Properties

Label 5120.2.a.v.1.8
Level $5120$
Weight $2$
Character 5120.1
Self dual yes
Analytic conductor $40.883$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5120,2,Mod(1,5120)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5120, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5120.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5120 = 2^{10} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5120.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(40.8834058349\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 12x^{6} - 8x^{5} + 21x^{4} + 12x^{3} - 10x^{2} - 4x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 80)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(1.06941\) of defining polynomial
Character \(\chi\) \(=\) 5120.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.28980 q^{3} +1.00000 q^{5} -0.982011 q^{7} +7.82281 q^{9} +2.30015 q^{11} -0.976603 q^{13} +3.28980 q^{15} +2.19577 q^{17} +2.72461 q^{19} -3.23062 q^{21} -2.01442 q^{23} +1.00000 q^{25} +15.8661 q^{27} +7.45547 q^{29} +0.435286 q^{31} +7.56703 q^{33} -0.982011 q^{35} -8.19969 q^{37} -3.21283 q^{39} -3.93139 q^{41} +0.717844 q^{43} +7.82281 q^{45} +9.21960 q^{47} -6.03565 q^{49} +7.22365 q^{51} -8.90045 q^{53} +2.30015 q^{55} +8.96345 q^{57} -8.02959 q^{59} +5.09542 q^{61} -7.68209 q^{63} -0.976603 q^{65} -6.41435 q^{67} -6.62705 q^{69} +10.3984 q^{71} +9.24439 q^{73} +3.28980 q^{75} -2.25877 q^{77} -15.4493 q^{79} +28.7280 q^{81} -0.966253 q^{83} +2.19577 q^{85} +24.5271 q^{87} +5.44401 q^{89} +0.959035 q^{91} +1.43201 q^{93} +2.72461 q^{95} +5.54540 q^{97} +17.9936 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 8 q^{5} + 4 q^{7} + 8 q^{9} + 8 q^{11} + 4 q^{15} + 16 q^{19} + 12 q^{23} + 8 q^{25} + 16 q^{27} + 4 q^{35} + 28 q^{43} + 8 q^{45} + 20 q^{47} + 8 q^{49} + 24 q^{51} + 8 q^{55} + 16 q^{59}+ \cdots + 40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.28980 1.89937 0.949685 0.313207i \(-0.101403\pi\)
0.949685 + 0.313207i \(0.101403\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −0.982011 −0.371165 −0.185583 0.982629i \(-0.559417\pi\)
−0.185583 + 0.982629i \(0.559417\pi\)
\(8\) 0 0
\(9\) 7.82281 2.60760
\(10\) 0 0
\(11\) 2.30015 0.693520 0.346760 0.937954i \(-0.387282\pi\)
0.346760 + 0.937954i \(0.387282\pi\)
\(12\) 0 0
\(13\) −0.976603 −0.270861 −0.135430 0.990787i \(-0.543242\pi\)
−0.135430 + 0.990787i \(0.543242\pi\)
\(14\) 0 0
\(15\) 3.28980 0.849424
\(16\) 0 0
\(17\) 2.19577 0.532552 0.266276 0.963897i \(-0.414207\pi\)
0.266276 + 0.963897i \(0.414207\pi\)
\(18\) 0 0
\(19\) 2.72461 0.625069 0.312535 0.949906i \(-0.398822\pi\)
0.312535 + 0.949906i \(0.398822\pi\)
\(20\) 0 0
\(21\) −3.23062 −0.704980
\(22\) 0 0
\(23\) −2.01442 −0.420035 −0.210018 0.977698i \(-0.567352\pi\)
−0.210018 + 0.977698i \(0.567352\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 15.8661 3.05344
\(28\) 0 0
\(29\) 7.45547 1.38445 0.692223 0.721683i \(-0.256631\pi\)
0.692223 + 0.721683i \(0.256631\pi\)
\(30\) 0 0
\(31\) 0.435286 0.0781797 0.0390898 0.999236i \(-0.487554\pi\)
0.0390898 + 0.999236i \(0.487554\pi\)
\(32\) 0 0
\(33\) 7.56703 1.31725
\(34\) 0 0
\(35\) −0.982011 −0.165990
\(36\) 0 0
\(37\) −8.19969 −1.34802 −0.674010 0.738722i \(-0.735430\pi\)
−0.674010 + 0.738722i \(0.735430\pi\)
\(38\) 0 0
\(39\) −3.21283 −0.514465
\(40\) 0 0
\(41\) −3.93139 −0.613980 −0.306990 0.951713i \(-0.599322\pi\)
−0.306990 + 0.951713i \(0.599322\pi\)
\(42\) 0 0
\(43\) 0.717844 0.109470 0.0547351 0.998501i \(-0.482569\pi\)
0.0547351 + 0.998501i \(0.482569\pi\)
\(44\) 0 0
\(45\) 7.82281 1.16616
\(46\) 0 0
\(47\) 9.21960 1.34482 0.672409 0.740180i \(-0.265260\pi\)
0.672409 + 0.740180i \(0.265260\pi\)
\(48\) 0 0
\(49\) −6.03565 −0.862236
\(50\) 0 0
\(51\) 7.22365 1.01151
\(52\) 0 0
\(53\) −8.90045 −1.22257 −0.611285 0.791410i \(-0.709347\pi\)
−0.611285 + 0.791410i \(0.709347\pi\)
\(54\) 0 0
\(55\) 2.30015 0.310152
\(56\) 0 0
\(57\) 8.96345 1.18724
\(58\) 0 0
\(59\) −8.02959 −1.04536 −0.522682 0.852528i \(-0.675068\pi\)
−0.522682 + 0.852528i \(0.675068\pi\)
\(60\) 0 0
\(61\) 5.09542 0.652402 0.326201 0.945300i \(-0.394231\pi\)
0.326201 + 0.945300i \(0.394231\pi\)
\(62\) 0 0
\(63\) −7.68209 −0.967852
\(64\) 0 0
\(65\) −0.976603 −0.121133
\(66\) 0 0
\(67\) −6.41435 −0.783638 −0.391819 0.920042i \(-0.628154\pi\)
−0.391819 + 0.920042i \(0.628154\pi\)
\(68\) 0 0
\(69\) −6.62705 −0.797803
