Properties

Label 5120.2.a.t.1.5
Level $5120$
Weight $2$
Character 5120.1
Self dual yes
Analytic conductor $40.883$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5120,2,Mod(1,5120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5120.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5120 = 2^{10} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5120.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8834058349\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} - 8x^{5} + 21x^{4} + 12x^{3} - 10x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 80)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(0.731397\) of defining polynomial
Character \(\chi\) \(=\) 5120.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.169718 q^{3} +1.00000 q^{5} +2.66881 q^{7} -2.97120 q^{9} +4.94571 q^{11} -4.15881 q^{13} +0.169718 q^{15} -1.85116 q^{17} -4.87701 q^{19} +0.452946 q^{21} +0.707288 q^{23} +1.00000 q^{25} -1.01342 q^{27} -4.94847 q^{29} -6.84272 q^{31} +0.839377 q^{33} +2.66881 q^{35} +0.137894 q^{37} -0.705826 q^{39} -10.2052 q^{41} -6.27690 q^{43} -2.97120 q^{45} -1.89428 q^{47} +0.122561 q^{49} -0.314175 q^{51} -10.5203 q^{53} +4.94571 q^{55} -0.827717 q^{57} +1.35704 q^{59} +9.18991 q^{61} -7.92956 q^{63} -4.15881 q^{65} -4.94538 q^{67} +0.120040 q^{69} +7.86777 q^{71} +15.6564 q^{73} +0.169718 q^{75} +13.1992 q^{77} -6.70212 q^{79} +8.74159 q^{81} -5.47763 q^{83} -1.85116 q^{85} -0.839845 q^{87} -10.5055 q^{89} -11.0991 q^{91} -1.16133 q^{93} -4.87701 q^{95} +4.79937 q^{97} -14.6947 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 8 q^{5} - 4 q^{7} + 8 q^{9} - 8 q^{11} - 4 q^{15} - 16 q^{19} - 12 q^{23} + 8 q^{25} - 16 q^{27} - 4 q^{35} - 28 q^{43} + 8 q^{45} - 20 q^{47} + 8 q^{49} - 24 q^{51} - 8 q^{55} - 16 q^{59}+ \cdots - 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.169718 0.0979869 0.0489934 0.998799i \(-0.484399\pi\)
0.0489934 + 0.998799i \(0.484399\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.66881 1.00872 0.504358 0.863495i \(-0.331729\pi\)
0.504358 + 0.863495i \(0.331729\pi\)
\(8\) 0 0
\(9\) −2.97120 −0.990399
\(10\) 0 0
\(11\) 4.94571 1.49119 0.745594 0.666401i \(-0.232166\pi\)
0.745594 + 0.666401i \(0.232166\pi\)
\(12\) 0 0
\(13\) −4.15881 −1.15345 −0.576723 0.816939i \(-0.695669\pi\)
−0.576723 + 0.816939i \(0.695669\pi\)
\(14\) 0 0
\(15\) 0.169718 0.0438211
\(16\) 0 0
\(17\) −1.85116 −0.448971 −0.224486 0.974477i \(-0.572070\pi\)
−0.224486 + 0.974477i \(0.572070\pi\)
\(18\) 0 0
\(19\) −4.87701 −1.11886 −0.559431 0.828877i \(-0.688980\pi\)
−0.559431 + 0.828877i \(0.688980\pi\)
\(20\) 0 0
\(21\) 0.452946 0.0988409
\(22\) 0 0
\(23\) 0.707288 0.147480 0.0737399 0.997278i \(-0.476507\pi\)
0.0737399 + 0.997278i \(0.476507\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −1.01342 −0.195033
\(28\) 0 0
\(29\) −4.94847 −0.918907 −0.459454 0.888202i \(-0.651955\pi\)
−0.459454 + 0.888202i \(0.651955\pi\)
\(30\) 0 0
\(31\) −6.84272 −1.22899 −0.614494 0.788921i \(-0.710640\pi\)
−0.614494 + 0.788921i \(0.710640\pi\)
\(32\) 0 0
\(33\) 0.839377 0.146117
\(34\) 0 0
\(35\) 2.66881 0.451112
\(36\) 0 0
\(37\) 0.137894 0.0226697 0.0113348 0.999936i \(-0.496392\pi\)
0.0113348 + 0.999936i \(0.496392\pi\)
\(38\) 0 0
\(39\) −0.705826 −0.113023
\(40\) 0 0
\(41\) −10.2052 −1.59379 −0.796896 0.604117i \(-0.793526\pi\)
−0.796896 + 0.604117i \(0.793526\pi\)
\(42\) 0 0
\(43\) −6.27690 −0.957218 −0.478609 0.878028i \(-0.658859\pi\)
−0.478609 + 0.878028i \(0.658859\pi\)
\(44\) 0 0
\(45\) −2.97120 −0.442920
\(46\) 0 0
\(47\) −1.89428 −0.276310 −0.138155 0.990411i \(-0.544117\pi\)
−0.138155 + 0.990411i \(0.544117\pi\)
\(48\) 0 0
\(49\) 0.122561 0.0175087
\(50\) 0 0
\(51\) −0.314175 −0.0439933
\(52\) 0 0
\(53\) −10.5203 −1.44507 −0.722537 0.691332i \(-0.757024\pi\)
−0.722537 + 0.691332i \(0.757024\pi\)
\(54\) 0 0
\(55\) 4.94571 0.666879
\(56\) 0 0
\(57\) −0.827717 −0.109634
\(58\) 0 0
\(59\) 1.35704 0.176672 0.0883359 0.996091i \(-0.471845\pi\)
0.0883359 + 0.996091i \(0.471845\pi\)
\(60\) 0 0
\(61\) 9.18991 1.17665 0.588324 0.808625i \(-0.299788\pi\)
0.588324 + 0.808625i \(0.299788\pi\)
\(62\) 0 0
\(63\) −7.92956 −0.999031
\(64\) 0 0
\(65\) −4.15881 −0.515837
\(66\) 0 0
\(67\) −4.94538 −0.604174 −0.302087 0.953280i \(-0.597683\pi\)
−0.302087 + 0.953280i \(0.597683\pi\)
\(68\) 0 0
\(69\) 0.120040 0.0144511
\(70\) 0 0
\(71\) 7.86777 0.933733 0.466866 0.884328i \(-0.345383\pi\)
