Properties

Label 512.2.b.e.257.1
Level $512$
Weight $2$
Character 512.257
Analytic conductor $4.088$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [512,2,Mod(257,512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(512, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("512.257");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 512 = 2^{9} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 512.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08834058349\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 257.1
Root \(-0.707107 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 512.257
Dual form 512.2.b.e.257.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421i q^{3} -2.00000i q^{5} +2.82843 q^{7} +1.00000 q^{9} -4.24264i q^{11} +6.00000i q^{13} -2.82843 q^{15} -4.24264i q^{19} -4.00000i q^{21} -8.48528 q^{23} +1.00000 q^{25} -5.65685i q^{27} +2.00000i q^{29} +5.65685 q^{31} -6.00000 q^{33} -5.65685i q^{35} -6.00000i q^{37} +8.48528 q^{39} -6.00000 q^{41} +4.24264i q^{43} -2.00000i q^{45} +1.00000 q^{49} +2.00000i q^{53} -8.48528 q^{55} -6.00000 q^{57} -1.41421i q^{59} +6.00000i q^{61} +2.82843 q^{63} +12.0000 q^{65} +12.7279i q^{67} +12.0000i q^{69} +8.48528 q^{71} +12.0000 q^{73} -1.41421i q^{75} -12.0000i q^{77} -5.65685 q^{79} -5.00000 q^{81} +4.24264i q^{83} +2.82843 q^{87} +12.0000 q^{89} +16.9706i q^{91} -8.00000i q^{93} -8.48528 q^{95} -8.00000 q^{97} -4.24264i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{9} + 4 q^{25} - 24 q^{33} - 24 q^{41} + 4 q^{49} - 24 q^{57} + 48 q^{65} + 48 q^{73} - 20 q^{81} + 48 q^{89} - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/512\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(511\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.41421i − 0.816497i −0.912871 0.408248i \(-0.866140\pi\)
0.912871 0.408248i \(-0.133860\pi\)
\(4\) 0 0
\(5\) − 2.00000i − 0.894427i −0.894427 0.447214i \(-0.852416\pi\)
0.894427 0.447214i \(-0.147584\pi\)
\(6\) 0 0
\(7\) 2.82843 1.06904 0.534522 0.845154i \(-0.320491\pi\)
0.534522 + 0.845154i \(0.320491\pi\)
\(8\) 0 0
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) − 4.24264i − 1.27920i −0.768706 0.639602i \(-0.779099\pi\)
0.768706 0.639602i \(-0.220901\pi\)
\(12\) 0 0
\(13\) 6.00000i 1.66410i 0.554700 + 0.832050i \(0.312833\pi\)
−0.554700 + 0.832050i \(0.687167\pi\)
\(14\) 0 0
\(15\) −2.82843 −0.730297
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) − 4.24264i − 0.973329i −0.873589 0.486664i \(-0.838214\pi\)
0.873589 0.486664i \(-0.161786\pi\)
\(20\) 0 0
\(21\) − 4.00000i − 0.872872i
\(22\) 0 0
\(23\) −8.48528 −1.76930 −0.884652 0.466252i \(-0.845604\pi\)
−0.884652 + 0.466252i \(0.845604\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) − 5.65685i − 1.08866i
\(28\) 0 0
\(29\) 2.00000i 0.371391i 0.982607 + 0.185695i \(0.0594537\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) 5.65685 1.01600 0.508001 0.861357i \(-0.330385\pi\)
0.508001 + 0.861357i \(0.330385\pi\)
\(32\) 0 0
\(33\) −6.00000 −1.04447
\(34\) 0 0
\(35\) − 5.65685i − 0.956183i
\(36\) 0 0
\(37\) − 6.00000i − 0.986394i −0.869918 0.493197i \(-0.835828\pi\)
0.869918 0.493197i \(-0.164172\pi\)
\(38\) 0 0
\(39\) 8.48528 1.35873
\(40\) 0 0
\(41\) −6.00000 −0.937043 −0.468521 0.883452i \(-0.655213\pi\)
−0.468521 + 0.883452i \(0.655213\pi\)
\(42\) 0 0
\(43\) 4.24264i 0.646997i 0.946229 + 0.323498i \(0.104859\pi\)
−0.946229 + 0.323498i \(0.895141\pi\)
\(44\) 0 0
\(45\) − 2.00000i − 0.298142i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.00000i 0.274721i 0.990521 + 0.137361i \(0.0438619\pi\)
−0.990521 + 0.137361i \(0.956138\pi\)
\(54\) 0 0
\(55\) −8.48528 −1.14416
\(56\) 0 0
\(57\) −6.00000 −0.794719
\(58\) 0 0
\(59\) − 1.41421i − 0.184115i −0.995754 0.0920575i \(-0.970656\pi\)
0.995754 0.0920575i \(-0.0293443\pi\)
\(60\) 0 0
\(61\) 6.00000i 0.768221i 0.923287 + 0.384111i \(0.125492\pi\)
−0.923287 + 0.384111i \(0.874508\pi\)
\(62\) 0 0
\(63\) 2.82843 0.356348
\(64\) 0 0
\(65\) 12.0000 1.48842
\(66\) 0 0
\(67\) 12.7279i 1.55496i 0.628906 + 0.777482i \(0.283503\pi\)
−0.628906 + 0.777482i \(0.716497\pi\)
\(68\) 0 0
\(69\) 12.0000i 1.44463i
\(70\) 0 0
\(71\) 8.48528 1.00702 0.503509 0.863990i \(-0.332042\pi\)
0.503509 + 0.863990i \(0.332042\pi\)
\(72\) 0 0