\(70\) 0 0
\(71\) 10.3984 1.23407 0.617033 0.786937i \(-0.288335\pi\)
0.617033 + 0.786937i \(0.288335\pi\)
\(72\) 0 0
\(73\) 9.24439 1.08197 0.540987 0.841031i \(-0.318051\pi\)
0.540987 + 0.841031i \(0.318051\pi\)
\(74\) 0 0
\(75\) 3.28980 0.379874
\(76\) 0 0
\(77\) −2.25877 −0.257411
\(78\) 0 0
\(79\) −15.4493 −1.73818 −0.869091 0.494653i \(-0.835295\pi\)
−0.869091 + 0.494653i \(0.835295\pi\)
\(80\) 0 0
\(81\) 28.7280 3.19200
\(82\) 0 0
\(83\) −0.966253 −0.106060 −0.0530300 0.998593i \(-0.516888\pi\)
−0.0530300 + 0.998593i \(0.516888\pi\)
\(84\) 0 0
\(85\) 2.19577 0.238165
\(86\) 0 0
\(87\) 24.5271 2.62958
\(88\) 0 0
\(89\) 5.44401 0.577064 0.288532 0.957470i \(-0.406833\pi\)
0.288532 + 0.957470i \(0.406833\pi\)
\(90\) 0 0
\(91\) 0.959035 0.100534
\(92\) 0 0
\(93\) 1.43201 0.148492
\(94\) 0 0
\(95\) 2.72461 0.279540
\(96\) 0 0
\(97\) 5.54540 0.563050 0.281525 0.959554i \(-0.409160\pi\)
0.281525 + 0.959554i \(0.409160\pi\)
\(98\) 0 0
\(99\) 17.9936 1.80843
\(100\) 0 0
\(101\) −0.411952 −0.0409907 −0.0204954 0.999790i \(-0.506524\pi\)
−0.0204954 + 0.999790i \(0.506524\pi\)
\(102\) 0 0
\(103\) 4.50219 0.443614 0.221807 0.975091i \(-0.428805\pi\)
0.221807 + 0.975091i \(0.428805\pi\)
\(104\) 0 0
\(105\) −3.23062 −0.315277
\(106\) 0 0
\(107\) 9.19083 0.888511 0.444255 0.895900i \(-0.353468\pi\)
0.444255 + 0.895900i \(0.353468\pi\)
\(108\) 0 0
\(109\) −3.56311 −0.341284 −0.170642 0.985333i \(-0.554584\pi\)
−0.170642 + 0.985333i \(0.554584\pi\)
\(110\) 0 0
\(111\) −26.9754 −2.56039
\(112\) 0 0
\(113\) −5.38101 −0.506203 −0.253102 0.967440i \(-0.581451\pi\)
−0.253102 + 0.967440i \(0.581451\pi\)
\(114\) 0 0
\(115\) −2.01442 −0.187846
\(116\) 0 0
\(117\) −7.63978 −0.706298
\(118\) 0 0
\(119\) −2.15627 −0.197665
\(120\) 0 0
\(121\) −5.70933 −0.519030
\(122\) 0 0
\(123\) −12.9335 −1.16617
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 4.86578 0.431768 0.215884 0.976419i \(-0.430737\pi\)
0.215884 + 0.976419i \(0.430737\pi\)
\(128\) 0 0
\(129\) 2.36157 0.207924
\(130\) 0 0
\(131\) −11.3219 −0.989201 −0.494601 0.869120i \(-0.664686\pi\)
−0.494601 + 0.869120i \(0.664686\pi\)
\(132\) 0 0
\(133\) −2.67560 −0.232004
\(134\) 0 0
\(135\) 15.8661 1.36554
\(136\) 0 0
\(137\) 13.5567 1.15822 0.579112 0.815248i \(-0.303399\pi\)
0.579112 + 0.815248i \(0.303399\pi\)
\(138\) 0 0
\(139\) −11.6340 −0.986779 −0.493390 0.869808i \(-0.664242\pi\)
−0.493390 + 0.869808i \(0.664242\pi\)
\(140\) 0 0
\(141\) 30.3307 2.55431
\(142\) 0 0
\(143\) −2.24633 −0.187847
\(144\) 0 0
\(145\) 7.45547 0.619143
\(146\) 0 0
\(147\) −19.8561 −1.63771
\(148\) 0 0
\(149\) −17.8705 −1.46401 −0.732003 0.681301i \(-0.761414\pi\)
−0.732003 + 0.681301i \(0.761414\pi\)
\(150\) 0 0
\(151\) −15.1562 −1.23339 −0.616696 0.787201i \(-0.711529\pi\)
−0.616696 + 0.787201i \(0.711529\pi\)
\(152\) 0 0
\(153\) 17.1771 1.38869
\(154\) 0 0
\(155\) 0.435286 0.0349630
\(156\) 0 0
\(157\) 2.48641 0.198437 0.0992186 0.995066i \(-0.468366\pi\)
0.0992186 + 0.995066i \(0.468366\pi\)
\(158\) 0 0
\(159\) −29.2807 −2.32211
\(160\) 0 0
\(161\) 1.97818 0.155903
\(162\) 0 0
\(163\) 19.6720 1.54083 0.770416 0.637542i \(-0.220049\pi\)
0.770416 + 0.637542i \(0.220049\pi\)
\(164\) 0 0
\(165\) 7.56703 0.589092
\(166\) 0 0
\(167\) 18.8620 1.45958 0.729792 0.683669i \(-0.239617\pi\)
0.729792 + 0.683669i \(0.239617\pi\)
\(168\) 0 0
\(169\) −12.0462 −0.926634
\(170\) 0 0
\(171\) 21.3142 1.62993
\(172\) 0 0
\(173\) 22.7298 1.72812 0.864059 0.503391i \(-0.167914\pi\)
0.864059 + 0.503391i \(0.167914\pi\)
\(174\) 0 0
\(175\) −0.982011 −0.0742331
\(176\) 0 0
\(177\) −26.4158 −1.98553
\(178\) 0 0
\(179\) 23.2413 1.73714 0.868568 0.495570i \(-0.165041\pi\)
0.868568 + 0.495570i \(0.165041\pi\)
\(180\) 0 0
\(181\) 21.8552 1.62448 0.812241 0.583322i \(-0.198247\pi\)
0.812241 + 0.583322i \(0.198247\pi\)
\(182\) 0 0
\(183\) 16.7629 1.23915
\(184\) 0 0
\(185\) −8.19969 −0.602853
\(186\) 0 0
\(187\) 5.05059 0.369335
\(188\) 0 0
\(189\) −15.5807 −1.13333
\(190\) 0 0
\(191\) −14.7872 −1.06997 −0.534983 0.844863i \(-0.679682\pi\)
−0.534983 + 0.844863i \(0.679682\pi\)
\(192\) 0 0
\(193\) −11.2912 −0.812758 −0.406379 0.913705i \(-0.633209\pi\)
−0.406379 + 0.913705i \(0.633209\pi\)
\(194\) 0 0
\(195\) −3.21283 −0.230076
\(196\) 0 0
\(197\) −15.0122 −1.06957 −0.534786 0.844987i \(-0.679608\pi\)
−0.534786 + 0.844987i \(0.679608\pi\)
\(198\) 0 0
\(199\) −4.68789 −0.332316 −0.166158 0.986099i \(-0.553136\pi\)
