Properties

Label 5184.2.a.cd.1.3
Level $5184$
Weight $2$
Character 5184.1
Self dual yes
Analytic conductor $41.394$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5184,2,Mod(1,5184)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5184, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5184.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5184 = 2^{6} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5184.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.3944484078\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 2592)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.456850\) of defining polynomial
Character \(\chi\) \(=\) 5184.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64575 q^{5} -4.37780 q^{7} +O(q^{10})\) \(q+2.64575 q^{5} -4.37780 q^{7} +3.58258 q^{11} +6.58258 q^{13} -1.73205 q^{17} -2.55040 q^{19} +7.58258 q^{23} +2.00000 q^{25} +6.10985 q^{29} -8.75560 q^{31} -11.5826 q^{35} -2.58258 q^{37} +1.82740 q^{41} +2.55040 q^{43} +8.00000 q^{47} +12.1652 q^{49} +1.82740 q^{53} +9.47860 q^{55} -8.00000 q^{59} +1.41742 q^{61} +17.4159 q^{65} +2.55040 q^{67} +0.417424 q^{71} -6.16515 q^{73} -15.6838 q^{77} -9.47860 q^{79} -15.1652 q^{83} -4.58258 q^{85} +12.3151 q^{89} -28.8172 q^{91} -6.74773 q^{95} -5.16515 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{11} + 8 q^{13} + 12 q^{23} + 8 q^{25} - 28 q^{35} + 8 q^{37} + 32 q^{47} + 12 q^{49} - 32 q^{59} + 24 q^{61} + 20 q^{71} + 12 q^{73} - 24 q^{83} + 28 q^{95} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.64575 1.18322 0.591608 0.806226i \(-0.298493\pi\)
0.591608 + 0.806226i \(0.298493\pi\)
\(6\) 0 0
\(7\) −4.37780 −1.65465 −0.827327 0.561721i \(-0.810140\pi\)
−0.827327 + 0.561721i \(0.810140\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.58258 1.08019 0.540094 0.841605i \(-0.318389\pi\)
0.540094 + 0.841605i \(0.318389\pi\)
\(12\) 0 0
\(13\) 6.58258 1.82568 0.912839 0.408320i \(-0.133885\pi\)
0.912839 + 0.408320i \(0.133885\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.73205 −0.420084 −0.210042 0.977692i \(-0.567360\pi\)
−0.210042 + 0.977692i \(0.567360\pi\)
\(18\) 0 0
\(19\) −2.55040 −0.585102 −0.292551 0.956250i \(-0.594504\pi\)
−0.292551 + 0.956250i \(0.594504\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 7.58258 1.58108 0.790538 0.612413i \(-0.209801\pi\)
0.790538 + 0.612413i \(0.209801\pi\)
\(24\) 0 0
\(25\) 2.00000 0.400000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.10985 1.13457 0.567286 0.823521i \(-0.307994\pi\)
0.567286 + 0.823521i \(0.307994\pi\)
\(30\) 0 0
\(31\) −8.75560 −1.57255 −0.786276 0.617875i \(-0.787994\pi\)
−0.786276 + 0.617875i \(0.787994\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −11.5826 −1.95781
\(36\) 0 0
\(37\) −2.58258 −0.424573 −0.212286 0.977207i \(-0.568091\pi\)
−0.212286 + 0.977207i \(0.568091\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 1.82740 0.285392 0.142696 0.989767i \(-0.454423\pi\)
0.142696 + 0.989767i \(0.454423\pi\)
\(42\) 0 0
\(43\) 2.55040 0.388933 0.194466 0.980909i \(-0.437703\pi\)
0.194466 + 0.980909i \(0.437703\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.00000 1.16692 0.583460 0.812142i \(-0.301699\pi\)
0.583460 + 0.812142i \(0.301699\pi\)
\(48\) 0 0
\(49\) 12.1652 1.73788
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.82740 0.251013 0.125506 0.992093i \(-0.459944\pi\)
0.125506 + 0.992093i \(0.459944\pi\)
\(54\) 0 0
\(55\) 9.47860 1.27809
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) 1.41742 0.181483 0.0907413 0.995874i \(-0.471076\pi\)
0.0907413 + 0.995874i \(0.471076\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 17.4159 2.16017
\(66\) 0 0
\(67\) 2.55040 0.311581 0.155791 0.987790i \(-0.450208\pi\)
0.155791 + 0.987790i \(0.450208\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0.417424 0.0495392 0.0247696 0.999693i \(-0.492115\pi\)
0.0247696 + 0.999693i \(0.492115\pi\)
\(72\) 0 0
\(73\) −6.16515 −0.721576 −0.360788 0.932648i \(-0.617492\pi\)
−0.360788 + 0.932648i \(0.617492\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −15.6838 −1.78734
\(78\) 0 0
\(79\) −9.47860 −1.06643 −0.533213 0.845981i \(-0.679016\pi\)
−0.533213 + 0.845981i \(0.679016\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −15.1652 −1.66459 −0.832296 0.554332i \(-0.812974\pi\)
−0.832296 + 0.554332i \(0.812974\pi\)
\(84\) 0 0
\(85\) −4.58258 −0.497050
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.3151 1.30539 0.652697 0.757619i \(-0.273638\pi\)
0.652697 + 0.757619i \(0.273638\pi\)
\(90\) 0 0
\(91\) −28.8172 −3.02086
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −6.74773 −0.692302