\(73\) 12.0000 1.40449 0.702247 0.711934i \(-0.252180\pi\)
0.702247 + 0.711934i \(0.252180\pi\)
\(74\) 0 0
\(75\) − 1.41421i − 0.163299i
\(76\) 0 0
\(77\) − 12.0000i − 1.36753i
\(78\) 0 0
\(79\) −5.65685 −0.636446 −0.318223 0.948016i \(-0.603086\pi\)
−0.318223 + 0.948016i \(0.603086\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) 4.24264i 0.465690i 0.972514 + 0.232845i \(0.0748035\pi\)
−0.972514 + 0.232845i \(0.925196\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 2.82843 0.303239
\(88\) 0 0
\(89\) 12.0000 1.27200 0.635999 0.771690i \(-0.280588\pi\)
0.635999 + 0.771690i \(0.280588\pi\)
\(90\) 0 0
\(91\) 16.9706i 1.77900i
\(92\) 0 0
\(93\) − 8.00000i − 0.829561i
\(94\) 0 0
\(95\) −8.48528 −0.870572
\(96\) 0 0
\(97\) −8.00000 −0.812277 −0.406138 0.913812i \(-0.633125\pi\)
−0.406138 + 0.913812i \(0.633125\pi\)
\(98\) 0 0
\(99\) − 4.24264i − 0.426401i
\(100\) 0 0
\(101\) 10.0000i 0.995037i 0.867453 + 0.497519i \(0.165755\pi\)
−0.867453 + 0.497519i \(0.834245\pi\)
\(102\) 0 0
\(103\) −2.82843 −0.278693 −0.139347 0.990244i \(-0.544500\pi\)
−0.139347 + 0.990244i \(0.544500\pi\)
\(104\) 0 0
\(105\) −8.00000 −0.780720
\(106\) 0 0
\(107\) 7.07107i 0.683586i 0.939775 + 0.341793i \(0.111034\pi\)
−0.939775 + 0.341793i \(0.888966\pi\)
\(108\) 0 0
\(109\) − 6.00000i − 0.574696i −0.957826 0.287348i \(-0.907226\pi\)
0.957826 0.287348i \(-0.0927736\pi\)
\(110\) 0 0
\(111\) −8.48528 −0.805387
\(112\) 0 0
\(113\) 6.00000 0.564433 0.282216 0.959351i \(-0.408930\pi\)
0.282216 + 0.959351i \(0.408930\pi\)
\(114\) 0 0
\(115\) 16.9706i 1.58251i
\(116\) 0 0
\(117\) 6.00000i 0.554700i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 8.48528i 0.765092i
\(124\) 0 0
\(125\) − 12.0000i − 1.07331i
\(126\) 0 0
\(127\) 5.65685 0.501965 0.250982 0.967992i \(-0.419246\pi\)
0.250982 + 0.967992i \(0.419246\pi\)
\(128\) 0 0
\(129\) 6.00000 0.528271
\(130\) 0 0
\(131\) 1.41421i 0.123560i 0.998090 + 0.0617802i \(0.0196778\pi\)
−0.998090 + 0.0617802i \(0.980322\pi\)
\(132\) 0 0
\(133\) − 12.0000i − 1.04053i
\(134\) 0 0
\(135\) −11.3137 −0.973729
\(136\) 0 0
\(137\) 6.00000 0.512615 0.256307 0.966595i \(-0.417494\pi\)
0.256307 + 0.966595i \(0.417494\pi\)
\(138\) 0 0
\(139\) 4.24264i 0.359856i 0.983680 + 0.179928i \(0.0575865\pi\)
−0.983680 + 0.179928i \(0.942414\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 25.4558 2.12872
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 0 0
\(147\) − 1.41421i − 0.116642i
\(148\) 0 0
\(149\) 22.0000i 1.80231i 0.433497 + 0.901155i \(0.357280\pi\)
−0.433497 + 0.901155i \(0.642720\pi\)
\(150\) 0 0
\(151\) 14.1421 1.15087 0.575435 0.817847i \(-0.304833\pi\)
0.575435 + 0.817847i \(0.304833\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 11.3137i − 0.908739i
\(156\) 0 0
\(157\) 6.00000i 0.478852i 0.970915 + 0.239426i \(0.0769593\pi\)
−0.970915 + 0.239426i \(0.923041\pi\)
\(158\) 0 0
\(159\) 2.82843 0.224309
\(160\) 0 0
\(161\) −24.0000 −1.89146
\(162\) 0 0
\(163\) 21.2132i 1.66155i 0.556611 + 0.830773i \(0.312101\pi\)
−0.556611 + 0.830773i \(0.687899\pi\)
\(164\) 0 0
\(165\) 12.0000i 0.934199i
\(166\) 0 0
\(167\) −8.48528 −0.656611 −0.328305 0.944572i \(-0.606478\pi\)
−0.328305 + 0.944572i \(0.606478\pi\)
\(168\) 0 0
\(169\) −23.0000 −1.76923
\(170\) 0 0
\(171\) − 4.24264i − 0.324443i
\(172\) 0 0
\(173\) 14.0000i 1.06440i 0.846619 + 0.532200i \(0.178635\pi\)
−0.846619 + 0.532200i \(0.821365\pi\)
\(174\) 0 0
\(175\) 2.82843 0.213809
\(176\) 0 0
\(177\) −2.00000 −0.150329
\(178\) 0 0
\(179\) − 18.3848i − 1.37414i −0.726590 0.687071i \(-0.758896\pi\)
0.726590 0.687071i \(-0.241104\pi\)
\(180\) 0 0
\(181\) − 18.0000i − 1.33793i −0.743294 0.668965i \(-0.766738\pi\)
0.743294 0.668965i \(-0.233262\pi\)
\(182\) 0 0
\(183\) 8.48528 0.627250
\(184\) 0 0
\(185\) −12.0000 −0.882258
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) − 16.0000i − 1.16383i
\(190\) 0 0
\(191\) −16.9706 −1.22795 −0.613973 0.789327i \(-0.710430\pi\)
−0.613973 + 0.789327i \(0.710430\pi\)
\(192\) 0 0
\(193\) 24.0000 1.72756 0.863779 0.503871i \(-0.168091\pi\)
0.863779 + 0.503871i \(0.168091\pi\)
\(194\) 0 0
\(195\) − 16.9706i − 1.21529i
\(196\) 0 0
\(197\) − 10.0000i − 0.712470i −0.934396 0.356235i \(-0.884060\pi\)
0.934396 0.356235i \(-0.115940\pi\)
\(198\) 0 0
\(199\) −19.7990 −1.40351 −0.701757 0.712417i \(-0.747601\pi\)