0.466866 + 0.884328i \(0.345383\pi\)
\(72\) 0 0
\(73\) 15.6564 1.83244 0.916220 0.400675i \(-0.131224\pi\)
0.916220 + 0.400675i \(0.131224\pi\)
\(74\) 0 0
\(75\) 0.169718 0.0195974
\(76\) 0 0
\(77\) 13.1992 1.50418
\(78\) 0 0
\(79\) −6.70212 −0.754047 −0.377024 0.926204i \(-0.623052\pi\)
−0.377024 + 0.926204i \(0.623052\pi\)
\(80\) 0 0
\(81\) 8.74159 0.971288
\(82\) 0 0
\(83\) −5.47763 −0.601248 −0.300624 0.953743i \(-0.597195\pi\)
−0.300624 + 0.953743i \(0.597195\pi\)
\(84\) 0 0
\(85\) −1.85116 −0.200786
\(86\) 0 0
\(87\) −0.839845 −0.0900408
\(88\) 0 0
\(89\) −10.5055 −1.11358 −0.556790 0.830653i \(-0.687967\pi\)
−0.556790 + 0.830653i \(0.687967\pi\)
\(90\) 0 0
\(91\) −11.0991 −1.16350
\(92\) 0 0
\(93\) −1.16133 −0.120425
\(94\) 0 0
\(95\) −4.87701 −0.500370
\(96\) 0 0
\(97\) 4.79937 0.487303 0.243651 0.969863i \(-0.421655\pi\)
0.243651 + 0.969863i \(0.421655\pi\)
\(98\) 0 0
\(99\) −14.6947 −1.47687
\(100\) 0 0
\(101\) −0.527472 −0.0524855 −0.0262427 0.999656i \(-0.508354\pi\)
−0.0262427 + 0.999656i \(0.508354\pi\)
\(102\) 0 0
\(103\) −10.3013 −1.01502 −0.507508 0.861647i \(-0.669433\pi\)
−0.507508 + 0.861647i \(0.669433\pi\)
\(104\) 0 0
\(105\) 0.452946 0.0442030
\(106\) 0 0
\(107\) −20.5159 −1.98335 −0.991674 0.128770i \(-0.958897\pi\)
−0.991674 + 0.128770i \(0.958897\pi\)
\(108\) 0 0
\(109\) −1.12612 −0.107862 −0.0539311 0.998545i \(-0.517175\pi\)
−0.0539311 + 0.998545i \(0.517175\pi\)
\(110\) 0 0
\(111\) 0.0234032 0.00222133
\(112\) 0 0
\(113\) −0.842524 −0.0792580 −0.0396290 0.999214i \(-0.512618\pi\)
−0.0396290 + 0.999214i \(0.512618\pi\)
\(114\) 0 0
\(115\) 0.707288 0.0659550
\(116\) 0 0
\(117\) 12.3566 1.14237
\(118\) 0 0
\(119\) −4.94039 −0.452885
\(120\) 0 0
\(121\) 13.4600 1.22364
\(122\) 0 0
\(123\) −1.73202 −0.156171
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 21.1693 1.87847 0.939234 0.343277i \(-0.111537\pi\)
0.939234 + 0.343277i \(0.111537\pi\)
\(128\) 0 0
\(129\) −1.06530 −0.0937947
\(130\) 0 0
\(131\) −6.60789 −0.577334 −0.288667 0.957430i \(-0.593212\pi\)
−0.288667 + 0.957430i \(0.593212\pi\)
\(132\) 0 0
\(133\) −13.0158 −1.12861
\(134\) 0 0
\(135\) −1.01342 −0.0872214
\(136\) 0 0
\(137\) 10.2840 0.878623 0.439312 0.898335i \(-0.355222\pi\)
0.439312 + 0.898335i \(0.355222\pi\)
\(138\) 0 0
\(139\) −7.05110 −0.598066 −0.299033 0.954243i \(-0.596664\pi\)
−0.299033 + 0.954243i \(0.596664\pi\)
\(140\) 0 0
\(141\) −0.321495 −0.0270747
\(142\) 0 0
\(143\) −20.5683 −1.72001
\(144\) 0 0
\(145\) −4.94847 −0.410948
\(146\) 0 0
\(147\) 0.0208008 0.00171563
\(148\) 0 0
\(149\) 12.4379 1.01895 0.509477 0.860484i \(-0.329839\pi\)
0.509477 + 0.860484i \(0.329839\pi\)
\(150\) 0 0
\(151\) 22.1838 1.80529 0.902645 0.430385i \(-0.141622\pi\)
0.902645 + 0.430385i \(0.141622\pi\)
\(152\) 0 0
\(153\) 5.50015 0.444661
\(154\) 0 0
\(155\) −6.84272 −0.549620
\(156\) 0 0
\(157\) −5.26352 −0.420075 −0.210037 0.977693i \(-0.567359\pi\)
−0.210037 + 0.977693i \(0.567359\pi\)
\(158\) 0 0
\(159\) −1.78549 −0.141598
\(160\) 0 0
\(161\) 1.88762 0.148765
\(162\) 0 0
\(163\) −2.99290 −0.234422 −0.117211 0.993107i \(-0.537395\pi\)
−0.117211 + 0.993107i \(0.537395\pi\)
\(164\) 0 0
\(165\) 0.839377 0.0653454
\(166\) 0 0
\(167\) 18.1604 1.40530 0.702648 0.711538i \(-0.252001\pi\)
0.702648 + 0.711538i \(0.252001\pi\)
\(168\) 0 0
\(169\) 4.29572 0.330440
\(170\) 0 0
\(171\) 14.4905 1.10812
\(172\) 0 0
\(173\) 12.0709 0.917734 0.458867 0.888505i \(-0.348255\pi\)
0.458867 + 0.888505i \(0.348255\pi\)
\(174\) 0 0
\(175\) 2.66881 0.201743
\(176\) 0 0
\(177\) 0.230315 0.0173115
\(178\) 0 0
\(179\) −3.42945 −0.256329 −0.128165 0.991753i \(-0.540909\pi\)
−0.128165 + 0.991753i \(0.540909\pi\)
\(180\) 0 0
\(181\) 6.31578 0.469448 0.234724 0.972062i \(-0.424581\pi\)
0.234724 + 0.972062i \(0.424581\pi\)
\(182\) 0 0
\(183\) 1.55970 0.115296
\(184\) 0 0
\(185\) 0.137894 0.0101382
\(186\) 0 0
\(187\) −9.15528 −0.669500
\(188\) 0 0
\(189\) −2.70463 −0.196733
\(190\) 0 0
\(191\) −7.75030 −0.560792 −0.280396 0.959884i \(-0.590466\pi\)
−0.280396 + 0.959884i \(0.590466\pi\)
\(192\) 0 0
\(193\) −11.3388 −0.816181 −0.408091 0.912941i \(-0.633805\pi\)
−0.408091 + 0.912941i \(0.633805\pi\)
\(194\) 0 0
\(195\) −0.705826 −0.0505453
\(196\) 0 0
\(197\) −1.55565 −0.110836 −0.0554178 0.998463i \(-0.517649\pi\)
−0.0554178 + 0.998463i \(0.517649\pi\)
\(198\) 0 0
\(199\) 14.2722 1.01173 0.505864 0.862614i \(-0.331174\pi\)