−0.166158 + 0.986099i \(0.553136\pi\)
\(200\) 0 0
\(201\) −21.1020 −1.48842
\(202\) 0 0
\(203\) −7.32136 −0.513859
\(204\) 0 0
\(205\) −3.93139 −0.274580
\(206\) 0 0
\(207\) −15.7584 −1.09529
\(208\) 0 0
\(209\) 6.26701 0.433498
\(210\) 0 0
\(211\) −3.72242 −0.256262 −0.128131 0.991757i \(-0.540898\pi\)
−0.128131 + 0.991757i \(0.540898\pi\)
\(212\) 0 0
\(213\) 34.2088 2.34395
\(214\) 0 0
\(215\) 0.717844 0.0489565
\(216\) 0 0
\(217\) −0.427456 −0.0290176
\(218\) 0 0
\(219\) 30.4123 2.05507
\(220\) 0 0
\(221\) −2.14439 −0.144248
\(222\) 0 0
\(223\) 3.45644 0.231461 0.115730 0.993281i \(-0.463079\pi\)
0.115730 + 0.993281i \(0.463079\pi\)
\(224\) 0 0
\(225\) 7.82281 0.521521
\(226\) 0 0
\(227\) 6.71115 0.445434 0.222717 0.974883i \(-0.428507\pi\)
0.222717 + 0.974883i \(0.428507\pi\)
\(228\) 0 0
\(229\) −18.8905 −1.24832 −0.624161 0.781296i \(-0.714559\pi\)
−0.624161 + 0.781296i \(0.714559\pi\)
\(230\) 0 0
\(231\) −7.43091 −0.488918
\(232\) 0 0
\(233\) 4.82691 0.316222 0.158111 0.987421i \(-0.449460\pi\)
0.158111 + 0.987421i \(0.449460\pi\)
\(234\) 0 0
\(235\) 9.21960 0.601421
\(236\) 0 0
\(237\) −50.8252 −3.30145
\(238\) 0 0
\(239\) 8.82497 0.570840 0.285420 0.958403i \(-0.407867\pi\)
0.285420 + 0.958403i \(0.407867\pi\)
\(240\) 0 0
\(241\) 3.74147 0.241009 0.120504 0.992713i \(-0.461549\pi\)
0.120504 + 0.992713i \(0.461549\pi\)
\(242\) 0 0
\(243\) 46.9111 3.00935
\(244\) 0 0
\(245\) −6.03565 −0.385604
\(246\) 0 0
\(247\) −2.66087 −0.169307
\(248\) 0 0
\(249\) −3.17878 −0.201447
\(250\) 0 0
\(251\) −8.47569 −0.534981 −0.267490 0.963561i \(-0.586194\pi\)
−0.267490 + 0.963561i \(0.586194\pi\)
\(252\) 0 0
\(253\) −4.63346 −0.291303
\(254\) 0 0
\(255\) 7.22365 0.452362
\(256\) 0 0
\(257\) −14.7662 −0.921091 −0.460545 0.887636i \(-0.652346\pi\)
−0.460545 + 0.887636i \(0.652346\pi\)
\(258\) 0 0
\(259\) 8.05218 0.500338
\(260\) 0 0
\(261\) 58.3228 3.61009
\(262\) 0 0
\(263\) −6.79486 −0.418989 −0.209494 0.977810i \(-0.567182\pi\)
−0.209494 + 0.977810i \(0.567182\pi\)
\(264\) 0 0
\(265\) −8.90045 −0.546750
\(266\) 0 0
\(267\) 17.9097 1.09606
\(268\) 0 0
\(269\) −8.54170 −0.520797 −0.260398 0.965501i \(-0.583854\pi\)
−0.260398 + 0.965501i \(0.583854\pi\)
\(270\) 0 0
\(271\) 24.6221 1.49568 0.747842 0.663877i \(-0.231090\pi\)
0.747842 + 0.663877i \(0.231090\pi\)
\(272\) 0 0
\(273\) 3.15504 0.190952
\(274\) 0 0
\(275\) 2.30015 0.138704
\(276\) 0 0
\(277\) −14.1141 −0.848034 −0.424017 0.905654i \(-0.639380\pi\)
−0.424017 + 0.905654i \(0.639380\pi\)
\(278\) 0 0
\(279\) 3.40516 0.203862
\(280\) 0 0
\(281\) −14.4611 −0.862675 −0.431337 0.902191i \(-0.641958\pi\)
−0.431337 + 0.902191i \(0.641958\pi\)
\(282\) 0 0
\(283\) 28.3950 1.68791 0.843953 0.536416i \(-0.180222\pi\)
0.843953 + 0.536416i \(0.180222\pi\)
\(284\) 0 0
\(285\) 8.96345 0.530949
\(286\) 0 0
\(287\) 3.86067 0.227888
\(288\) 0 0
\(289\) −12.1786 −0.716388
\(290\) 0 0
\(291\) 18.2433 1.06944
\(292\) 0 0
\(293\) 21.7842 1.27265 0.636325 0.771421i \(-0.280454\pi\)
0.636325 + 0.771421i \(0.280454\pi\)
\(294\) 0 0
\(295\) −8.02959 −0.467501
\(296\) 0 0
\(297\) 36.4944 2.11762
\(298\) 0 0
\(299\) 1.96729 0.113771
\(300\) 0 0
\(301\) −0.704930 −0.0406315
\(302\) 0 0
\(303\) −1.35524 −0.0778566
\(304\) 0 0
\(305\) 5.09542 0.291763
\(306\) 0 0
\(307\) 12.9033 0.736428 0.368214 0.929741i \(-0.379969\pi\)
0.368214 + 0.929741i \(0.379969\pi\)
\(308\) 0 0
\(309\) 14.8113 0.842587
\(310\) 0 0
\(311\) 0.642911 0.0364561 0.0182281 0.999834i \(-0.494198\pi\)
0.0182281 + 0.999834i \(0.494198\pi\)
\(312\) 0 0
\(313\) −21.3775 −1.20833 −0.604164 0.796860i \(-0.706493\pi\)
−0.604164 + 0.796860i \(0.706493\pi\)
\(314\) 0 0
\(315\) −7.68209 −0.432837
\(316\) 0 0
\(317\) −12.2499 −0.688024 −0.344012 0.938965i \(-0.611786\pi\)
−0.344012 + 0.938965i \(0.611786\pi\)
\(318\) 0 0
\(319\) 17.1487 0.960141
\(320\) 0 0
\(321\) 30.2360 1.68761
\(322\) 0 0
\(323\) 5.98262 0.332882
\(324\) 0 0
\(325\) −0.976603 −0.0541722
\(326\) 0 0
\(327\) −11.7219 −0.648224
\(328\) 0 0
\(329\) −9.05375 −0.499150
\(330\) 0 0
\(331\) 11.9351 0.656014 0.328007 0.944675i \(-0.393623\pi\)
0.328007 + 0.944675i \(0.393623\pi\)
\(332\) 0 0
\(333\) −64.1446 −3.51510
\(334\) 0 0
\(335\) −6.41435 −0.350454
\(336\) 0 0
\(337\) −30.7047 −1.67259 −0.836295 0.548280i \(-0.815283\pi\)
−0.836295 + 0.548280i \(0.815283\pi\)
\(338\) 0 0
\(339\) −17.7025 −0.961467