−0.701757 + 0.712417i \(0.747601\pi\)
\(200\) 0 0
\(201\) 18.0000 1.26962
\(202\) 0 0
\(203\) 5.65685i 0.397033i
\(204\) 0 0
\(205\) 12.0000i 0.838116i
\(206\) 0 0
\(207\) −8.48528 −0.589768
\(208\) 0 0
\(209\) −18.0000 −1.24509
\(210\) 0 0
\(211\) 4.24264i 0.292075i 0.989279 + 0.146038i \(0.0466521\pi\)
−0.989279 + 0.146038i \(0.953348\pi\)
\(212\) 0 0
\(213\) − 12.0000i − 0.822226i
\(214\) 0 0
\(215\) 8.48528 0.578691
\(216\) 0 0
\(217\) 16.0000 1.08615
\(218\) 0 0
\(219\) − 16.9706i − 1.14676i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −5.65685 −0.378811 −0.189405 0.981899i \(-0.560656\pi\)
−0.189405 + 0.981899i \(0.560656\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 0 0
\(227\) − 12.7279i − 0.844782i −0.906414 0.422391i \(-0.861191\pi\)
0.906414 0.422391i \(-0.138809\pi\)
\(228\) 0 0
\(229\) − 18.0000i − 1.18947i −0.803921 0.594737i \(-0.797256\pi\)
0.803921 0.594737i \(-0.202744\pi\)
\(230\) 0 0
\(231\) −16.9706 −1.11658
\(232\) 0 0
\(233\) 12.0000 0.786146 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 8.00000i 0.519656i
\(238\) 0 0
\(239\) 16.9706 1.09773 0.548867 0.835910i \(-0.315059\pi\)
0.548867 + 0.835910i \(0.315059\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) − 9.89949i − 0.635053i
\(244\) 0 0
\(245\) − 2.00000i − 0.127775i
\(246\) 0 0
\(247\) 25.4558 1.61972
\(248\) 0 0
\(249\) 6.00000 0.380235
\(250\) 0 0
\(251\) − 12.7279i − 0.803379i −0.915776 0.401690i \(-0.868423\pi\)
0.915776 0.401690i \(-0.131577\pi\)
\(252\) 0 0
\(253\) 36.0000i 2.26330i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.00000 0.374270 0.187135 0.982334i \(-0.440080\pi\)
0.187135 + 0.982334i \(0.440080\pi\)
\(258\) 0 0
\(259\) − 16.9706i − 1.05450i
\(260\) 0 0
\(261\) 2.00000i 0.123797i
\(262\) 0 0
\(263\) 8.48528 0.523225 0.261612 0.965173i \(-0.415746\pi\)
0.261612 + 0.965173i \(0.415746\pi\)
\(264\) 0 0
\(265\) 4.00000 0.245718
\(266\) 0 0
\(267\) − 16.9706i − 1.03858i
\(268\) 0 0
\(269\) − 14.0000i − 0.853595i −0.904347 0.426798i \(-0.859642\pi\)
0.904347 0.426798i \(-0.140358\pi\)
\(270\) 0 0
\(271\) −22.6274 −1.37452 −0.687259 0.726413i \(-0.741186\pi\)
−0.687259 + 0.726413i \(0.741186\pi\)
\(272\) 0 0
\(273\) 24.0000 1.45255
\(274\) 0 0
\(275\) − 4.24264i − 0.255841i
\(276\) 0 0
\(277\) − 6.00000i − 0.360505i −0.983620 0.180253i \(-0.942309\pi\)
0.983620 0.180253i \(-0.0576915\pi\)
\(278\) 0 0
\(279\) 5.65685 0.338667
\(280\) 0 0
\(281\) −12.0000 −0.715860 −0.357930 0.933748i \(-0.616517\pi\)
−0.357930 + 0.933748i \(0.616517\pi\)
\(282\) 0 0
\(283\) 12.7279i 0.756596i 0.925684 + 0.378298i \(0.123491\pi\)
−0.925684 + 0.378298i \(0.876509\pi\)
\(284\) 0 0
\(285\) 12.0000i 0.710819i
\(286\) 0 0
\(287\) −16.9706 −1.00174
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 11.3137i 0.663221i
\(292\) 0 0
\(293\) − 10.0000i − 0.584206i −0.956387 0.292103i \(-0.905645\pi\)
0.956387 0.292103i \(-0.0943550\pi\)
\(294\) 0 0
\(295\) −2.82843 −0.164677
\(296\) 0 0
\(297\) −24.0000 −1.39262
\(298\) 0 0
\(299\) − 50.9117i − 2.94430i
\(300\) 0 0
\(301\) 12.0000i 0.691669i
\(302\) 0 0
\(303\) 14.1421 0.812444
\(304\) 0 0
\(305\) 12.0000 0.687118
\(306\) 0 0
\(307\) − 4.24264i − 0.242140i −0.992644 0.121070i \(-0.961367\pi\)
0.992644 0.121070i \(-0.0386326\pi\)
\(308\) 0 0
\(309\) 4.00000i 0.227552i
\(310\) 0 0
\(311\) 8.48528 0.481156 0.240578 0.970630i \(-0.422663\pi\)
0.240578 + 0.970630i \(0.422663\pi\)
\(312\) 0 0
\(313\) −6.00000 −0.339140 −0.169570 0.985518i \(-0.554238\pi\)
−0.169570 + 0.985518i \(0.554238\pi\)
\(314\) 0 0
\(315\) − 5.65685i − 0.318728i
\(316\) 0 0
\(317\) 10.0000i 0.561656i 0.959758 + 0.280828i \(0.0906090\pi\)
−0.959758 + 0.280828i \(0.909391\pi\)
\(318\) 0 0
\(319\) 8.48528 0.475085
\(320\) 0 0
\(321\) 10.0000 0.558146
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 6.00000i 0.332820i
\(326\) 0 0
\(327\) −8.48528 −0.469237
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 29.6985i 1.63238i 0.577786 + 0.816188i \(0.303917\pi\)
−0.577786 + 0.816188i \(0.696083\pi\)
\(332\) 0 0
\(333\) − 6.00000i − 0.328798i
\(334\) 0 0
\(335\) 25.4558 1.39080
\(336\) 0 0
\(337\) −18.0000 −0.980522 −0.490261 0.871576i \(-0.663099\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 0 0
\(339\) − 8.48528i − 0.460857i
\(340\) 0 0