0.505864 + 0.862614i \(0.331174\pi\)
\(200\) 0 0
\(201\) −0.839321 −0.0592012
\(202\) 0 0
\(203\) −13.2065 −0.926917
\(204\) 0 0
\(205\) −10.2052 −0.712765
\(206\) 0 0
\(207\) −2.10149 −0.146064
\(208\) 0 0
\(209\) −24.1203 −1.66843
\(210\) 0 0
\(211\) −17.6374 −1.21421 −0.607106 0.794621i \(-0.707670\pi\)
−0.607106 + 0.794621i \(0.707670\pi\)
\(212\) 0 0
\(213\) 1.33530 0.0914935
\(214\) 0 0
\(215\) −6.27690 −0.428081
\(216\) 0 0
\(217\) −18.2619 −1.23970
\(218\) 0 0
\(219\) 2.65717 0.179555
\(220\) 0 0
\(221\) 7.69861 0.517865
\(222\) 0 0
\(223\) −3.08673 −0.206703 −0.103351 0.994645i \(-0.532957\pi\)
−0.103351 + 0.994645i \(0.532957\pi\)
\(224\) 0 0
\(225\) −2.97120 −0.198080
\(226\) 0 0
\(227\) −11.7617 −0.780651 −0.390326 0.920677i \(-0.627638\pi\)
−0.390326 + 0.920677i \(0.627638\pi\)
\(228\) 0 0
\(229\) 14.1267 0.933520 0.466760 0.884384i \(-0.345421\pi\)
0.466760 + 0.884384i \(0.345421\pi\)
\(230\) 0 0
\(231\) 2.24014 0.147390
\(232\) 0 0
\(233\) −13.9015 −0.910718 −0.455359 0.890308i \(-0.650489\pi\)
−0.455359 + 0.890308i \(0.650489\pi\)
\(234\) 0 0
\(235\) −1.89428 −0.123570
\(236\) 0 0
\(237\) −1.13747 −0.0738867
\(238\) 0 0
\(239\) −10.7687 −0.696569 −0.348284 0.937389i \(-0.613236\pi\)
−0.348284 + 0.937389i \(0.613236\pi\)
\(240\) 0 0
\(241\) 12.4707 0.803305 0.401653 0.915792i \(-0.368436\pi\)
0.401653 + 0.915792i \(0.368436\pi\)
\(242\) 0 0
\(243\) 4.52387 0.290206
\(244\) 0 0
\(245\) 0.122561 0.00783014
\(246\) 0 0
\(247\) 20.2826 1.29055
\(248\) 0 0
\(249\) −0.929654 −0.0589144
\(250\) 0 0
\(251\) 5.21976 0.329468 0.164734 0.986338i \(-0.447323\pi\)
0.164734 + 0.986338i \(0.447323\pi\)
\(252\) 0 0
\(253\) 3.49804 0.219920
\(254\) 0 0
\(255\) −0.314175 −0.0196744
\(256\) 0 0
\(257\) 3.11011 0.194003 0.0970016 0.995284i \(-0.469075\pi\)
0.0970016 + 0.995284i \(0.469075\pi\)
\(258\) 0 0
\(259\) 0.368014 0.0228673
\(260\) 0 0
\(261\) 14.7029 0.910084
\(262\) 0 0
\(263\) 17.9512 1.10692 0.553458 0.832877i \(-0.313308\pi\)
0.553458 + 0.832877i \(0.313308\pi\)
\(264\) 0 0
\(265\) −10.5203 −0.646257
\(266\) 0 0
\(267\) −1.78297 −0.109116
\(268\) 0 0
\(269\) −2.29720 −0.140063 −0.0700313 0.997545i \(-0.522310\pi\)
−0.0700313 + 0.997545i \(0.522310\pi\)
\(270\) 0 0
\(271\) 18.1808 1.10440 0.552201 0.833711i \(-0.313788\pi\)
0.552201 + 0.833711i \(0.313788\pi\)
\(272\) 0 0
\(273\) −1.88372 −0.114008
\(274\) 0 0
\(275\) 4.94571 0.298237
\(276\) 0 0
\(277\) −19.6116 −1.17835 −0.589174 0.808006i \(-0.700547\pi\)
−0.589174 + 0.808006i \(0.700547\pi\)
\(278\) 0 0
\(279\) 20.3310 1.21719
\(280\) 0 0
\(281\) −10.7377 −0.640556 −0.320278 0.947324i \(-0.603776\pi\)
−0.320278 + 0.947324i \(0.603776\pi\)
\(282\) 0 0
\(283\) −23.1477 −1.37599 −0.687994 0.725716i \(-0.741509\pi\)
−0.687994 + 0.725716i \(0.741509\pi\)
\(284\) 0 0
\(285\) −0.827717 −0.0490297
\(286\) 0 0
\(287\) −27.2359 −1.60768
\(288\) 0 0
\(289\) −13.5732 −0.798425
\(290\) 0 0
\(291\) 0.814541 0.0477493
\(292\) 0 0
\(293\) 5.96872 0.348696 0.174348 0.984684i \(-0.444218\pi\)
0.174348 + 0.984684i \(0.444218\pi\)
\(294\) 0 0
\(295\) 1.35704 0.0790101
\(296\) 0 0
\(297\) −5.01208 −0.290831
\(298\) 0 0
\(299\) −2.94148 −0.170110
\(300\) 0 0
\(301\) −16.7519 −0.965561
\(302\) 0 0
\(303\) −0.0895217 −0.00514289
\(304\) 0 0
\(305\) 9.18991 0.526213
\(306\) 0 0
\(307\) −17.8704 −1.01992 −0.509958 0.860199i \(-0.670339\pi\)
−0.509958 + 0.860199i \(0.670339\pi\)
\(308\) 0 0
\(309\) −1.74832 −0.0994582
\(310\) 0 0
\(311\) 8.56815 0.485855 0.242928 0.970044i \(-0.421892\pi\)
0.242928 + 0.970044i \(0.421892\pi\)
\(312\) 0 0
\(313\) 19.1825 1.08426 0.542129 0.840295i \(-0.317618\pi\)
0.542129 + 0.840295i \(0.317618\pi\)
\(314\) 0 0
\(315\) −7.92956 −0.446780
\(316\) 0 0
\(317\) −13.3185 −0.748044 −0.374022 0.927420i \(-0.622022\pi\)
−0.374022 + 0.927420i \(0.622022\pi\)
\(318\) 0 0
\(319\) −24.4737 −1.37026
\(320\) 0 0
\(321\) −3.48193 −0.194342
\(322\) 0 0
\(323\) 9.02810 0.502337
\(324\) 0 0
\(325\) −4.15881 −0.230689
\(326\) 0 0
\(327\) −0.191122 −0.0105691
\(328\) 0 0
\(329\) −5.05549 −0.278718
\(330\) 0 0
\(331\) −18.1838 −0.999471 −0.499736 0.866178i \(-0.666569\pi\)
−0.499736 + 0.866178i \(0.666569\pi\)
\(332\) 0 0
\(333\) −0.409711 −0.0224520
\(334\) 0 0
\(335\) −4.94538 −0.270195
\(336\) 0 0
\(337\) −3.31961 −0.180831 −0.0904153 0.995904i \(-0.528819\pi\)
−0.0904153 + 0.995904i \(0.528819\pi\)
\(338\) 0 0
\(339\) −0.142992 −0.00776624
\(340\) 0 0