\(340\) 0 0
\(341\) 1.00122 0.0542191
\(342\) 0 0
\(343\) 12.8012 0.691197
\(344\) 0 0
\(345\) −6.62705 −0.356788
\(346\) 0 0
\(347\) 19.2924 1.03567 0.517834 0.855481i \(-0.326738\pi\)
0.517834 + 0.855481i \(0.326738\pi\)
\(348\) 0 0
\(349\) −14.1042 −0.754983 −0.377492 0.926013i \(-0.623213\pi\)
−0.377492 + 0.926013i \(0.623213\pi\)
\(350\) 0 0
\(351\) −15.4949 −0.827056
\(352\) 0 0
\(353\) −26.7843 −1.42559 −0.712793 0.701374i \(-0.752570\pi\)
−0.712793 + 0.701374i \(0.752570\pi\)
\(354\) 0 0
\(355\) 10.3984 0.551891
\(356\) 0 0
\(357\) −7.09370 −0.375439
\(358\) 0 0
\(359\) −19.1190 −1.00906 −0.504532 0.863393i \(-0.668335\pi\)
−0.504532 + 0.863393i \(0.668335\pi\)
\(360\) 0 0
\(361\) −11.5765 −0.609288
\(362\) 0 0
\(363\) −18.7826 −0.985830
\(364\) 0 0
\(365\) 9.24439 0.483874
\(366\) 0 0
\(367\) −4.24385 −0.221527 −0.110764 0.993847i \(-0.535330\pi\)
−0.110764 + 0.993847i \(0.535330\pi\)
\(368\) 0 0
\(369\) −30.7545 −1.60102
\(370\) 0 0
\(371\) 8.74034 0.453776
\(372\) 0 0
\(373\) −33.8724 −1.75385 −0.876923 0.480631i \(-0.840408\pi\)
−0.876923 + 0.480631i \(0.840408\pi\)
\(374\) 0 0
\(375\) 3.28980 0.169885
\(376\) 0 0
\(377\) −7.28104 −0.374992
\(378\) 0 0
\(379\) −10.5456 −0.541690 −0.270845 0.962623i \(-0.587303\pi\)
−0.270845 + 0.962623i \(0.587303\pi\)
\(380\) 0 0
\(381\) 16.0075 0.820088
\(382\) 0 0
\(383\) 5.19667 0.265538 0.132769 0.991147i \(-0.457613\pi\)
0.132769 + 0.991147i \(0.457613\pi\)
\(384\) 0 0
\(385\) −2.25877 −0.115117
\(386\) 0 0
\(387\) 5.61556 0.285455
\(388\) 0 0
\(389\) 14.6861 0.744615 0.372307 0.928109i \(-0.378567\pi\)
0.372307 + 0.928109i \(0.378567\pi\)
\(390\) 0 0
\(391\) −4.42320 −0.223691
\(392\) 0 0
\(393\) −37.2469 −1.87886
\(394\) 0 0
\(395\) −15.4493 −0.777338
\(396\) 0 0
\(397\) 14.0446 0.704879 0.352439 0.935835i \(-0.385352\pi\)
0.352439 + 0.935835i \(0.385352\pi\)
\(398\) 0 0
\(399\) −8.80221 −0.440662
\(400\) 0 0
\(401\) −9.51392 −0.475102 −0.237551 0.971375i \(-0.576345\pi\)
−0.237551 + 0.971375i \(0.576345\pi\)
\(402\) 0 0
\(403\) −0.425101 −0.0211758
\(404\) 0 0
\(405\) 28.7280 1.42750
\(406\) 0 0
\(407\) −18.8605 −0.934879
\(408\) 0 0
\(409\) 4.81799 0.238234 0.119117 0.992880i \(-0.461994\pi\)
0.119117 + 0.992880i \(0.461994\pi\)
\(410\) 0 0
\(411\) 44.5988 2.19990
\(412\) 0 0
\(413\) 7.88514 0.388003
\(414\) 0 0
\(415\) −0.966253 −0.0474315
\(416\) 0 0
\(417\) −38.2734 −1.87426
\(418\) 0 0
\(419\) −30.3179 −1.48113 −0.740564 0.671986i \(-0.765441\pi\)
−0.740564 + 0.671986i \(0.765441\pi\)
\(420\) 0 0
\(421\) −6.79027 −0.330938 −0.165469 0.986215i \(-0.552914\pi\)
−0.165469 + 0.986215i \(0.552914\pi\)
\(422\) 0 0
\(423\) 72.1232 3.50675
\(424\) 0 0
\(425\) 2.19577 0.106510
\(426\) 0 0
\(427\) −5.00376 −0.242149
\(428\) 0 0
\(429\) −7.38998 −0.356792
\(430\) 0 0
\(431\) −13.2369 −0.637597 −0.318799 0.947822i \(-0.603279\pi\)
−0.318799 + 0.947822i \(0.603279\pi\)
\(432\) 0 0
\(433\) 1.50709 0.0724259 0.0362129 0.999344i \(-0.488471\pi\)
0.0362129 + 0.999344i \(0.488471\pi\)
\(434\) 0 0
\(435\) 24.5271 1.17598
\(436\) 0 0
\(437\) −5.48852 −0.262551
\(438\) 0 0
\(439\) 10.3092 0.492033 0.246016 0.969266i \(-0.420878\pi\)
0.246016 + 0.969266i \(0.420878\pi\)
\(440\) 0 0
\(441\) −47.2158 −2.24837
\(442\) 0 0
\(443\) −20.1739 −0.958491 −0.479245 0.877681i \(-0.659090\pi\)
−0.479245 + 0.877681i \(0.659090\pi\)
\(444\) 0 0
\(445\) 5.44401 0.258071
\(446\) 0 0
\(447\) −58.7904 −2.78069
\(448\) 0 0
\(449\) −19.5711 −0.923618 −0.461809 0.886979i \(-0.652799\pi\)
−0.461809 + 0.886979i \(0.652799\pi\)
\(450\) 0 0
\(451\) −9.04276 −0.425807
\(452\) 0 0
\(453\) −49.8608 −2.34267
\(454\) 0 0
\(455\) 0.959035 0.0449602
\(456\) 0 0
\(457\) −39.0185 −1.82521 −0.912604 0.408845i \(-0.865932\pi\)
−0.912604 + 0.408845i \(0.865932\pi\)
\(458\) 0 0
\(459\) 34.8383 1.62611
\(460\) 0 0
\(461\) 27.8516 1.29718 0.648590 0.761138i \(-0.275359\pi\)
0.648590 + 0.761138i \(0.275359\pi\)
\(462\) 0 0
\(463\) 14.9979 0.697009 0.348505 0.937307i \(-0.386690\pi\)
0.348505 + 0.937307i \(0.386690\pi\)
\(464\) 0 0
\(465\) 1.43201 0.0664077
\(466\) 0 0
\(467\) 6.91367 0.319926 0.159963 0.987123i \(-0.448862\pi\)
0.159963 + 0.987123i \(0.448862\pi\)
\(468\) 0 0
\(469\) 6.29897 0.290859
\(470\) 0 0
\(471\) 8.17980 0.376905
\(472\) 0 0
\(473\) 1.65114 0.0759197
\(474\) 0 0
\(475\) 2.72461 0.125014
\(476\) 0 0
\(477\) −69.6266 −3.18798
\(478\) 0 0