\(341\) − 24.0000i − 1.29967i
\(342\) 0 0
\(343\) −16.9706 −0.916324
\(344\) 0 0
\(345\) 24.0000 1.29212
\(346\) 0 0
\(347\) 21.2132i 1.13878i 0.822066 + 0.569392i \(0.192821\pi\)
−0.822066 + 0.569392i \(0.807179\pi\)
\(348\) 0 0
\(349\) − 6.00000i − 0.321173i −0.987022 0.160586i \(-0.948662\pi\)
0.987022 0.160586i \(-0.0513385\pi\)
\(350\) 0 0
\(351\) 33.9411 1.81164
\(352\) 0 0
\(353\) −6.00000 −0.319348 −0.159674 0.987170i \(-0.551044\pi\)
−0.159674 + 0.987170i \(0.551044\pi\)
\(354\) 0 0
\(355\) − 16.9706i − 0.900704i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.48528 0.447836 0.223918 0.974608i \(-0.428115\pi\)
0.223918 + 0.974608i \(0.428115\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 9.89949i 0.519589i
\(364\) 0 0
\(365\) − 24.0000i − 1.25622i
\(366\) 0 0
\(367\) −11.3137 −0.590571 −0.295285 0.955409i \(-0.595415\pi\)
−0.295285 + 0.955409i \(0.595415\pi\)
\(368\) 0 0
\(369\) −6.00000 −0.312348
\(370\) 0 0
\(371\) 5.65685i 0.293689i
\(372\) 0 0
\(373\) − 6.00000i − 0.310668i −0.987862 0.155334i \(-0.950355\pi\)
0.987862 0.155334i \(-0.0496454\pi\)
\(374\) 0 0
\(375\) −16.9706 −0.876356
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) − 12.7279i − 0.653789i −0.945061 0.326895i \(-0.893998\pi\)
0.945061 0.326895i \(-0.106002\pi\)
\(380\) 0 0
\(381\) − 8.00000i − 0.409852i
\(382\) 0 0
\(383\) −33.9411 −1.73431 −0.867155 0.498038i \(-0.834054\pi\)
−0.867155 + 0.498038i \(0.834054\pi\)
\(384\) 0 0
\(385\) −24.0000 −1.22315
\(386\) 0 0
\(387\) 4.24264i 0.215666i
\(388\) 0 0
\(389\) 26.0000i 1.31825i 0.752032 + 0.659126i \(0.229074\pi\)
−0.752032 + 0.659126i \(0.770926\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 2.00000 0.100887
\(394\) 0 0
\(395\) 11.3137i 0.569254i
\(396\) 0 0
\(397\) 18.0000i 0.903394i 0.892171 + 0.451697i \(0.149181\pi\)
−0.892171 + 0.451697i \(0.850819\pi\)
\(398\) 0 0
\(399\) −16.9706 −0.849591
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 33.9411i 1.69073i
\(404\) 0 0
\(405\) 10.0000i 0.496904i
\(406\) 0 0
\(407\) −25.4558 −1.26180
\(408\) 0 0
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) 0 0
\(411\) − 8.48528i − 0.418548i
\(412\) 0 0
\(413\) − 4.00000i − 0.196827i
\(414\) 0 0
\(415\) 8.48528 0.416526
\(416\) 0 0
\(417\) 6.00000 0.293821
\(418\) 0 0
\(419\) 12.7279i 0.621800i 0.950443 + 0.310900i \(0.100630\pi\)
−0.950443 + 0.310900i \(0.899370\pi\)
\(420\) 0 0
\(421\) 6.00000i 0.292422i 0.989253 + 0.146211i \(0.0467079\pi\)
−0.989253 + 0.146211i \(0.953292\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 16.9706i 0.821263i
\(428\) 0 0
\(429\) − 36.0000i − 1.73810i
\(430\) 0 0
\(431\) −16.9706 −0.817443 −0.408722 0.912659i \(-0.634025\pi\)
−0.408722 + 0.912659i \(0.634025\pi\)
\(432\) 0 0
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) 0 0
\(435\) − 5.65685i − 0.271225i
\(436\) 0 0
\(437\) 36.0000i 1.72211i
\(438\) 0 0
\(439\) −2.82843 −0.134993 −0.0674967 0.997719i \(-0.521501\pi\)
−0.0674967 + 0.997719i \(0.521501\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 12.7279i 0.604722i 0.953194 + 0.302361i \(0.0977748\pi\)
−0.953194 + 0.302361i \(0.902225\pi\)
\(444\) 0 0
\(445\) − 24.0000i − 1.13771i
\(446\) 0 0
\(447\) 31.1127 1.47158
\(448\) 0 0
\(449\) 24.0000 1.13263 0.566315 0.824189i \(-0.308369\pi\)
0.566315 + 0.824189i \(0.308369\pi\)
\(450\) 0 0
\(451\) 25.4558i 1.19867i
\(452\) 0 0
\(453\) − 20.0000i − 0.939682i
\(454\) 0 0
\(455\) 33.9411 1.59118
\(456\) 0 0
\(457\) 10.0000 0.467780 0.233890 0.972263i \(-0.424854\pi\)
0.233890 + 0.972263i \(0.424854\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 26.0000i 1.21094i 0.795868 + 0.605470i \(0.207015\pi\)
−0.795868 + 0.605470i \(0.792985\pi\)
\(462\) 0 0
\(463\) 5.65685 0.262896 0.131448 0.991323i \(-0.458037\pi\)
0.131448 + 0.991323i \(0.458037\pi\)
\(464\) 0 0
\(465\) −16.0000 −0.741982
\(466\) 0 0
\(467\) − 4.24264i − 0.196326i −0.995170 0.0981630i \(-0.968703\pi\)
0.995170 0.0981630i \(-0.0312967\pi\)
\(468\) 0 0
\(469\) 36.0000i 1.66233i
\(470\) 0 0
\(471\) 8.48528 0.390981
\(472\) 0 0
\(473\) 18.0000 0.827641
\(474\) 0 0
\(475\) − 4.24264i − 0.194666i
\(476\) 0 0
\(477\) 2.00000i 0.0915737i
\(478\) 0 0
\(479\) −16.9706 −0.775405 −0.387702 0.921785i \(-0.626731\pi\)
−0.387702 + 0.921785i \(0.626731\pi\)
\(480\) 0 0
