Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [512,2,Mod(33,512)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(512, base_ring=CyclotomicField(16))
chi = DirichletCharacter(H, H._module([0, 15]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("512.33");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 512 = 2^{9} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 512.i (of order \(16\), degree \(8\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.08834058349\) |
Analytic rank: | \(0\) |
Dimension: | \(56\) |
Relative dimension: | \(7\) over \(\Q(\zeta_{16})\) |
Twist minimal: | no (minimal twist has level 64) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{16}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
33.1 | 0 | −2.51381 | + | 1.67967i | 0 | 2.28487 | − | 0.454489i | 0 | 0.303950 | + | 0.733799i | 0 | 2.34987 | − | 5.67309i | 0 | ||||||||||
33.2 | 0 | −1.06920 | + | 0.714416i | 0 | 0.330507 | − | 0.0657419i | 0 | −0.739314 | − | 1.78486i | 0 | −0.515254 | + | 1.24393i | 0 | ||||||||||
33.3 | 0 | −0.306211 | + | 0.204603i | 0 | −1.42470 | + | 0.283390i | 0 | −0.666723 | − | 1.60961i | 0 | −1.09615 | + | 2.64634i | 0 | ||||||||||
33.4 | 0 | −0.0799701 | + | 0.0534343i | 0 | 3.47403 | − | 0.691028i | 0 | 1.22800 | + | 2.96465i | 0 | −1.14451 | + | 2.76309i | 0 | ||||||||||
33.5 | 0 | 1.31138 | − | 0.876237i | 0 | −3.52249 | + | 0.700667i | 0 | 1.02503 | + | 2.47464i | 0 | −0.196120 | + | 0.473476i | 0 | ||||||||||
33.6 | 0 | 2.00147 | − | 1.33734i | 0 | −0.756852 | + | 0.150547i | 0 | −1.69148 | − | 4.08359i | 0 | 1.06935 | − | 2.58163i | 0 | ||||||||||
33.7 | 0 | 2.03902 | − | 1.36243i | 0 | 1.53851 | − | 0.306028i | 0 | 1.01301 | + | 2.44562i | 0 | 1.15334 | − | 2.78440i | 0 | ||||||||||
97.1 | 0 | −0.553854 | − | 2.78441i | 0 | −2.59756 | + | 1.73564i | 0 | −1.96508 | − | 0.813965i | 0 | −4.67456 | + | 1.93627i | 0 | ||||||||||
97.2 | 0 | −0.344545 | − | 1.73215i | 0 | 2.21982 | − | 1.48324i | 0 | 2.90595 | + | 1.20368i | 0 | −0.109979 | + | 0.0455548i | 0 | ||||||||||
97.3 | 0 | −0.152968 | − | 0.769021i | 0 | 2.78737 | − | 1.86246i | 0 | −3.13672 | − | 1.29927i | 0 | 2.20364 | − | 0.912779i | 0 | ||||||||||
97.4 | 0 | −0.123576 | − | 0.621259i | 0 | −0.660623 | + | 0.441414i | 0 | −0.860072 | − | 0.356253i | 0 | 2.40095 | − | 0.994505i | 0 | ||||||||||
97.5 | 0 | 0.216111 | + | 1.08646i | 0 | −1.50133 | + | 1.00316i | 0 | 1.15320 | + | 0.477669i | 0 | 1.63794 | − | 0.678457i | 0 | ||||||||||
97.6 | 0 | 0.435353 | + | 2.18867i | 0 | −0.649649 | + | 0.434082i | 0 | −3.64486 | − | 1.50975i | 0 | −1.82909 | + | 0.757635i | 0 | ||||||||||
97.7 | 0 | 0.599600 | + | 3.01439i | 0 | 1.78465 | − | 1.19247i | 0 | 1.99271 | + | 0.825409i | 0 | −5.95540 | + | 2.46681i | 0 | ||||||||||
161.1 | 0 | −1.97142 | − | 0.392140i | 0 | 0.153107 | − | 0.229142i | 0 | −0.843108 | + | 0.349227i | 0 | 0.961093 | + | 0.398098i | 0 | ||||||||||
161.2 | 0 | −1.93660 | − | 0.385213i | 0 | 0.787711 | − | 1.17889i | 0 | −2.16489 | + | 0.896725i | 0 | 0.830380 | + | 0.343954i | 0 | ||||||||||
161.3 | 0 | −0.416408 | − | 0.0828287i | 0 | −1.82421 | + | 2.73012i | 0 | 0.00395016 | − | 0.00163621i | 0 | −2.60510 | − | 1.07907i | 0 | ||||||||||
161.4 | 0 | −0.191980 | − | 0.0381873i | 0 | 0.967135 | − | 1.44742i | 0 | 4.53283 | − | 1.87756i | 0 | −2.73624 | − | 1.13339i | 0 | ||||||||||
161.5 | 0 | 1.22190 | + | 0.243052i | 0 | −0.884671 | + | 1.32400i | 0 | −2.40727 | + | 0.997123i | 0 | −1.33766 | − | 0.554078i | 0 | ||||||||||
161.6 | 0 | 2.23702 | + | 0.444970i | 0 | 2.33237 | − | 3.49064i | 0 | −1.63661 | + | 0.677907i | 0 | 2.03460 | + | 0.842759i | 0 | ||||||||||
See all 56 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
64.i | even | 16 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 512.2.i.b | 56 | |
4.b | odd | 2 | 1 | 512.2.i.a | 56 | ||
8.b | even | 2 | 1 | 64.2.i.a | ✓ | 56 | |
8.d | odd | 2 | 1 | 256.2.i.a | 56 | ||
24.h | odd | 2 | 1 | 576.2.bd.a | 56 | ||
64.i | even | 16 | 1 | 64.2.i.a | ✓ | 56 | |
64.i | even | 16 | 1 | inner | 512.2.i.b | 56 | |
64.j | odd | 16 | 1 | 256.2.i.a | 56 | ||
64.j | odd | 16 | 1 | 512.2.i.a | 56 | ||
192.q | odd | 16 | 1 | 576.2.bd.a | 56 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
64.2.i.a | ✓ | 56 | 8.b | even | 2 | 1 | |
64.2.i.a | ✓ | 56 | 64.i | even | 16 | 1 | |
256.2.i.a | 56 | 8.d | odd | 2 | 1 | ||
256.2.i.a | 56 | 64.j | odd | 16 | 1 | ||
512.2.i.a | 56 | 4.b | odd | 2 | 1 | ||
512.2.i.a | 56 | 64.j | odd | 16 | 1 | ||
512.2.i.b | 56 | 1.a | even | 1 | 1 | trivial | |
512.2.i.b | 56 | 64.i | even | 16 | 1 | inner | |
576.2.bd.a | 56 | 24.h | odd | 2 | 1 | ||
576.2.bd.a | 56 | 192.q | odd | 16 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{56} - 8 T_{3}^{55} + 36 T_{3}^{54} - 120 T_{3}^{53} + 330 T_{3}^{52} - 936 T_{3}^{51} + \cdots + 2064512 \)
acting on \(S_{2}^{\mathrm{new}}(512, [\chi])\).