\(479\) −27.3381 −1.24911 −0.624555 0.780981i \(-0.714720\pi\)
−0.624555 + 0.780981i \(0.714720\pi\)
\(480\) 0 0
\(481\) 8.00784 0.365126
\(482\) 0 0
\(483\) 6.50783 0.296117
\(484\) 0 0
\(485\) 5.54540 0.251803
\(486\) 0 0
\(487\) −35.4769 −1.60761 −0.803806 0.594892i \(-0.797195\pi\)
−0.803806 + 0.594892i \(0.797195\pi\)
\(488\) 0 0
\(489\) 64.7171 2.92661
\(490\) 0 0
\(491\) −5.02914 −0.226962 −0.113481 0.993540i \(-0.536200\pi\)
−0.113481 + 0.993540i \(0.536200\pi\)
\(492\) 0 0
\(493\) 16.3705 0.737290
\(494\) 0 0
\(495\) 17.9936 0.808753
\(496\) 0 0
\(497\) −10.2114 −0.458042
\(498\) 0 0
\(499\) −24.9639 −1.11754 −0.558768 0.829324i \(-0.688726\pi\)
−0.558768 + 0.829324i \(0.688726\pi\)
\(500\) 0 0
\(501\) 62.0523 2.77229
\(502\) 0 0
\(503\) 31.8567 1.42042 0.710210 0.703990i \(-0.248600\pi\)
0.710210 + 0.703990i \(0.248600\pi\)
\(504\) 0 0
\(505\) −0.411952 −0.0183316
\(506\) 0 0
\(507\) −39.6298 −1.76002
\(508\) 0 0
\(509\) 7.93451 0.351691 0.175845 0.984418i \(-0.443734\pi\)
0.175845 + 0.984418i \(0.443734\pi\)
\(510\) 0 0
\(511\) −9.07810 −0.401591
\(512\) 0 0
\(513\) 43.2291 1.90861
\(514\) 0 0
\(515\) 4.50219 0.198390
\(516\) 0 0
\(517\) 21.2064 0.932658
\(518\) 0 0
\(519\) 74.7767 3.28233
\(520\) 0 0
\(521\) −33.1977 −1.45442 −0.727208 0.686417i \(-0.759182\pi\)
−0.727208 + 0.686417i \(0.759182\pi\)
\(522\) 0 0
\(523\) 3.68695 0.161219 0.0806095 0.996746i \(-0.474313\pi\)
0.0806095 + 0.996746i \(0.474313\pi\)
\(524\) 0 0
\(525\) −3.23062 −0.140996
\(526\) 0 0
\(527\) 0.955787 0.0416347
\(528\) 0 0
\(529\) −18.9421 −0.823570
\(530\) 0 0
\(531\) −62.8140 −2.72589
\(532\) 0 0
\(533\) 3.83940 0.166303
\(534\) 0 0
\(535\) 9.19083 0.397354
\(536\) 0 0
\(537\) 76.4593 3.29946
\(538\) 0 0
\(539\) −13.8829 −0.597978
\(540\) 0 0
\(541\) 32.0799 1.37922 0.689611 0.724180i \(-0.257782\pi\)
0.689611 + 0.724180i \(0.257782\pi\)
\(542\) 0 0
\(543\) 71.8992 3.08549
\(544\) 0 0
\(545\) −3.56311 −0.152627
\(546\) 0 0
\(547\) 4.27495 0.182784 0.0913918 0.995815i \(-0.470868\pi\)
0.0913918 + 0.995815i \(0.470868\pi\)
\(548\) 0 0
\(549\) 39.8605 1.70121
\(550\) 0 0
\(551\) 20.3133 0.865375
\(552\) 0 0
\(553\) 15.1714 0.645153
\(554\) 0 0
\(555\) −26.9754 −1.14504
\(556\) 0 0
\(557\) 13.1168 0.555775 0.277888 0.960614i \(-0.410366\pi\)
0.277888 + 0.960614i \(0.410366\pi\)
\(558\) 0 0
\(559\) −0.701048 −0.0296512
\(560\) 0 0
\(561\) 16.6154 0.701504
\(562\) 0 0
\(563\) −28.7121 −1.21007 −0.605035 0.796199i \(-0.706841\pi\)
−0.605035 + 0.796199i \(0.706841\pi\)
\(564\) 0 0
\(565\) −5.38101 −0.226381
\(566\) 0 0
\(567\) −28.2112 −1.18476
\(568\) 0 0
\(569\) −14.3362 −0.601005 −0.300503 0.953781i \(-0.597154\pi\)
−0.300503 + 0.953781i \(0.597154\pi\)
\(570\) 0 0
\(571\) 12.0826 0.505641 0.252820 0.967513i \(-0.418642\pi\)
0.252820 + 0.967513i \(0.418642\pi\)
\(572\) 0 0
\(573\) −48.6471 −2.03226
\(574\) 0 0
\(575\) −2.01442 −0.0840071
\(576\) 0 0
\(577\) −8.68179 −0.361428 −0.180714 0.983536i \(-0.557841\pi\)
−0.180714 + 0.983536i \(0.557841\pi\)
\(578\) 0 0
\(579\) −37.1458 −1.54373
\(580\) 0 0
\(581\) 0.948871 0.0393658
\(582\) 0 0
\(583\) −20.4723 −0.847877
\(584\) 0 0
\(585\) −7.63978 −0.315866
\(586\) 0 0
\(587\) −30.9772 −1.27856 −0.639282 0.768972i \(-0.720769\pi\)
−0.639282 + 0.768972i \(0.720769\pi\)
\(588\) 0 0
\(589\) 1.18599 0.0488677
\(590\) 0 0
\(591\) −49.3871 −2.03151
\(592\) 0 0
\(593\) 17.5142 0.719222 0.359611 0.933102i \(-0.382909\pi\)
0.359611 + 0.933102i \(0.382909\pi\)
\(594\) 0 0
\(595\) −2.15627 −0.0883984
\(596\) 0 0
\(597\) −15.4222 −0.631190
\(598\) 0 0
\(599\) 19.0276 0.777447 0.388724 0.921354i \(-0.372916\pi\)
0.388724 + 0.921354i \(0.372916\pi\)
\(600\) 0 0
\(601\) 5.52545 0.225388 0.112694 0.993630i \(-0.464052\pi\)
0.112694 + 0.993630i \(0.464052\pi\)
\(602\) 0 0
\(603\) −50.1783 −2.04342
\(604\) 0 0
\(605\) −5.70933 −0.232117
\(606\) 0 0
\(607\) −12.1064 −0.491384 −0.245692 0.969348i \(-0.579015\pi\)
−0.245692 + 0.969348i \(0.579015\pi\)
\(608\) 0 0
\(609\) −24.0858 −0.976007
\(610\) 0 0
\(611\) −9.00389 −0.364258
\(612\) 0 0
\(613\) 25.1833 1.01714 0.508572 0.861019i \(-0.330173\pi\)
0.508572 + 0.861019i \(0.330173\pi\)
\(614\) 0 0
\(615\) −12.9335 −0.521529
\(616\) 0 0
\(617\) 1.10944 0.0446642 0.0223321 0.999751i \(-0.492891\pi\)
0.0223321 + 0.999751i \(0.492891\pi\)
\(618\) 0 0
\(619\) 45.0713 1.81157 0.905785 0.423738i \(-0.139282\pi\)
0.905785 + 0.423738i \(0.139282\pi\)