\(481\) 36.0000 1.64146
\(482\) 0 0
\(483\) 33.9411i 1.54437i
\(484\) 0 0
\(485\) 16.0000i 0.726523i
\(486\) 0 0
\(487\) 36.7696 1.66619 0.833094 0.553132i \(-0.186567\pi\)
0.833094 + 0.553132i \(0.186567\pi\)
\(488\) 0 0
\(489\) 30.0000 1.35665
\(490\) 0 0
\(491\) 26.8701i 1.21263i 0.795225 + 0.606314i \(0.207353\pi\)
−0.795225 + 0.606314i \(0.792647\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) −8.48528 −0.381385
\(496\) 0 0
\(497\) 24.0000 1.07655
\(498\) 0 0
\(499\) 4.24264i 0.189927i 0.995481 + 0.0949633i \(0.0302734\pi\)
−0.995481 + 0.0949633i \(0.969727\pi\)
\(500\) 0 0
\(501\) 12.0000i 0.536120i
\(502\) 0 0
\(503\) −42.4264 −1.89170 −0.945850 0.324604i \(-0.894769\pi\)
−0.945850 + 0.324604i \(0.894769\pi\)
\(504\) 0 0
\(505\) 20.0000 0.889988
\(506\) 0 0
\(507\) 32.5269i 1.44457i
\(508\) 0 0
\(509\) − 34.0000i − 1.50702i −0.657434 0.753512i \(-0.728358\pi\)
0.657434 0.753512i \(-0.271642\pi\)
\(510\) 0 0
\(511\) 33.9411 1.50147
\(512\) 0 0
\(513\) −24.0000 −1.05963
\(514\) 0 0
\(515\) 5.65685i 0.249271i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 19.7990 0.869079
\(520\) 0 0
\(521\) −42.0000 −1.84005 −0.920027 0.391856i \(-0.871833\pi\)
−0.920027 + 0.391856i \(0.871833\pi\)
\(522\) 0 0
\(523\) − 4.24264i − 0.185518i −0.995689 0.0927589i \(-0.970431\pi\)
0.995689 0.0927589i \(-0.0295686\pi\)
\(524\) 0 0
\(525\) − 4.00000i − 0.174574i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 49.0000 2.13043
\(530\) 0 0
\(531\) − 1.41421i − 0.0613716i
\(532\) 0 0
\(533\) − 36.0000i − 1.55933i
\(534\) 0 0
\(535\) 14.1421 0.611418
\(536\) 0 0
\(537\) −26.0000 −1.12198
\(538\) 0 0
\(539\) − 4.24264i − 0.182743i
\(540\) 0 0
\(541\) − 42.0000i − 1.80572i −0.429934 0.902861i \(-0.641463\pi\)
0.429934 0.902861i \(-0.358537\pi\)
\(542\) 0 0
\(543\) −25.4558 −1.09241
\(544\) 0 0
\(545\) −12.0000 −0.514024
\(546\) 0 0
\(547\) − 21.2132i − 0.907011i −0.891253 0.453506i \(-0.850173\pi\)
0.891253 0.453506i \(-0.149827\pi\)
\(548\) 0 0
\(549\) 6.00000i 0.256074i
\(550\) 0 0
\(551\) 8.48528 0.361485
\(552\) 0 0
\(553\) −16.0000 −0.680389
\(554\) 0 0
\(555\) 16.9706i 0.720360i
\(556\) 0 0
\(557\) − 2.00000i − 0.0847427i −0.999102 0.0423714i \(-0.986509\pi\)
0.999102 0.0423714i \(-0.0134913\pi\)
\(558\) 0 0
\(559\) −25.4558 −1.07667
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 29.6985i 1.25164i 0.779967 + 0.625821i \(0.215236\pi\)
−0.779967 + 0.625821i \(0.784764\pi\)
\(564\) 0 0
\(565\) − 12.0000i − 0.504844i
\(566\) 0 0
\(567\) −14.1421 −0.593914
\(568\) 0 0
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) 0 0
\(571\) 12.7279i 0.532647i 0.963884 + 0.266323i \(0.0858089\pi\)
−0.963884 + 0.266323i \(0.914191\pi\)
\(572\) 0 0
\(573\) 24.0000i 1.00261i
\(574\) 0 0
\(575\) −8.48528 −0.353861
\(576\) 0 0
\(577\) −18.0000 −0.749350 −0.374675 0.927156i \(-0.622246\pi\)
−0.374675 + 0.927156i \(0.622246\pi\)
\(578\) 0 0
\(579\) − 33.9411i − 1.41055i
\(580\) 0 0
\(581\) 12.0000i 0.497844i
\(582\) 0 0
\(583\) 8.48528 0.351424
\(584\) 0 0
\(585\) 12.0000 0.496139
\(586\) 0 0
\(587\) − 15.5563i − 0.642079i −0.947066 0.321040i \(-0.895968\pi\)
0.947066 0.321040i \(-0.104032\pi\)
\(588\) 0 0
\(589\) − 24.0000i − 0.988903i
\(590\) 0 0
\(591\) −14.1421 −0.581730
\(592\) 0 0
\(593\) −30.0000 −1.23195 −0.615976 0.787765i \(-0.711238\pi\)
−0.615976 + 0.787765i \(0.711238\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 28.0000i 1.14596i
\(598\) 0 0
\(599\) −25.4558 −1.04010 −0.520049 0.854137i \(-0.674086\pi\)
−0.520049 + 0.854137i \(0.674086\pi\)
\(600\) 0 0
\(601\) 12.0000 0.489490 0.244745 0.969587i \(-0.421296\pi\)
0.244745 + 0.969587i \(0.421296\pi\)
\(602\) 0 0
\(603\) 12.7279i 0.518321i
\(604\) 0 0
\(605\) 14.0000i 0.569181i
\(606\) 0 0
\(607\) 22.6274 0.918419 0.459209 0.888328i \(-0.348133\pi\)
0.459209 + 0.888328i \(0.348133\pi\)
\(608\) 0 0
\(609\) 8.00000 0.324176
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 6.00000i 0.242338i 0.992632 + 0.121169i \(0.0386643\pi\)
−0.992632 + 0.121169i \(0.961336\pi\)
\(614\) 0 0
\(615\) 16.9706 0.684319
\(616\) 0 0
\(617\) 36.0000 1.44931 0.724653 0.689114i \(-0.242000\pi\)
0.724653 + 0.689114i \(0.242000\pi\)
\(618\) 0 0
\(619\) − 38.1838i − 1.53474i −0.641207 0.767368i \(-0.721566\pi\)
0.641207 0.767368i \(-0.278434\pi\)
\(620\) 0 0