\(341\) −33.8421 −1.83265
\(342\) 0 0
\(343\) −18.3546 −0.991055
\(344\) 0 0
\(345\) 0.120040 0.00646272
\(346\) 0 0
\(347\) 25.2946 1.35789 0.678943 0.734191i \(-0.262438\pi\)
0.678943 + 0.734191i \(0.262438\pi\)
\(348\) 0 0
\(349\) −5.21557 −0.279183 −0.139591 0.990209i \(-0.544579\pi\)
−0.139591 + 0.990209i \(0.544579\pi\)
\(350\) 0 0
\(351\) 4.21463 0.224960
\(352\) 0 0
\(353\) 33.0951 1.76148 0.880738 0.473604i \(-0.157047\pi\)
0.880738 + 0.473604i \(0.157047\pi\)
\(354\) 0 0
\(355\) 7.86777 0.417578
\(356\) 0 0
\(357\) −0.838474 −0.0443767
\(358\) 0 0
\(359\) −6.52522 −0.344388 −0.172194 0.985063i \(-0.555086\pi\)
−0.172194 + 0.985063i \(0.555086\pi\)
\(360\) 0 0
\(361\) 4.78519 0.251852
\(362\) 0 0
\(363\) 2.28441 0.119901
\(364\) 0 0
\(365\) 15.6564 0.819492
\(366\) 0 0
\(367\) −11.0338 −0.575959 −0.287980 0.957636i \(-0.592984\pi\)
−0.287980 + 0.957636i \(0.592984\pi\)
\(368\) 0 0
\(369\) 30.3218 1.57849
\(370\) 0 0
\(371\) −28.0767 −1.45767
\(372\) 0 0
\(373\) 9.67984 0.501203 0.250602 0.968090i \(-0.419372\pi\)
0.250602 + 0.968090i \(0.419372\pi\)
\(374\) 0 0
\(375\) 0.169718 0.00876421
\(376\) 0 0
\(377\) 20.5797 1.05991
\(378\) 0 0
\(379\) −14.2937 −0.734219 −0.367109 0.930178i \(-0.619653\pi\)
−0.367109 + 0.930178i \(0.619653\pi\)
\(380\) 0 0
\(381\) 3.59281 0.184065
\(382\) 0 0
\(383\) −29.5283 −1.50883 −0.754413 0.656400i \(-0.772078\pi\)
−0.754413 + 0.656400i \(0.772078\pi\)
\(384\) 0 0
\(385\) 13.1992 0.672692
\(386\) 0 0
\(387\) 18.6499 0.948027
\(388\) 0 0
\(389\) −1.40141 −0.0710545 −0.0355272 0.999369i \(-0.511311\pi\)
−0.0355272 + 0.999369i \(0.511311\pi\)
\(390\) 0 0
\(391\) −1.30930 −0.0662142
\(392\) 0 0
\(393\) −1.12148 −0.0565711
\(394\) 0 0
\(395\) −6.70212 −0.337220
\(396\) 0 0
\(397\) −24.0450 −1.20678 −0.603392 0.797444i \(-0.706185\pi\)
−0.603392 + 0.797444i \(0.706185\pi\)
\(398\) 0 0
\(399\) −2.20902 −0.110589
\(400\) 0 0
\(401\) −26.7791 −1.33728 −0.668642 0.743585i \(-0.733124\pi\)
−0.668642 + 0.743585i \(0.733124\pi\)
\(402\) 0 0
\(403\) 28.4576 1.41757
\(404\) 0 0
\(405\) 8.74159 0.434373
\(406\) 0 0
\(407\) 0.681985 0.0338048
\(408\) 0 0
\(409\) 13.1970 0.652550 0.326275 0.945275i \(-0.394206\pi\)
0.326275 + 0.945275i \(0.394206\pi\)
\(410\) 0 0
\(411\) 1.74539 0.0860935
\(412\) 0 0
\(413\) 3.62169 0.178212
\(414\) 0 0
\(415\) −5.47763 −0.268886
\(416\) 0 0
\(417\) −1.19670 −0.0586026
\(418\) 0 0
\(419\) 14.0356 0.685684 0.342842 0.939393i \(-0.388610\pi\)
0.342842 + 0.939393i \(0.388610\pi\)
\(420\) 0 0
\(421\) −22.3346 −1.08852 −0.544261 0.838916i \(-0.683190\pi\)
−0.544261 + 0.838916i \(0.683190\pi\)
\(422\) 0 0
\(423\) 5.62829 0.273657
\(424\) 0 0
\(425\) −1.85116 −0.0897943
\(426\) 0 0
\(427\) 24.5262 1.18690
\(428\) 0 0
\(429\) −3.49081 −0.168538
\(430\) 0 0
\(431\) −0.285215 −0.0137383 −0.00686917 0.999976i \(-0.502187\pi\)
−0.00686917 + 0.999976i \(0.502187\pi\)
\(432\) 0 0
\(433\) 18.1101 0.870318 0.435159 0.900354i \(-0.356692\pi\)
0.435159 + 0.900354i \(0.356692\pi\)
\(434\) 0 0
\(435\) −0.839845 −0.0402675
\(436\) 0 0
\(437\) −3.44945 −0.165010
\(438\) 0 0
\(439\) −11.5931 −0.553308 −0.276654 0.960970i \(-0.589226\pi\)
−0.276654 + 0.960970i \(0.589226\pi\)
\(440\) 0 0
\(441\) −0.364153 −0.0173406
\(442\) 0 0
\(443\) −32.0821 −1.52427 −0.762133 0.647420i \(-0.775848\pi\)
−0.762133 + 0.647420i \(0.775848\pi\)
\(444\) 0 0
\(445\) −10.5055 −0.498008
\(446\) 0 0
\(447\) 2.11094 0.0998440
\(448\) 0 0
\(449\) 12.1999 0.575747 0.287873 0.957669i \(-0.407052\pi\)
0.287873 + 0.957669i \(0.407052\pi\)
\(450\) 0 0
\(451\) −50.4722 −2.37664
\(452\) 0 0
\(453\) 3.76499 0.176895
\(454\) 0 0
\(455\) −11.0991 −0.520333
\(456\) 0 0
\(457\) −1.70660 −0.0798314 −0.0399157 0.999203i \(-0.512709\pi\)
−0.0399157 + 0.999203i \(0.512709\pi\)
\(458\) 0 0
\(459\) 1.87600 0.0875642
\(460\) 0 0
\(461\) 6.71341 0.312675 0.156337 0.987704i \(-0.450031\pi\)
0.156337 + 0.987704i \(0.450031\pi\)
\(462\) 0 0
\(463\) −11.1761 −0.519398 −0.259699 0.965690i \(-0.583623\pi\)
−0.259699 + 0.965690i \(0.583623\pi\)
\(464\) 0 0
\(465\) −1.16133 −0.0538556
\(466\) 0 0
\(467\) 2.91995 0.135119 0.0675595 0.997715i \(-0.478479\pi\)
0.0675595 + 0.997715i \(0.478479\pi\)
\(468\) 0 0
\(469\) −13.1983 −0.609441
\(470\) 0 0
\(471\) −0.893315 −0.0411618
\(472\) 0 0
\(473\) −31.0437 −1.42739
\(474\) 0 0
\(475\) −4.87701 −0.223772
\(476\) 0 0
\(477\) 31.2579 1.43120
\(478\) 0 0