\(620\) 0 0
\(621\) −31.9610 −1.28255
\(622\) 0 0
\(623\) −5.34608 −0.214186
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 20.6172 0.823373
\(628\) 0 0
\(629\) −18.0046 −0.717891
\(630\) 0 0
\(631\) −6.80064 −0.270729 −0.135365 0.990796i \(-0.543221\pi\)
−0.135365 + 0.990796i \(0.543221\pi\)
\(632\) 0 0
\(633\) −12.2460 −0.486736
\(634\) 0 0
\(635\) 4.86578 0.193093
\(636\) 0 0
\(637\) 5.89444 0.233546
\(638\) 0 0
\(639\) 81.3449 3.21796
\(640\) 0 0
\(641\) 14.2566 0.563100 0.281550 0.959547i \(-0.409151\pi\)
0.281550 + 0.959547i \(0.409151\pi\)
\(642\) 0 0
\(643\) −20.3841 −0.803870 −0.401935 0.915668i \(-0.631662\pi\)
−0.401935 + 0.915668i \(0.631662\pi\)
\(644\) 0 0
\(645\) 2.36157 0.0929866
\(646\) 0 0
\(647\) 20.5723 0.808782 0.404391 0.914586i \(-0.367483\pi\)
0.404391 + 0.914586i \(0.367483\pi\)
\(648\) 0 0
\(649\) −18.4692 −0.724980
\(650\) 0 0
\(651\) −1.40625 −0.0551151
\(652\) 0 0
\(653\) −13.8585 −0.542326 −0.271163 0.962533i \(-0.587408\pi\)
−0.271163 + 0.962533i \(0.587408\pi\)
\(654\) 0 0
\(655\) −11.3219 −0.442384
\(656\) 0 0
\(657\) 72.3172 2.82136
\(658\) 0 0
\(659\) −12.3131 −0.479651 −0.239826 0.970816i \(-0.577090\pi\)
−0.239826 + 0.970816i \(0.577090\pi\)
\(660\) 0 0
\(661\) −27.9871 −1.08857 −0.544286 0.838900i \(-0.683199\pi\)
−0.544286 + 0.838900i \(0.683199\pi\)
\(662\) 0 0
\(663\) −7.05464 −0.273979
\(664\) 0 0
\(665\) −2.67560 −0.103755
\(666\) 0 0
\(667\) −15.0184 −0.581517
\(668\) 0 0
\(669\) 11.3710 0.439629
\(670\) 0 0
\(671\) 11.7202 0.452454
\(672\) 0 0
\(673\) −14.0829 −0.542857 −0.271429 0.962459i \(-0.587496\pi\)
−0.271429 + 0.962459i \(0.587496\pi\)
\(674\) 0 0
\(675\) 15.8661 0.610687
\(676\) 0 0
\(677\) −42.1670 −1.62061 −0.810305 0.586009i \(-0.800698\pi\)
−0.810305 + 0.586009i \(0.800698\pi\)
\(678\) 0 0
\(679\) −5.44564 −0.208984
\(680\) 0 0
\(681\) 22.0784 0.846045
\(682\) 0 0
\(683\) 17.0620 0.652858 0.326429 0.945222i \(-0.394155\pi\)
0.326429 + 0.945222i \(0.394155\pi\)
\(684\) 0 0
\(685\) 13.5567 0.517974
\(686\) 0 0
\(687\) −62.1462 −2.37102
\(688\) 0 0
\(689\) 8.69221 0.331147
\(690\) 0 0
\(691\) 3.66093 0.139268 0.0696342 0.997573i \(-0.477817\pi\)
0.0696342 + 0.997573i \(0.477817\pi\)
\(692\) 0 0
\(693\) −17.6699 −0.671225
\(694\) 0 0
\(695\) −11.6340 −0.441301
\(696\) 0 0
\(697\) −8.63242 −0.326976
\(698\) 0 0
\(699\) 15.8796 0.600622
\(700\) 0 0
\(701\) 38.1758 1.44188 0.720939 0.692998i \(-0.243711\pi\)
0.720939 + 0.692998i \(0.243711\pi\)
\(702\) 0 0
\(703\) −22.3410 −0.842606
\(704\) 0 0
\(705\) 30.3307 1.14232
\(706\) 0 0
\(707\) 0.404541 0.0152143
\(708\) 0 0
\(709\) −49.5878 −1.86231 −0.931155 0.364624i \(-0.881198\pi\)
−0.931155 + 0.364624i \(0.881198\pi\)
\(710\) 0 0
\(711\) −120.857 −4.53249
\(712\) 0 0
\(713\) −0.876848 −0.0328382
\(714\) 0 0
\(715\) −2.24633 −0.0840079
\(716\) 0 0
\(717\) 29.0324 1.08424
\(718\) 0 0
\(719\) 0.436840 0.0162914 0.00814568 0.999967i \(-0.497407\pi\)
0.00814568 + 0.999967i \(0.497407\pi\)
\(720\) 0 0
\(721\) −4.42120 −0.164654
\(722\) 0 0
\(723\) 12.3087 0.457765
\(724\) 0 0
\(725\) 7.45547 0.276889
\(726\) 0 0
\(727\) −38.8072 −1.43928 −0.719640 0.694348i \(-0.755693\pi\)
−0.719640 + 0.694348i \(0.755693\pi\)
\(728\) 0 0
\(729\) 68.1444 2.52387
\(730\) 0 0
\(731\) 1.57622 0.0582985
\(732\) 0 0
\(733\) 34.3737 1.26962 0.634811 0.772668i \(-0.281078\pi\)
0.634811 + 0.772668i \(0.281078\pi\)
\(734\) 0 0
\(735\) −19.8561 −0.732404
\(736\) 0 0
\(737\) −14.7539 −0.543469
\(738\) 0 0
\(739\) 38.2208 1.40597 0.702987 0.711203i \(-0.251849\pi\)
0.702987 + 0.711203i \(0.251849\pi\)
\(740\) 0 0
\(741\) −8.75373 −0.321576
\(742\) 0 0
\(743\) 12.1663 0.446337 0.223169 0.974780i \(-0.428360\pi\)
0.223169 + 0.974780i \(0.428360\pi\)
\(744\) 0 0
\(745\) −17.8705 −0.654724
\(746\) 0 0
\(747\) −7.55881 −0.276563
\(748\) 0 0
\(749\) −9.02549 −0.329784
\(750\) 0 0
\(751\) 40.8606 1.49102 0.745512 0.666492i \(-0.232205\pi\)
0.745512 + 0.666492i \(0.232205\pi\)
\(752\) 0 0
\(753\) −27.8834 −1.01613
\(754\) 0 0
\(755\) −15.1562 −0.551590
\(756\) 0 0
\(757\) 0.00564513 0.000205176 0 0.000102588 1.00000i \(-0.499967\pi\)
0.000102588 1.00000i \(0.499967\pi\)
\(758\) 0 0
\(759\) −15.2432 −0.553292
\(760\) 0 0
\(761\) 0.751325 0.0272355 0.0136178 0.999907i \(-0.495665\pi\)
0.0136178 + 0.999907i \(0.495665\pi\)
\(762\) 0 0
\(763\) 3.49901 0.126673
\(764\) 0 0
\(765\) 17.1771 0.621039
\(766\) 0 0