\(621\) 48.0000i 1.92617i
\(622\) 0 0
\(623\) 33.9411 1.35982
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 0 0
\(627\) 25.4558i 1.01661i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −31.1127 −1.23858 −0.619288 0.785164i \(-0.712579\pi\)
−0.619288 + 0.785164i \(0.712579\pi\)
\(632\) 0 0
\(633\) 6.00000 0.238479
\(634\) 0 0
\(635\) − 11.3137i − 0.448971i
\(636\) 0 0
\(637\) 6.00000i 0.237729i
\(638\) 0 0
\(639\) 8.48528 0.335673
\(640\) 0 0
\(641\) −24.0000 −0.947943 −0.473972 0.880540i \(-0.657180\pi\)
−0.473972 + 0.880540i \(0.657180\pi\)
\(642\) 0 0
\(643\) 12.7279i 0.501940i 0.967995 + 0.250970i \(0.0807496\pi\)
−0.967995 + 0.250970i \(0.919250\pi\)
\(644\) 0 0
\(645\) − 12.0000i − 0.472500i
\(646\) 0 0
\(647\) −25.4558 −1.00077 −0.500386 0.865802i \(-0.666809\pi\)
−0.500386 + 0.865802i \(0.666809\pi\)
\(648\) 0 0
\(649\) −6.00000 −0.235521
\(650\) 0 0
\(651\) − 22.6274i − 0.886838i
\(652\) 0 0
\(653\) 2.00000i 0.0782660i 0.999234 + 0.0391330i \(0.0124596\pi\)
−0.999234 + 0.0391330i \(0.987540\pi\)
\(654\) 0 0
\(655\) 2.82843 0.110516
\(656\) 0 0
\(657\) 12.0000 0.468165
\(658\) 0 0
\(659\) − 41.0122i − 1.59761i −0.601591 0.798804i \(-0.705466\pi\)
0.601591 0.798804i \(-0.294534\pi\)
\(660\) 0 0
\(661\) − 18.0000i − 0.700119i −0.936727 0.350059i \(-0.886161\pi\)
0.936727 0.350059i \(-0.113839\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −24.0000 −0.930680
\(666\) 0 0
\(667\) − 16.9706i − 0.657103i
\(668\) 0 0
\(669\) 8.00000i 0.309298i
\(670\) 0 0
\(671\) 25.4558 0.982712
\(672\) 0 0
\(673\) 8.00000 0.308377 0.154189 0.988041i \(-0.450724\pi\)
0.154189 + 0.988041i \(0.450724\pi\)
\(674\) 0 0
\(675\) − 5.65685i − 0.217732i
\(676\) 0 0
\(677\) − 38.0000i − 1.46046i −0.683202 0.730229i \(-0.739413\pi\)
0.683202 0.730229i \(-0.260587\pi\)
\(678\) 0 0
\(679\) −22.6274 −0.868361
\(680\) 0 0
\(681\) −18.0000 −0.689761
\(682\) 0 0
\(683\) 38.1838i 1.46106i 0.682880 + 0.730531i \(0.260727\pi\)
−0.682880 + 0.730531i \(0.739273\pi\)
\(684\) 0 0
\(685\) − 12.0000i − 0.458496i
\(686\) 0 0
\(687\) −25.4558 −0.971201
\(688\) 0 0
\(689\) −12.0000 −0.457164
\(690\) 0 0
\(691\) − 29.6985i − 1.12978i −0.825165 0.564892i \(-0.808918\pi\)
0.825165 0.564892i \(-0.191082\pi\)
\(692\) 0 0
\(693\) − 12.0000i − 0.455842i
\(694\) 0 0
\(695\) 8.48528 0.321865
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) − 16.9706i − 0.641886i
\(700\) 0 0
\(701\) 46.0000i 1.73740i 0.495342 + 0.868698i \(0.335043\pi\)
−0.495342 + 0.868698i \(0.664957\pi\)
\(702\) 0 0
\(703\) −25.4558 −0.960085
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 28.2843i 1.06374i
\(708\) 0 0
\(709\) 18.0000i 0.676004i 0.941145 + 0.338002i \(0.109751\pi\)
−0.941145 + 0.338002i \(0.890249\pi\)
\(710\) 0 0
\(711\) −5.65685 −0.212149
\(712\) 0 0
\(713\) −48.0000 −1.79761
\(714\) 0 0
\(715\) − 50.9117i − 1.90399i
\(716\) 0 0
\(717\) − 24.0000i − 0.896296i
\(718\) 0 0
\(719\) 16.9706 0.632895 0.316448 0.948610i \(-0.397510\pi\)
0.316448 + 0.948610i \(0.397510\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.00000i 0.0742781i
\(726\) 0 0
\(727\) −2.82843 −0.104901 −0.0524503 0.998624i \(-0.516703\pi\)
−0.0524503 + 0.998624i \(0.516703\pi\)
\(728\) 0 0
\(729\) −29.0000 −1.07407
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 42.0000i 1.55131i 0.631160 + 0.775653i \(0.282579\pi\)
−0.631160 + 0.775653i \(0.717421\pi\)
\(734\) 0 0
\(735\) −2.82843 −0.104328
\(736\) 0 0
\(737\) 54.0000 1.98912
\(738\) 0 0
\(739\) − 46.6690i − 1.71675i −0.513024 0.858374i \(-0.671475\pi\)
0.513024 0.858374i \(-0.328525\pi\)
\(740\) 0 0
\(741\) − 36.0000i − 1.32249i
\(742\) 0 0
\(743\) 25.4558 0.933884 0.466942 0.884288i \(-0.345356\pi\)
0.466942 + 0.884288i \(0.345356\pi\)
\(744\) 0 0
\(745\) 44.0000 1.61204
\(746\) 0 0
\(747\) 4.24264i 0.155230i
\(748\) 0 0
\(749\) 20.0000i 0.730784i
\(750\) 0 0
\(751\) −5.65685 −0.206422 −0.103211 0.994660i \(-0.532912\pi\)
−0.103211 + 0.994660i \(0.532912\pi\)
\(752\) 0 0
\(753\) −18.0000 −0.655956
\(754\) 0 0
\(755\) − 28.2843i − 1.02937i
\(756\) 0 0
\(757\) − 42.0000i − 1.52652i −0.646094 0.763258i \(-0.723599\pi\)
0.646094 0.763258i \(-0.276401\pi\)
\(758\) 0 0
\(759\) 50.9117 1.84798
\(760\) 0 0
\(761\) 42.0000 1.52250 0.761249 0.648459i \(-0.224586\pi\)
0.761249 + 0.648459i \(0.224586\pi\)