\(479\) 41.6214 1.90173 0.950864 0.309608i \(-0.100198\pi\)
0.950864 + 0.309608i \(0.100198\pi\)
\(480\) 0 0
\(481\) −0.573477 −0.0261483
\(482\) 0 0
\(483\) 0.320364 0.0145770
\(484\) 0 0
\(485\) 4.79937 0.217928
\(486\) 0 0
\(487\) 8.25627 0.374127 0.187064 0.982348i \(-0.440103\pi\)
0.187064 + 0.982348i \(0.440103\pi\)
\(488\) 0 0
\(489\) −0.507950 −0.0229703
\(490\) 0 0
\(491\) −6.06007 −0.273487 −0.136744 0.990606i \(-0.543664\pi\)
−0.136744 + 0.990606i \(0.543664\pi\)
\(492\) 0 0
\(493\) 9.16038 0.412563
\(494\) 0 0
\(495\) −14.6947 −0.660476
\(496\) 0 0
\(497\) 20.9976 0.941871
\(498\) 0 0
\(499\) −21.3952 −0.957780 −0.478890 0.877875i \(-0.658961\pi\)
−0.478890 + 0.877875i \(0.658961\pi\)
\(500\) 0 0
\(501\) 3.08215 0.137700
\(502\) 0 0
\(503\) −18.6439 −0.831291 −0.415646 0.909527i \(-0.636444\pi\)
−0.415646 + 0.909527i \(0.636444\pi\)
\(504\) 0 0
\(505\) −0.527472 −0.0234722
\(506\) 0 0
\(507\) 0.729062 0.0323788
\(508\) 0 0
\(509\) 16.4393 0.728658 0.364329 0.931270i \(-0.381298\pi\)
0.364329 + 0.931270i \(0.381298\pi\)
\(510\) 0 0
\(511\) 41.7839 1.84841
\(512\) 0 0
\(513\) 4.94246 0.218215
\(514\) 0 0
\(515\) −10.3013 −0.453929
\(516\) 0 0
\(517\) −9.36858 −0.412030
\(518\) 0 0
\(519\) 2.04865 0.0899259
\(520\) 0 0
\(521\) 36.9052 1.61684 0.808422 0.588603i \(-0.200322\pi\)
0.808422 + 0.588603i \(0.200322\pi\)
\(522\) 0 0
\(523\) −8.54409 −0.373607 −0.186803 0.982397i \(-0.559813\pi\)
−0.186803 + 0.982397i \(0.559813\pi\)
\(524\) 0 0
\(525\) 0.452946 0.0197682
\(526\) 0 0
\(527\) 12.6669 0.551780
\(528\) 0 0
\(529\) −22.4997 −0.978250
\(530\) 0 0
\(531\) −4.03204 −0.174976
\(532\) 0 0
\(533\) 42.4417 1.83835
\(534\) 0 0
\(535\) −20.5159 −0.886981
\(536\) 0 0
\(537\) −0.582041 −0.0251169
\(538\) 0 0
\(539\) 0.606151 0.0261088
\(540\) 0 0
\(541\) −40.1951 −1.72812 −0.864061 0.503387i \(-0.832087\pi\)
−0.864061 + 0.503387i \(0.832087\pi\)
\(542\) 0 0
\(543\) 1.07190 0.0459997
\(544\) 0 0
\(545\) −1.12612 −0.0482375
\(546\) 0 0
\(547\) −33.0307 −1.41229 −0.706145 0.708067i \(-0.749567\pi\)
−0.706145 + 0.708067i \(0.749567\pi\)
\(548\) 0 0
\(549\) −27.3050 −1.16535
\(550\) 0 0
\(551\) 24.1337 1.02813
\(552\) 0 0
\(553\) −17.8867 −0.760620
\(554\) 0 0
\(555\) 0.0234032 0.000993410 0
\(556\) 0 0
\(557\) 6.92285 0.293331 0.146665 0.989186i \(-0.453146\pi\)
0.146665 + 0.989186i \(0.453146\pi\)
\(558\) 0 0
\(559\) 26.1044 1.10410
\(560\) 0 0
\(561\) −1.55382 −0.0656022
\(562\) 0 0
\(563\) 1.81887 0.0766561 0.0383280 0.999265i \(-0.487797\pi\)
0.0383280 + 0.999265i \(0.487797\pi\)
\(564\) 0 0
\(565\) −0.842524 −0.0354453
\(566\) 0 0
\(567\) 23.3297 0.979754
\(568\) 0 0
\(569\) 11.4799 0.481261 0.240631 0.970617i \(-0.422646\pi\)
0.240631 + 0.970617i \(0.422646\pi\)
\(570\) 0 0
\(571\) 40.5976 1.69896 0.849479 0.527623i \(-0.176917\pi\)
0.849479 + 0.527623i \(0.176917\pi\)
\(572\) 0 0
\(573\) −1.31537 −0.0549503
\(574\) 0 0
\(575\) 0.707288 0.0294960
\(576\) 0 0
\(577\) −20.3419 −0.846842 −0.423421 0.905933i \(-0.639171\pi\)
−0.423421 + 0.905933i \(0.639171\pi\)
\(578\) 0 0
\(579\) −1.92439 −0.0799751
\(580\) 0 0
\(581\) −14.6188 −0.606489
\(582\) 0 0
\(583\) −52.0303 −2.15488
\(584\) 0 0
\(585\) 12.3566 0.510884
\(586\) 0 0
\(587\) 36.5059 1.50676 0.753379 0.657586i \(-0.228422\pi\)
0.753379 + 0.657586i \(0.228422\pi\)
\(588\) 0 0
\(589\) 33.3720 1.37507
\(590\) 0 0
\(591\) −0.264022 −0.0108604
\(592\) 0 0
\(593\) −4.02945 −0.165470 −0.0827349 0.996572i \(-0.526365\pi\)
−0.0827349 + 0.996572i \(0.526365\pi\)
\(594\) 0 0
\(595\) −4.94039 −0.202536
\(596\) 0 0
\(597\) 2.42225 0.0991360
\(598\) 0 0
\(599\) 31.6701 1.29400 0.647002 0.762489i \(-0.276023\pi\)
0.647002 + 0.762489i \(0.276023\pi\)
\(600\) 0 0
\(601\) −19.4667 −0.794065 −0.397032 0.917805i \(-0.629960\pi\)
−0.397032 + 0.917805i \(0.629960\pi\)
\(602\) 0 0
\(603\) 14.6937 0.598373
\(604\) 0 0
\(605\) 13.4600 0.547228
\(606\) 0 0
\(607\) −13.6128 −0.552528 −0.276264 0.961082i \(-0.589096\pi\)
−0.276264 + 0.961082i \(0.589096\pi\)
\(608\) 0 0
\(609\) −2.24139 −0.0908257
\(610\) 0 0
\(611\) 7.87797 0.318709
\(612\) 0 0
\(613\) 15.7657 0.636771 0.318386 0.947961i \(-0.396859\pi\)
0.318386 + 0.947961i \(0.396859\pi\)
\(614\) 0 0
\(615\) −1.73202 −0.0698416
\(616\) 0 0
\(617\) 1.96695 0.0791863 0.0395932 0.999216i \(-0.487394\pi\)
0.0395932 + 0.999216i \(0.487394\pi\)
\(618\) 0 0
\(619\) −11.0895 −0.445723 −0.222862 0.974850i \(-0.571540\pi\)