\(767\) 7.84172 0.283148
\(768\) 0 0
\(769\) 35.4522 1.27844 0.639219 0.769025i \(-0.279258\pi\)
0.639219 + 0.769025i \(0.279258\pi\)
\(770\) 0 0
\(771\) −48.5779 −1.74949
\(772\) 0 0
\(773\) −7.78080 −0.279856 −0.139928 0.990162i \(-0.544687\pi\)
−0.139928 + 0.990162i \(0.544687\pi\)
\(774\) 0 0
\(775\) 0.435286 0.0156359
\(776\) 0 0
\(777\) 26.4901 0.950327
\(778\) 0 0
\(779\) −10.7115 −0.383780
\(780\) 0 0
\(781\) 23.9179 0.855849
\(782\) 0 0
\(783\) 118.289 4.22732
\(784\) 0 0
\(785\) 2.48641 0.0887438
\(786\) 0 0
\(787\) 40.5800 1.44652 0.723260 0.690576i \(-0.242643\pi\)
0.723260 + 0.690576i \(0.242643\pi\)
\(788\) 0 0
\(789\) −22.3538 −0.795815
\(790\) 0 0
\(791\) 5.28422 0.187885
\(792\) 0 0
\(793\) −4.97620 −0.176710
\(794\) 0 0
\(795\) −29.2807 −1.03848
\(796\) 0 0
\(797\) 8.89932 0.315230 0.157615 0.987501i \(-0.449619\pi\)
0.157615 + 0.987501i \(0.449619\pi\)
\(798\) 0 0
\(799\) 20.2441 0.716185
\(800\) 0 0
\(801\) 42.5875 1.50476
\(802\) 0 0
\(803\) 21.2635 0.750371
\(804\) 0 0
\(805\) 1.97818 0.0697218
\(806\) 0 0
\(807\) −28.1005 −0.989186
\(808\) 0 0
\(809\) −27.0850 −0.952257 −0.476128 0.879376i \(-0.657960\pi\)
−0.476128 + 0.879376i \(0.657960\pi\)
\(810\) 0 0
\(811\) 20.7451 0.728458 0.364229 0.931309i \(-0.381332\pi\)
0.364229 + 0.931309i \(0.381332\pi\)
\(812\) 0 0
\(813\) 81.0018 2.84086
\(814\) 0 0
\(815\) 19.6720 0.689081
\(816\) 0 0
\(817\) 1.95585 0.0684264
\(818\) 0 0
\(819\) 7.50235 0.262153
\(820\) 0 0
\(821\) 21.8803 0.763626 0.381813 0.924240i \(-0.375300\pi\)
0.381813 + 0.924240i \(0.375300\pi\)
\(822\) 0 0
\(823\) −7.64319 −0.266425 −0.133212 0.991088i \(-0.542529\pi\)
−0.133212 + 0.991088i \(0.542529\pi\)
\(824\) 0 0
\(825\) 7.56703 0.263450
\(826\) 0 0
\(827\) −1.10476 −0.0384163 −0.0192082 0.999816i \(-0.506115\pi\)
−0.0192082 + 0.999816i \(0.506115\pi\)
\(828\) 0 0
\(829\) −40.8881 −1.42010 −0.710050 0.704151i \(-0.751328\pi\)
−0.710050 + 0.704151i \(0.751328\pi\)
\(830\) 0 0
\(831\) −46.4326 −1.61073
\(832\) 0 0
\(833\) −13.2529 −0.459186
\(834\) 0 0
\(835\) 18.8620 0.652746
\(836\) 0 0
\(837\) 6.90630 0.238717
\(838\) 0 0
\(839\) 35.9665 1.24170 0.620851 0.783928i \(-0.286787\pi\)
0.620851 + 0.783928i \(0.286787\pi\)
\(840\) 0 0
\(841\) 26.5841 0.916692
\(842\) 0 0
\(843\) −47.5741 −1.63854
\(844\) 0 0
\(845\) −12.0462 −0.414403
\(846\) 0 0
\(847\) 5.60663 0.192646
\(848\) 0 0
\(849\) 93.4140 3.20596
\(850\) 0 0
\(851\) 16.5176 0.566216
\(852\) 0 0
\(853\) −12.0656 −0.413118 −0.206559 0.978434i \(-0.566227\pi\)
−0.206559 + 0.978434i \(0.566227\pi\)
\(854\) 0 0
\(855\) 21.3142 0.728929
\(856\) 0 0
\(857\) −20.6681 −0.706010 −0.353005 0.935621i \(-0.614840\pi\)
−0.353005 + 0.935621i \(0.614840\pi\)
\(858\) 0 0
\(859\) 37.6185 1.28353 0.641763 0.766903i \(-0.278203\pi\)
0.641763 + 0.766903i \(0.278203\pi\)
\(860\) 0 0
\(861\) 12.7008 0.432843
\(862\) 0 0
\(863\) 24.2911 0.826880 0.413440 0.910531i \(-0.364327\pi\)
0.413440 + 0.910531i \(0.364327\pi\)
\(864\) 0 0
\(865\) 22.7298 0.772838
\(866\) 0 0
\(867\) −40.0652 −1.36069
\(868\) 0 0
\(869\) −35.5356 −1.20546
\(870\) 0 0
\(871\) 6.26428 0.212257
\(872\) 0 0
\(873\) 43.3806 1.46821
\(874\) 0 0
\(875\) −0.982011 −0.0331980
\(876\) 0 0
\(877\) −24.7919 −0.837162 −0.418581 0.908179i \(-0.637472\pi\)
−0.418581 + 0.908179i \(0.637472\pi\)
\(878\) 0 0
\(879\) 71.6659 2.41723
\(880\) 0 0
\(881\) −35.1334 −1.18367 −0.591837 0.806058i \(-0.701597\pi\)
−0.591837 + 0.806058i \(0.701597\pi\)
\(882\) 0 0
\(883\) 25.5924 0.861251 0.430626 0.902531i \(-0.358293\pi\)
0.430626 + 0.902531i \(0.358293\pi\)
\(884\) 0 0
\(885\) −26.4158 −0.887957
\(886\) 0 0
\(887\) −14.6666 −0.492455 −0.246228 0.969212i \(-0.579191\pi\)
−0.246228 + 0.969212i \(0.579191\pi\)
\(888\) 0 0
\(889\) −4.77825 −0.160257
\(890\) 0 0
\(891\) 66.0785 2.21371
\(892\) 0 0
\(893\) 25.1199 0.840604
\(894\) 0 0
\(895\) 23.2413 0.776871
\(896\) 0 0
\(897\) 6.47199 0.216094
\(898\) 0 0
\(899\) 3.24526 0.108236
\(900\) 0 0
\(901\) −19.5433 −0.651083
\(902\) 0 0
\(903\) −2.31908 −0.0771743
\(904\) 0 0
\(905\) 21.8552 0.726490
\(906\) 0 0
\(907\) 35.9817 1.19475 0.597376 0.801961i \(-0.296210\pi\)
0.597376 + 0.801961i \(0.296210\pi\)
\(908\) 0 0
\(909\) −3.22262 −0.106888
\(910\) 0 0
\(911\) −14.6852 −0.486542 −0.243271 0.969958i \(-0.578220\pi\)
−0.243271 + 0.969958i \(0.578220\pi\)
\(912\) 0 0
\(913\) −2.22252 −0.0735547
\(914\) 0 0