\(762\) 0 0
\(763\) − 16.9706i − 0.614376i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.48528 0.306386
\(768\) 0 0
\(769\) −24.0000 −0.865462 −0.432731 0.901523i \(-0.642450\pi\)
−0.432731 + 0.901523i \(0.642450\pi\)
\(770\) 0 0
\(771\) − 8.48528i − 0.305590i
\(772\) 0 0
\(773\) − 14.0000i − 0.503545i −0.967786 0.251773i \(-0.918987\pi\)
0.967786 0.251773i \(-0.0810135\pi\)
\(774\) 0 0
\(775\) 5.65685 0.203200
\(776\) 0 0
\(777\) −24.0000 −0.860995
\(778\) 0 0
\(779\) 25.4558i 0.912050i
\(780\) 0 0
\(781\) − 36.0000i − 1.28818i
\(782\) 0 0
\(783\) 11.3137 0.404319
\(784\) 0 0
\(785\) 12.0000 0.428298
\(786\) 0 0
\(787\) − 29.6985i − 1.05864i −0.848423 0.529318i \(-0.822448\pi\)
0.848423 0.529318i \(-0.177552\pi\)
\(788\) 0 0
\(789\) − 12.0000i − 0.427211i
\(790\) 0 0
\(791\) 16.9706 0.603404
\(792\) 0 0
\(793\) −36.0000 −1.27840
\(794\) 0 0
\(795\) − 5.65685i − 0.200628i
\(796\) 0 0
\(797\) − 2.00000i − 0.0708436i −0.999372 0.0354218i \(-0.988723\pi\)
0.999372 0.0354218i \(-0.0112775\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 12.0000 0.423999
\(802\) 0 0
\(803\) − 50.9117i − 1.79663i
\(804\) 0 0
\(805\) 48.0000i 1.69178i
\(806\) 0 0
\(807\) −19.7990 −0.696957
\(808\) 0 0
\(809\) 42.0000 1.47664 0.738321 0.674450i \(-0.235619\pi\)
0.738321 + 0.674450i \(0.235619\pi\)
\(810\) 0 0
\(811\) − 4.24264i − 0.148979i −0.997222 0.0744896i \(-0.976267\pi\)
0.997222 0.0744896i \(-0.0237328\pi\)
\(812\) 0 0
\(813\) 32.0000i 1.12229i
\(814\) 0 0
\(815\) 42.4264 1.48613
\(816\) 0 0
\(817\) 18.0000 0.629740
\(818\) 0 0
\(819\) 16.9706i 0.592999i
\(820\) 0 0
\(821\) − 38.0000i − 1.32621i −0.748527 0.663105i \(-0.769238\pi\)
0.748527 0.663105i \(-0.230762\pi\)
\(822\) 0 0
\(823\) 19.7990 0.690149 0.345075 0.938575i \(-0.387854\pi\)
0.345075 + 0.938575i \(0.387854\pi\)
\(824\) 0 0
\(825\) −6.00000 −0.208893
\(826\) 0 0
\(827\) − 43.8406i − 1.52449i −0.647290 0.762244i \(-0.724098\pi\)
0.647290 0.762244i \(-0.275902\pi\)
\(828\) 0 0
\(829\) − 18.0000i − 0.625166i −0.949890 0.312583i \(-0.898806\pi\)
0.949890 0.312583i \(-0.101194\pi\)
\(830\) 0 0
\(831\) −8.48528 −0.294351
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 16.9706i 0.587291i
\(836\) 0 0
\(837\) − 32.0000i − 1.10608i
\(838\) 0 0
\(839\) −8.48528 −0.292944 −0.146472 0.989215i \(-0.546792\pi\)
−0.146472 + 0.989215i \(0.546792\pi\)
\(840\) 0 0
\(841\) 25.0000 0.862069
\(842\) 0 0
\(843\) 16.9706i 0.584497i
\(844\) 0 0
\(845\) 46.0000i 1.58245i
\(846\) 0 0
\(847\) −19.7990 −0.680301
\(848\) 0 0
\(849\) 18.0000 0.617758
\(850\) 0 0
\(851\) 50.9117i 1.74523i
\(852\) 0 0
\(853\) 18.0000i 0.616308i 0.951336 + 0.308154i \(0.0997113\pi\)
−0.951336 + 0.308154i \(0.900289\pi\)
\(854\) 0 0
\(855\) −8.48528 −0.290191
\(856\) 0 0
\(857\) 54.0000 1.84460 0.922302 0.386469i \(-0.126305\pi\)
0.922302 + 0.386469i \(0.126305\pi\)
\(858\) 0 0
\(859\) − 46.6690i − 1.59233i −0.605081 0.796164i \(-0.706859\pi\)
0.605081 0.796164i \(-0.293141\pi\)
\(860\) 0 0
\(861\) 24.0000i 0.817918i
\(862\) 0 0
\(863\) −50.9117 −1.73305 −0.866527 0.499130i \(-0.833653\pi\)
−0.866527 + 0.499130i \(0.833653\pi\)
\(864\) 0 0
\(865\) 28.0000 0.952029
\(866\) 0 0
\(867\) 24.0416i 0.816497i
\(868\) 0 0
\(869\) 24.0000i 0.814144i
\(870\) 0 0
\(871\) −76.3675 −2.58762
\(872\) 0 0
\(873\) −8.00000 −0.270759
\(874\) 0 0
\(875\) − 33.9411i − 1.14742i
\(876\) 0 0
\(877\) − 6.00000i − 0.202606i −0.994856 0.101303i \(-0.967699\pi\)
0.994856 0.101303i \(-0.0323011\pi\)
\(878\) 0 0
\(879\) −14.1421 −0.477002
\(880\) 0 0
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) − 38.1838i − 1.28499i −0.766292 0.642493i \(-0.777900\pi\)
0.766292 0.642493i \(-0.222100\pi\)
\(884\) 0 0
\(885\) 4.00000i 0.134459i
\(886\) 0 0
\(887\) 42.4264 1.42454 0.712270 0.701906i \(-0.247667\pi\)
0.712270 + 0.701906i \(0.247667\pi\)
\(888\) 0 0
\(889\) 16.0000 0.536623
\(890\) 0 0
\(891\) 21.2132i 0.710669i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −36.7696 −1.22907
\(896\) 0 0
\(897\) −72.0000 −2.40401
\(898\) 0 0
\(899\) 11.3137i 0.377333i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 16.9706 0.564745
\(904\) 0 0
\(905\) −36.0000 −1.19668
\(906\) 0 0
\(907\) 4.24264i 0.140875i 0.997516 + 0.0704373i \(0.0224395\pi\)
−0.997516 + 0.0704373i \(0.977561\pi\)