−0.222862 + 0.974850i \(0.571540\pi\)
\(620\) 0 0
\(621\) −0.716781 −0.0287634
\(622\) 0 0
\(623\) −28.0372 −1.12329
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) −4.09365 −0.163484
\(628\) 0 0
\(629\) −0.255264 −0.0101780
\(630\) 0 0
\(631\) −0.220729 −0.00878708 −0.00439354 0.999990i \(-0.501399\pi\)
−0.00439354 + 0.999990i \(0.501399\pi\)
\(632\) 0 0
\(633\) −2.99339 −0.118977
\(634\) 0 0
\(635\) 21.1693 0.840077
\(636\) 0 0
\(637\) −0.509709 −0.0201954
\(638\) 0 0
\(639\) −23.3767 −0.924767
\(640\) 0 0
\(641\) −19.2037 −0.758502 −0.379251 0.925294i \(-0.623818\pi\)
−0.379251 + 0.925294i \(0.623818\pi\)
\(642\) 0 0
\(643\) 10.1415 0.399940 0.199970 0.979802i \(-0.435915\pi\)
0.199970 + 0.979802i \(0.435915\pi\)
\(644\) 0 0
\(645\) −1.06530 −0.0419463
\(646\) 0 0
\(647\) −26.4735 −1.04078 −0.520391 0.853928i \(-0.674214\pi\)
−0.520391 + 0.853928i \(0.674214\pi\)
\(648\) 0 0
\(649\) 6.71153 0.263451
\(650\) 0 0
\(651\) −3.09938 −0.121474
\(652\) 0 0
\(653\) −14.9547 −0.585222 −0.292611 0.956232i \(-0.594524\pi\)
−0.292611 + 0.956232i \(0.594524\pi\)
\(654\) 0 0
\(655\) −6.60789 −0.258192
\(656\) 0 0
\(657\) −46.5182 −1.81485
\(658\) 0 0
\(659\) 34.1237 1.32927 0.664636 0.747167i \(-0.268587\pi\)
0.664636 + 0.747167i \(0.268587\pi\)
\(660\) 0 0
\(661\) 33.1342 1.28877 0.644386 0.764701i \(-0.277113\pi\)
0.644386 + 0.764701i \(0.277113\pi\)
\(662\) 0 0
\(663\) 1.30659 0.0507439
\(664\) 0 0
\(665\) −13.0158 −0.504732
\(666\) 0 0
\(667\) −3.49999 −0.135520
\(668\) 0 0
\(669\) −0.523874 −0.0202541
\(670\) 0 0
\(671\) 45.4506 1.75460
\(672\) 0 0
\(673\) −41.8069 −1.61154 −0.805769 0.592230i \(-0.798248\pi\)
−0.805769 + 0.592230i \(0.798248\pi\)
\(674\) 0 0
\(675\) −1.01342 −0.0390066
\(676\) 0 0
\(677\) 32.1521 1.23571 0.617853 0.786294i \(-0.288003\pi\)
0.617853 + 0.786294i \(0.288003\pi\)
\(678\) 0 0
\(679\) 12.8086 0.491550
\(680\) 0 0
\(681\) −1.99617 −0.0764936
\(682\) 0 0
\(683\) −48.7058 −1.86367 −0.931837 0.362877i \(-0.881794\pi\)
−0.931837 + 0.362877i \(0.881794\pi\)
\(684\) 0 0
\(685\) 10.2840 0.392932
\(686\) 0 0
\(687\) 2.39756 0.0914727
\(688\) 0 0
\(689\) 43.7519 1.66682
\(690\) 0 0
\(691\) 22.7675 0.866117 0.433059 0.901366i \(-0.357434\pi\)
0.433059 + 0.901366i \(0.357434\pi\)
\(692\) 0 0
\(693\) −39.2173 −1.48974
\(694\) 0 0
\(695\) −7.05110 −0.267463
\(696\) 0 0
\(697\) 18.8915 0.715567
\(698\) 0 0
\(699\) −2.35934 −0.0892384
\(700\) 0 0
\(701\) −42.4981 −1.60513 −0.802566 0.596563i \(-0.796533\pi\)
−0.802566 + 0.596563i \(0.796533\pi\)
\(702\) 0 0
\(703\) −0.672512 −0.0253643
\(704\) 0 0
\(705\) −0.321495 −0.0121082
\(706\) 0 0
\(707\) −1.40773 −0.0529430
\(708\) 0 0
\(709\) 18.2700 0.686143 0.343071 0.939309i \(-0.388533\pi\)
0.343071 + 0.939309i \(0.388533\pi\)
\(710\) 0 0
\(711\) 19.9133 0.746807
\(712\) 0 0
\(713\) −4.83977 −0.181251
\(714\) 0 0
\(715\) −20.5683 −0.769210
\(716\) 0 0
\(717\) −1.82764 −0.0682546
\(718\) 0 0
\(719\) 17.0356 0.635319 0.317659 0.948205i \(-0.397103\pi\)
0.317659 + 0.948205i \(0.397103\pi\)
\(720\) 0 0
\(721\) −27.4922 −1.02386
\(722\) 0 0
\(723\) 2.11650 0.0787134
\(724\) 0 0
\(725\) −4.94847 −0.183781
\(726\) 0 0
\(727\) −31.7051 −1.17588 −0.587939 0.808905i \(-0.700061\pi\)
−0.587939 + 0.808905i \(0.700061\pi\)
\(728\) 0 0
\(729\) −25.4570 −0.942852
\(730\) 0 0
\(731\) 11.6195 0.429763
\(732\) 0 0
\(733\) 5.48230 0.202493 0.101247 0.994861i \(-0.467717\pi\)
0.101247 + 0.994861i \(0.467717\pi\)
\(734\) 0 0
\(735\) 0.0208008 0.000767251 0
\(736\) 0 0
\(737\) −24.4584 −0.900937
\(738\) 0 0
\(739\) −15.9840 −0.587983 −0.293991 0.955808i \(-0.594984\pi\)
−0.293991 + 0.955808i \(0.594984\pi\)
\(740\) 0 0
\(741\) 3.44232 0.126457
\(742\) 0 0
\(743\) −30.7210 −1.12704 −0.563521 0.826102i \(-0.690554\pi\)
−0.563521 + 0.826102i \(0.690554\pi\)
\(744\) 0 0
\(745\) 12.4379 0.455690
\(746\) 0 0
\(747\) 16.2751 0.595475
\(748\) 0 0
\(749\) −54.7531 −2.00064
\(750\) 0 0
\(751\) 16.4695 0.600981 0.300491 0.953785i \(-0.402850\pi\)
0.300491 + 0.953785i \(0.402850\pi\)
\(752\) 0 0
\(753\) 0.885888 0.0322836
\(754\) 0 0
\(755\) 22.1838 0.807350
\(756\) 0 0
\(757\) 31.0756 1.12946 0.564730 0.825276i \(-0.308980\pi\)
0.564730 + 0.825276i \(0.308980\pi\)
\(758\) 0 0
\(759\) 0.593681 0.0215493
\(760\) 0 0
\(761\) 5.91749 0.214509 0.107254 0.994232i \(-0.465794\pi\)
0.107254 + 0.994232i \(0.465794\pi\)
\(762\) 0 0
\(763\) −3.00539 −0.108802
\(764\) 0 0
\(765\) 5.50015 0.198858