\(915\) 16.7629 0.554166
\(916\) 0 0
\(917\) 11.1183 0.367157
\(918\) 0 0
\(919\) −46.2157 −1.52451 −0.762257 0.647274i \(-0.775909\pi\)
−0.762257 + 0.647274i \(0.775909\pi\)
\(920\) 0 0
\(921\) 42.4492 1.39875
\(922\) 0 0
\(923\) −10.1551 −0.334260
\(924\) 0 0
\(925\) −8.19969 −0.269604
\(926\) 0 0
\(927\) 35.2198 1.15677
\(928\) 0 0
\(929\) 52.0543 1.70785 0.853923 0.520400i \(-0.174217\pi\)
0.853923 + 0.520400i \(0.174217\pi\)
\(930\) 0 0
\(931\) −16.4448 −0.538958
\(932\) 0 0
\(933\) 2.11505 0.0692436
\(934\) 0 0
\(935\) 5.05059 0.165172
\(936\) 0 0
\(937\) 33.7454 1.10241 0.551207 0.834368i \(-0.314167\pi\)
0.551207 + 0.834368i \(0.314167\pi\)
\(938\) 0 0
\(939\) −70.3278 −2.29506
\(940\) 0 0
\(941\) −20.6213 −0.672234 −0.336117 0.941820i \(-0.609114\pi\)
−0.336117 + 0.941820i \(0.609114\pi\)
\(942\) 0 0
\(943\) 7.91946 0.257893
\(944\) 0 0
\(945\) −15.5807 −0.506840
\(946\) 0 0
\(947\) −53.3982 −1.73521 −0.867604 0.497256i \(-0.834341\pi\)
−0.867604 + 0.497256i \(0.834341\pi\)
\(948\) 0 0
\(949\) −9.02810 −0.293065
\(950\) 0 0
\(951\) −40.2998 −1.30681
\(952\) 0 0
\(953\) 48.6441 1.57574 0.787868 0.615844i \(-0.211185\pi\)
0.787868 + 0.615844i \(0.211185\pi\)
\(954\) 0 0
\(955\) −14.7872 −0.478504
\(956\) 0 0
\(957\) 56.4158 1.82366
\(958\) 0 0
\(959\) −13.3128 −0.429893
\(960\) 0 0
\(961\) −30.8105 −0.993888
\(962\) 0 0
\(963\) 71.8981 2.31688
\(964\) 0 0
\(965\) −11.2912 −0.363476
\(966\) 0 0
\(967\) −12.4521 −0.400433 −0.200216 0.979752i \(-0.564165\pi\)
−0.200216 + 0.979752i \(0.564165\pi\)
\(968\) 0 0
\(969\) 19.6817 0.632266
\(970\) 0 0
\(971\) −20.0721 −0.644143 −0.322072 0.946715i \(-0.604379\pi\)
−0.322072 + 0.946715i \(0.604379\pi\)
\(972\) 0 0
\(973\) 11.4247 0.366258
\(974\) 0 0
\(975\) −3.21283 −0.102893
\(976\) 0 0
\(977\) −18.3144 −0.585929 −0.292965 0.956123i \(-0.594642\pi\)
−0.292965 + 0.956123i \(0.594642\pi\)
\(978\) 0 0
\(979\) 12.5220 0.400206
\(980\) 0 0
\(981\) −27.8735 −0.889934
\(982\) 0 0
\(983\) 27.0583 0.863027 0.431513 0.902107i \(-0.357980\pi\)
0.431513 + 0.902107i \(0.357980\pi\)
\(984\) 0 0
\(985\) −15.0122 −0.478328
\(986\) 0 0
\(987\) −29.7851 −0.948069
\(988\) 0 0
\(989\) −1.44604 −0.0459813
\(990\) 0 0
\(991\) 25.7759 0.818799 0.409400 0.912355i \(-0.365738\pi\)
0.409400 + 0.912355i \(0.365738\pi\)
\(992\) 0 0
\(993\) 39.2642 1.24601
\(994\) 0 0
\(995\) −4.68789 −0.148616
\(996\) 0 0
\(997\) 15.7201 0.497861 0.248930 0.968521i \(-0.419921\pi\)
0.248930 + 0.968521i \(0.419921\pi\)
\(998\) 0 0
\(999\) −130.097 −4.11609
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5120.2.a.v.1.8 8
4.3 odd 2 5120.2.a.t.1.1 8
8.3 odd 2 5120.2.a.u.1.8 8
8.5 even 2 5120.2.a.s.1.1 8
32.3 odd 8 640.2.l.a.161.1 16
32.5 even 8 80.2.l.a.21.8 16
32.11 odd 8 640.2.l.a.481.1 16
32.13 even 8 80.2.l.a.61.8 yes 16
32.19 odd 8 320.2.l.a.81.8 16
32.21 even 8 640.2.l.b.481.8 16
32.27 odd 8 320.2.l.a.241.8 16
32.29 even 8 640.2.l.b.161.8 16
96.5 odd 8 720.2.t.c.181.1 16
96.59 even 8 2880.2.t.c.2161.3 16
96.77 odd 8 720.2.t.c.541.1 16
96.83 even 8 2880.2.t.c.721.2 16
160.13 odd 8 400.2.q.g.349.6 16
160.19 odd 8 1600.2.l.i.401.1 16
160.27 even 8 1600.2.q.h.49.1 16
160.37 odd 8 400.2.q.g.149.6 16
160.59 odd 8 1600.2.l.i.1201.1 16
160.69 even 8 400.2.l.h.101.1 16
160.77 odd 8 400.2.q.h.349.3 16
160.83 even 8 1600.2.q.h.849.1 16
160.109 even 8 400.2.l.h.301.1 16
160.123 even 8 1600.2.q.g.49.8 16
160.133 odd 8 400.2.q.h.149.3 16
160.147 even 8 1600.2.q.g.849.8 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.8 16 32.5 even 8
80.2.l.a.61.8 yes 16 32.13 even 8
320.2.l.a.81.8 16 32.19 odd 8
320.2.l.a.241.8 16 32.27 odd 8
400.2.l.h.101.1 16 160.69 even 8
400.2.l.h.301.1 16 160.109 even 8
400.2.q.g.149.6 16 160.37 odd 8
400.2.q.g.349.6 16 160.13 odd 8
400.2.q.h.149.3 16 160.133 odd 8
400.2.q.h.349.3 16 160.77 odd 8
640.2.l.a.161.1 16 32.3 odd 8
640.2.l.a.481.1 16 32.11 odd 8
640.2.l.b.161.8 16 32.29 even 8
640.2.l.b.481.8 16 32.21 even 8
720.2.t.c.181.1 16 96.5 odd 8
720.2.t.c.541.1 16 96.77 odd 8
1600.2.l.i.401.1 16 160.19 odd 8
1600.2.l.i.1201.1 16 160.59 odd 8
1600.2.q.g.49.8 16 160.123 even 8
1600.2.q.g.849.8 16 160.147 even 8
1600.2.q.h.49.1 16 160.27 even 8
1600.2.q.h.849.1 16 160.83 even 8
2880.2.t.c.721.2 16 96.83 even 8
2880.2.t.c.2161.3 16 96.59 even 8
5120.2.a.s.1.1 8 8.5 even 2
5120.2.a.t.1.1 8 4.3 odd 2
5120.2.a.u.1.8 8 8.3 odd 2
5120.2.a.v.1.8 8 1.1 even 1 trivial