\(908\) 0 0
\(909\) 10.0000i 0.331679i
\(910\) 0 0
\(911\) −33.9411 −1.12452 −0.562260 0.826961i \(-0.690068\pi\)
−0.562260 + 0.826961i \(0.690068\pi\)
\(912\) 0 0
\(913\) 18.0000 0.595713
\(914\) 0 0
\(915\) − 16.9706i − 0.561029i
\(916\) 0 0
\(917\) 4.00000i 0.132092i
\(918\) 0 0
\(919\) 2.82843 0.0933012 0.0466506 0.998911i \(-0.485145\pi\)
0.0466506 + 0.998911i \(0.485145\pi\)
\(920\) 0 0
\(921\) −6.00000 −0.197707
\(922\) 0 0
\(923\) 50.9117i 1.67578i
\(924\) 0 0
\(925\) − 6.00000i − 0.197279i
\(926\) 0 0
\(927\) −2.82843 −0.0928977
\(928\) 0 0
\(929\) −24.0000 −0.787414 −0.393707 0.919236i \(-0.628808\pi\)
−0.393707 + 0.919236i \(0.628808\pi\)
\(930\) 0 0
\(931\) − 4.24264i − 0.139047i
\(932\) 0 0
\(933\) − 12.0000i − 0.392862i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −20.0000 −0.653372 −0.326686 0.945133i \(-0.605932\pi\)
−0.326686 + 0.945133i \(0.605932\pi\)
\(938\) 0 0
\(939\) 8.48528i 0.276907i
\(940\) 0 0
\(941\) − 22.0000i − 0.717180i −0.933495 0.358590i \(-0.883258\pi\)
0.933495 0.358590i \(-0.116742\pi\)
\(942\) 0 0
\(943\) 50.9117 1.65791
\(944\) 0 0
\(945\) −32.0000 −1.04096
\(946\) 0 0
\(947\) 41.0122i 1.33272i 0.745631 + 0.666359i \(0.232148\pi\)
−0.745631 + 0.666359i \(0.767852\pi\)
\(948\) 0 0
\(949\) 72.0000i 2.33722i
\(950\) 0 0
\(951\) 14.1421 0.458590
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 33.9411i 1.09831i
\(956\) 0 0
\(957\) − 12.0000i − 0.387905i
\(958\) 0 0
\(959\) 16.9706 0.548008
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 7.07107i 0.227862i
\(964\) 0 0
\(965\) − 48.0000i − 1.54517i
\(966\) 0 0
\(967\) −31.1127 −1.00052 −0.500258 0.865876i \(-0.666762\pi\)
−0.500258 + 0.865876i \(0.666762\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 29.6985i − 0.953070i −0.879156 0.476535i \(-0.841893\pi\)
0.879156 0.476535i \(-0.158107\pi\)
\(972\) 0 0
\(973\) 12.0000i 0.384702i
\(974\) 0 0
\(975\) 8.48528 0.271746
\(976\) 0 0
\(977\) −48.0000 −1.53566 −0.767828 0.640656i \(-0.778662\pi\)
−0.767828 + 0.640656i \(0.778662\pi\)
\(978\) 0 0
\(979\) − 50.9117i − 1.62714i
\(980\) 0 0
\(981\) − 6.00000i − 0.191565i
\(982\) 0 0
\(983\) 42.4264 1.35319 0.676596 0.736354i \(-0.263454\pi\)
0.676596 + 0.736354i \(0.263454\pi\)
\(984\) 0 0
\(985\) −20.0000 −0.637253
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 36.0000i − 1.14473i
\(990\) 0 0
\(991\) 45.2548 1.43757 0.718784 0.695234i \(-0.244699\pi\)
0.718784 + 0.695234i \(0.244699\pi\)
\(992\) 0 0
\(993\) 42.0000 1.33283
\(994\) 0 0
\(995\) 39.5980i 1.25534i
\(996\) 0 0
\(997\) 18.0000i 0.570066i 0.958518 + 0.285033i \(0.0920045\pi\)
−0.958518 + 0.285033i \(0.907995\pi\)
\(998\) 0 0
\(999\) −33.9411 −1.07385
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 512.2.b.e.257.1 4
3.2 odd 2 4608.2.d.j.2305.4 4
4.3 odd 2 inner 512.2.b.e.257.3 4
8.3 odd 2 inner 512.2.b.e.257.2 4
8.5 even 2 inner 512.2.b.e.257.4 4
12.11 even 2 4608.2.d.j.2305.3 4
16.3 odd 4 512.2.a.b.1.1 2
16.5 even 4 512.2.a.e.1.1 yes 2
16.11 odd 4 512.2.a.e.1.2 yes 2
16.13 even 4 512.2.a.b.1.2 yes 2
24.5 odd 2 4608.2.d.j.2305.2 4
24.11 even 2 4608.2.d.j.2305.1 4
32.3 odd 8 1024.2.e.h.769.2 4
32.5 even 8 1024.2.e.n.257.2 4
32.11 odd 8 1024.2.e.n.257.1 4
32.13 even 8 1024.2.e.h.769.1 4
32.19 odd 8 1024.2.e.n.769.1 4
32.21 even 8 1024.2.e.h.257.1 4
32.27 odd 8 1024.2.e.h.257.2 4
32.29 even 8 1024.2.e.n.769.2 4
48.5 odd 4 4608.2.a.c.1.1 2
48.11 even 4 4608.2.a.c.1.2 2
48.29 odd 4 4608.2.a.p.1.1 2
48.35 even 4 4608.2.a.p.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
512.2.a.b.1.1 2 16.3 odd 4
512.2.a.b.1.2 yes 2 16.13 even 4
512.2.a.e.1.1 yes 2 16.5 even 4
512.2.a.e.1.2 yes 2 16.11 odd 4
512.2.b.e.257.1 4 1.1 even 1 trivial
512.2.b.e.257.2 4 8.3 odd 2 inner
512.2.b.e.257.3 4 4.3 odd 2 inner
512.2.b.e.257.4 4 8.5 even 2 inner
1024.2.e.h.257.1 4 32.21 even 8
1024.2.e.h.257.2 4 32.27 odd 8
1024.2.e.h.769.1 4 32.13 even 8
1024.2.e.h.769.2 4 32.3 odd 8
1024.2.e.n.257.1 4 32.11 odd 8
1024.2.e.n.257.2 4 32.5 even 8
1024.2.e.n.769.1 4 32.19 odd 8
1024.2.e.n.769.2 4 32.29 even 8
4608.2.a.c.1.1 2 48.5 odd 4
4608.2.a.c.1.2 2 48.11 even 4
4608.2.a.p.1.1 2 48.29 odd 4
4608.2.a.p.1.2 2 48.35 even 4
4608.2.d.j.2305.1 4 24.11 even 2
4608.2.d.j.2305.2 4 24.5 odd 2
4608.2.d.j.2305.3 4 12.11 even 2
4608.2.d.j.2305.4 4 3.2 odd 2