\(766\) 0 0
\(767\) −5.64368 −0.203782
\(768\) 0 0
\(769\) 10.7206 0.386596 0.193298 0.981140i \(-0.438082\pi\)
0.193298 + 0.981140i \(0.438082\pi\)
\(770\) 0 0
\(771\) 0.527842 0.0190098
\(772\) 0 0
\(773\) 23.8053 0.856219 0.428109 0.903727i \(-0.359180\pi\)
0.428109 + 0.903727i \(0.359180\pi\)
\(774\) 0 0
\(775\) −6.84272 −0.245798
\(776\) 0 0
\(777\) 0.0624587 0.00224069
\(778\) 0 0
\(779\) 49.7710 1.78323
\(780\) 0 0
\(781\) 38.9117 1.39237
\(782\) 0 0
\(783\) 5.01488 0.179217
\(784\) 0 0
\(785\) −5.26352 −0.187863
\(786\) 0 0
\(787\) −36.0086 −1.28357 −0.641784 0.766886i \(-0.721805\pi\)
−0.641784 + 0.766886i \(0.721805\pi\)
\(788\) 0 0
\(789\) 3.04664 0.108463
\(790\) 0 0
\(791\) −2.24854 −0.0799489
\(792\) 0 0
\(793\) −38.2191 −1.35720
\(794\) 0 0
\(795\) −1.78549 −0.0633247
\(796\) 0 0
\(797\) 10.1048 0.357931 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(798\) 0 0
\(799\) 3.50662 0.124055
\(800\) 0 0
\(801\) 31.2139 1.10289
\(802\) 0 0
\(803\) 77.4319 2.73251
\(804\) 0 0
\(805\) 1.88762 0.0665299
\(806\) 0 0
\(807\) −0.389876 −0.0137243
\(808\) 0 0
\(809\) 12.4413 0.437412 0.218706 0.975791i \(-0.429817\pi\)
0.218706 + 0.975791i \(0.429817\pi\)
\(810\) 0 0
\(811\) 43.3448 1.52204 0.761020 0.648728i \(-0.224699\pi\)
0.761020 + 0.648728i \(0.224699\pi\)
\(812\) 0 0
\(813\) 3.08561 0.108217
\(814\) 0 0
\(815\) −2.99290 −0.104837
\(816\) 0 0
\(817\) 30.6125 1.07099
\(818\) 0 0
\(819\) 32.9776 1.15233
\(820\) 0 0
\(821\) 12.5145 0.436758 0.218379 0.975864i \(-0.429923\pi\)
0.218379 + 0.975864i \(0.429923\pi\)
\(822\) 0 0
\(823\) −11.7501 −0.409583 −0.204792 0.978806i \(-0.565652\pi\)
−0.204792 + 0.978806i \(0.565652\pi\)
\(824\) 0 0
\(825\) 0.839377 0.0292233
\(826\) 0 0
\(827\) −4.81408 −0.167402 −0.0837010 0.996491i \(-0.526674\pi\)
−0.0837010 + 0.996491i \(0.526674\pi\)
\(828\) 0 0
\(829\) 35.1740 1.22165 0.610823 0.791768i \(-0.290839\pi\)
0.610823 + 0.791768i \(0.290839\pi\)
\(830\) 0 0
\(831\) −3.32845 −0.115463
\(832\) 0 0
\(833\) −0.226880 −0.00786092
\(834\) 0 0
\(835\) 18.1604 0.628467
\(836\) 0 0
\(837\) 6.93455 0.239693
\(838\) 0 0
\(839\) 3.26196 0.112615 0.0563076 0.998413i \(-0.482067\pi\)
0.0563076 + 0.998413i \(0.482067\pi\)
\(840\) 0 0
\(841\) −4.51268 −0.155610
\(842\) 0 0
\(843\) −1.82238 −0.0627661
\(844\) 0 0
\(845\) 4.29572 0.147777
\(846\) 0 0
\(847\) 35.9223 1.23430
\(848\) 0 0
\(849\) −3.92859 −0.134829
\(850\) 0 0
\(851\) 0.0975311 0.00334332
\(852\) 0 0
\(853\) 5.68904 0.194789 0.0973945 0.995246i \(-0.468949\pi\)
0.0973945 + 0.995246i \(0.468949\pi\)
\(854\) 0 0
\(855\) 14.4905 0.495566
\(856\) 0 0
\(857\) 44.6563 1.52543 0.762714 0.646736i \(-0.223866\pi\)
0.762714 + 0.646736i \(0.223866\pi\)
\(858\) 0 0
\(859\) 7.39442 0.252294 0.126147 0.992012i \(-0.459739\pi\)
0.126147 + 0.992012i \(0.459739\pi\)
\(860\) 0 0
\(861\) −4.62243 −0.157532
\(862\) 0 0
\(863\) −36.9653 −1.25831 −0.629157 0.777278i \(-0.716600\pi\)
−0.629157 + 0.777278i \(0.716600\pi\)
\(864\) 0 0
\(865\) 12.0709 0.410423
\(866\) 0 0
\(867\) −2.30362 −0.0782351
\(868\) 0 0
\(869\) −33.1467 −1.12443
\(870\) 0 0
\(871\) 20.5669 0.696883
\(872\) 0 0
\(873\) −14.2599 −0.482624
\(874\) 0 0
\(875\) 2.66881 0.0902223
\(876\) 0 0
\(877\) −13.2963 −0.448985 −0.224493 0.974476i \(-0.572072\pi\)
−0.224493 + 0.974476i \(0.572072\pi\)
\(878\) 0 0
\(879\) 1.01300 0.0341677
\(880\) 0 0
\(881\) 10.3069 0.347248 0.173624 0.984812i \(-0.444452\pi\)
0.173624 + 0.984812i \(0.444452\pi\)
\(882\) 0 0
\(883\) 48.5606 1.63419 0.817097 0.576500i \(-0.195582\pi\)
0.817097 + 0.576500i \(0.195582\pi\)
\(884\) 0 0
\(885\) 0.230315 0.00774195
\(886\) 0 0
\(887\) −6.79523 −0.228161 −0.114081 0.993471i \(-0.536392\pi\)
−0.114081 + 0.993471i \(0.536392\pi\)
\(888\) 0 0
\(889\) 56.4968 1.89484
\(890\) 0 0
\(891\) 43.2334 1.44837
\(892\) 0 0
\(893\) 9.23844 0.309153
\(894\) 0 0
\(895\) −3.42945 −0.114634
\(896\) 0 0
\(897\) −0.499223 −0.0166686
\(898\) 0 0
\(899\) 33.8610 1.12933
\(900\) 0 0
\(901\) 19.4747 0.648797
\(902\) 0 0
\(903\) −2.84310 −0.0946123
\(904\) 0 0
\(905\) 6.31578 0.209944
\(906\) 0 0
\(907\) 5.40783 0.179564 0.0897820 0.995961i \(-0.471383\pi\)
0.0897820 + 0.995961i \(0.471383\pi\)
\(908\) 0 0
\(909\) 1.56722 0.0519815
\(910\) 0 0
\(911\) −18.9169 −0.626743 −0.313372 0.949631i \(-0.601459\pi\)
−0.313372 + 0.949631i \(0.601459\pi\)
\(912\) 0 0
\(913\) −27.0908 −0.896574
\(914\) 0 0
