b yes 4 15.e even 4 1
510.2.w.b yes 4 17.d even 8 1
510.2.z.a yes 4 3.b odd 2 1
510.2.z.a yes 4 85.n odd 8 1
510.2.z.b yes 4 1.a even 1 1 trivial
510.2.z.b yes 4 255.v even 8 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(510, [\chi])\):

\( T_{7}^{4} - 4T_{7}^{3} + 22T_{7}^{2} - 12T_{7} + 2 \) Copy content Toggle raw display
\( T_{11}^{4} - 12T_{11}^{3} + 54T_{11}^{2} - 108T_{11} + 162 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 2 T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 8T^{2} + 25 \) Copy content Toggle raw display
$7$ \( T^{4} - 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$11$ \( T^{4} - 12 T^{3} + \cdots + 162 \) Copy content Toggle raw display
$13$ \( T^{4} - 12 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$17$ \( T^{4} + 2T^{2} + 289 \) Copy content Toggle raw display
$19$ \( T^{4} - 4 T^{3} + \cdots + 1156 \) Copy content Toggle raw display
$23$ \( T^{4} + 4 T^{3} + \cdots + 98 \) Copy content Toggle raw display
$29$ \( T^{4} + 8 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$31$ \( T^{4} + 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$37$ \( T^{4} + 4 T^{3} + \cdots + 98 \) Copy content Toggle raw display
$41$ \( T^{4} - 4 T^{3} + \cdots + 98 \) Copy content Toggle raw display
$43$ \( (T^{2} + 12 T + 4)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} - 12 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$53$ \( (T^{2} + 8 T + 8)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 20 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$61$ \( T^{4} - 24 T^{3} + \cdots + 1058 \) Copy content Toggle raw display
$67$ \( T^{4} + 12 T^{3} + \cdots + 196 \) Copy content Toggle raw display
$71$ \( T^{4} + 16 T^{3} + \cdots + 4802 \) Copy content Toggle raw display
$73$ \( T^{4} - 24 T^{3} + \cdots + 7938 \) Copy content Toggle raw display
$79$ \( T^{4} - 32 T^{3} + \cdots + 28322 \) Copy content Toggle raw display
$83$ \( (T^{2} - 12 T + 4)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 200)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + 50 T^{2} + \cdots + 1250 \) Copy content Toggle raw display
show more
show less