\(915\) 1.55970 0.0515619
\(916\) 0 0
\(917\) −17.6352 −0.582366
\(918\) 0 0
\(919\) −48.9075 −1.61331 −0.806655 0.591022i \(-0.798724\pi\)
−0.806655 + 0.591022i \(0.798724\pi\)
\(920\) 0 0
\(921\) −3.03293 −0.0999384
\(922\) 0 0
\(923\) −32.7206 −1.07701
\(924\) 0 0
\(925\) 0.137894 0.00453394
\(926\) 0 0
\(927\) 30.6071 1.00527
\(928\) 0 0
\(929\) 35.4660 1.16360 0.581801 0.813331i \(-0.302348\pi\)
0.581801 + 0.813331i \(0.302348\pi\)
\(930\) 0 0
\(931\) −0.597731 −0.0195898
\(932\) 0 0
\(933\) 1.45417 0.0476074
\(934\) 0 0
\(935\) −9.15528 −0.299410
\(936\) 0 0
\(937\) −56.4991 −1.84575 −0.922873 0.385105i \(-0.874165\pi\)
−0.922873 + 0.385105i \(0.874165\pi\)
\(938\) 0 0
\(939\) 3.25562 0.106243
\(940\) 0 0
\(941\) 4.04514 0.131868 0.0659338 0.997824i \(-0.478997\pi\)
0.0659338 + 0.997824i \(0.478997\pi\)
\(942\) 0 0
\(943\) −7.21805 −0.235052
\(944\) 0 0
\(945\) −2.70463 −0.0879816
\(946\) 0 0
\(947\) 8.29692 0.269614 0.134807 0.990872i \(-0.456959\pi\)
0.134807 + 0.990872i \(0.456959\pi\)
\(948\) 0 0
\(949\) −65.1119 −2.11362
\(950\) 0 0
\(951\) −2.26040 −0.0732985
\(952\) 0 0
\(953\) 25.0238 0.810599 0.405299 0.914184i \(-0.367167\pi\)
0.405299 + 0.914184i \(0.367167\pi\)
\(954\) 0 0
\(955\) −7.75030 −0.250794
\(956\) 0 0
\(957\) −4.15363 −0.134268
\(958\) 0 0
\(959\) 27.4461 0.886281
\(960\) 0 0
\(961\) 15.8228 0.510412
\(962\) 0 0
\(963\) 60.9568 1.96431
\(964\) 0 0
\(965\) −11.3388 −0.365007
\(966\) 0 0
\(967\) −16.6523 −0.535502 −0.267751 0.963488i \(-0.586280\pi\)
−0.267751 + 0.963488i \(0.586280\pi\)
\(968\) 0 0
\(969\) 1.53223 0.0492224
\(970\) 0 0
\(971\) 43.3530 1.39126 0.695631 0.718399i \(-0.255125\pi\)
0.695631 + 0.718399i \(0.255125\pi\)
\(972\) 0 0
\(973\) −18.8181 −0.603279
\(974\) 0 0
\(975\) −0.705826 −0.0226045
\(976\) 0 0
\(977\) 13.4307 0.429687 0.214844 0.976648i \(-0.431076\pi\)
0.214844 + 0.976648i \(0.431076\pi\)
\(978\) 0 0
\(979\) −51.9571 −1.66056
\(980\) 0 0
\(981\) 3.34591 0.106827
\(982\) 0 0
\(983\) 7.94549 0.253422 0.126711 0.991940i \(-0.459558\pi\)
0.126711 + 0.991940i \(0.459558\pi\)
\(984\) 0 0
\(985\) −1.55565 −0.0495672
\(986\) 0 0
\(987\) −0.858009 −0.0273107
\(988\) 0 0
\(989\) −4.43958 −0.141170
\(990\) 0 0
\(991\) 25.0787 0.796652 0.398326 0.917244i \(-0.369591\pi\)
0.398326 + 0.917244i \(0.369591\pi\)
\(992\) 0 0
\(993\) −3.08612 −0.0979350
\(994\) 0 0
\(995\) 14.2722 0.452458
\(996\) 0 0
\(997\) −51.1689 −1.62054 −0.810268 0.586060i \(-0.800678\pi\)
−0.810268 + 0.586060i \(0.800678\pi\)
\(998\) 0 0
\(999\) −0.139745 −0.00442134
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5120.2.a.t.1.5 8
4.3 odd 2 5120.2.a.v.1.4 8
8.3 odd 2 5120.2.a.s.1.5 8
8.5 even 2 5120.2.a.u.1.4 8
32.3 odd 8 80.2.l.a.61.7 yes 16
32.5 even 8 640.2.l.a.481.4 16
32.11 odd 8 80.2.l.a.21.7 16
32.13 even 8 640.2.l.a.161.4 16
32.19 odd 8 640.2.l.b.161.5 16
32.21 even 8 320.2.l.a.241.5 16
32.27 odd 8 640.2.l.b.481.5 16
32.29 even 8 320.2.l.a.81.5 16
96.11 even 8 720.2.t.c.181.2 16
96.29 odd 8 2880.2.t.c.721.6 16
96.35 even 8 720.2.t.c.541.2 16
96.53 odd 8 2880.2.t.c.2161.7 16
160.3 even 8 400.2.q.g.349.3 16
160.29 even 8 1600.2.l.i.401.4 16
160.43 even 8 400.2.q.h.149.6 16
160.53 odd 8 1600.2.q.g.49.5 16
160.67 even 8 400.2.q.h.349.6 16
160.93 odd 8 1600.2.q.h.849.4 16
160.99 odd 8 400.2.l.h.301.2 16
160.107 even 8 400.2.q.g.149.3 16
160.117 odd 8 1600.2.q.h.49.4 16
160.139 odd 8 400.2.l.h.101.2 16
160.149 even 8 1600.2.l.i.1201.4 16
160.157 odd 8 1600.2.q.g.849.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.7 16 32.11 odd 8
80.2.l.a.61.7 yes 16 32.3 odd 8
320.2.l.a.81.5 16 32.29 even 8
320.2.l.a.241.5 16 32.21 even 8
400.2.l.h.101.2 16 160.139 odd 8
400.2.l.h.301.2 16 160.99 odd 8
400.2.q.g.149.3 16 160.107 even 8
400.2.q.g.349.3 16 160.3 even 8
400.2.q.h.149.6 16 160.43 even 8
400.2.q.h.349.6 16 160.67 even 8
640.2.l.a.161.4 16 32.13 even 8
640.2.l.a.481.4 16 32.5 even 8
640.2.l.b.161.5 16 32.19 odd 8
640.2.l.b.481.5 16 32.27 odd 8
720.2.t.c.181.2 16 96.11 even 8
720.2.t.c.541.2 16 96.35 even 8
1600.2.l.i.401.4 16 160.29 even 8
1600.2.l.i.1201.4 16 160.149 even 8
1600.2.q.g.49.5 16 160.53 odd 8
1600.2.q.g.849.5 16 160.157 odd 8
1600.2.q.h.49.4 16 160.117 odd 8
1600.2.q.h.849.4 16 160.93 odd 8
2880.2.t.c.721.6 16 96.29 odd 8
2880.2.t.c.2161.7 16 96.53 odd 8
5120.2.a.s.1.5 8 8.3 odd 2
5120.2.a.t.1.5 8 1.1 even 1 trivial
5120.2.a.u.1.4 8 8.5 even 2
5120.2.a.v.1.4 8 4.3 odd 2