\(96\) 0 0
\(97\) −5.16515 −0.524442 −0.262221 0.965008i \(-0.584455\pi\)
−0.262221 + 0.965008i \(0.584455\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 13.8564 1.37876 0.689382 0.724398i \(-0.257882\pi\)
0.689382 + 0.724398i \(0.257882\pi\)
\(102\) 0 0
\(103\) 12.4104 1.22283 0.611417 0.791309i \(-0.290600\pi\)
0.611417 + 0.791309i \(0.290600\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 7.16515 0.692681 0.346341 0.938109i \(-0.387424\pi\)
0.346341 + 0.938109i \(0.387424\pi\)
\(108\) 0 0
\(109\) 14.5826 1.39676 0.698379 0.715728i \(-0.253905\pi\)
0.698379 + 0.715728i \(0.253905\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −19.2433 −1.81025 −0.905127 0.425142i \(-0.860224\pi\)
−0.905127 + 0.425142i \(0.860224\pi\)
\(114\) 0 0
\(115\) 20.0616 1.87075
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 7.58258 0.695094
\(120\) 0 0
\(121\) 1.83485 0.166804
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −7.93725 −0.709930
\(126\) 0 0
\(127\) 18.2342 1.61802 0.809012 0.587792i \(-0.200003\pi\)
0.809012 + 0.587792i \(0.200003\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 3.58258 0.313011 0.156506 0.987677i \(-0.449977\pi\)
0.156506 + 0.987677i \(0.449977\pi\)
\(132\) 0 0
\(133\) 11.1652 0.968141
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.66025 0.739895 0.369948 0.929053i \(-0.379376\pi\)
0.369948 + 0.929053i \(0.379376\pi\)
\(138\) 0 0
\(139\) 8.75560 0.742641 0.371320 0.928505i \(-0.378905\pi\)
0.371320 + 0.928505i \(0.378905\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 23.5826 1.97207
\(144\) 0 0
\(145\) 16.1652 1.34244
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 1.00905 0.0826647 0.0413323 0.999145i \(-0.486840\pi\)
0.0413323 + 0.999145i \(0.486840\pi\)
\(150\) 0 0
\(151\) 12.4104 1.00994 0.504972 0.863136i \(-0.331503\pi\)
0.504972 + 0.863136i \(0.331503\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −23.1652 −1.86067
\(156\) 0 0
\(157\) 20.5826 1.64267 0.821334 0.570447i \(-0.193230\pi\)
0.821334 + 0.570447i \(0.193230\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −33.1950 −2.61613
\(162\) 0 0
\(163\) 3.65480 0.286266 0.143133 0.989703i \(-0.454282\pi\)
0.143133 + 0.989703i \(0.454282\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 15.5826 1.20582 0.602908 0.797811i \(-0.294009\pi\)
0.602908 + 0.797811i \(0.294009\pi\)
\(168\) 0 0
\(169\) 30.3303 2.33310
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 2.45505 0.186654 0.0933270 0.995636i \(-0.470250\pi\)
0.0933270 + 0.995636i \(0.470250\pi\)
\(174\) 0 0
\(175\) −8.75560 −0.661861
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) −2.00000 −0.148659 −0.0743294 0.997234i \(-0.523682\pi\)
−0.0743294 + 0.997234i \(0.523682\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.83285 −0.502361
\(186\) 0 0
\(187\) −6.20520 −0.453769
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −7.58258 −0.548656 −0.274328 0.961636i \(-0.588455\pi\)
−0.274328 + 0.961636i \(0.588455\pi\)
\(192\) 0 0
\(193\) −12.1652 −0.875667 −0.437833 0.899056i \(-0.644254\pi\)
−0.437833 + 0.899056i \(0.644254\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.6748 −1.04553 −0.522767 0.852476i \(-0.675100\pi\)
−0.522767 + 0.852476i \(0.675100\pi\)
\(198\) 0 0
\(199\) 17.5112 1.24134 0.620668 0.784073i \(-0.286861\pi\)
0.620668 + 0.784073i \(0.286861\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −26.7477 −1.87732
\(204\) 0 0
\(205\) 4.83485 0.337680
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −9.13701 −0.632020
\(210\) 0 0
\(211\) 11.3060 0.778338 0.389169 0.921166i \(-0.372762\pi\)
0.389169 + 0.921166i \(0.372762\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.74773 0.460191
\(216\) 0 0
\(217\) 38.3303 2.60203
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −11.4014 −0.766938
\(222\) 0 0
\(223\) −16.7882 −1.12422 −0.562111 0.827062i \(-0.690011\pi\)
−0.562111 + 0.827062i \(0.690011\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 10.7477 0.713352 0.356676 0.934228i \(-0.383910\pi\)
0.356676 + 0.934228i \(0.383910\pi\)
\(228\) 0 0
\(229\) −3.74773 −0.247657 −0.123828 0.992304i \(-0.539517\pi\)
−0.123828 + 0.992304i \(0.539517\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.6784 −0.699562 −0.349781 0.936831i \(-0.613744\pi\)
−0.349781 + 0.936831i \(0.613744\pi\)
\(234\) 0 0
\(235\) 21.1660 1.38072
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.83485 −0.571479 −0.285739 0.958307i \(-0.592239\pi\)
−0.285739 + 0.958307i \(0.592239\pi\)
\(240\) 0 0
\(241\) 1.00000 0.0644157 0.0322078 0.999481i \(-0.489746\pi\)
0.0322078 + 0.999481i \(0.489746\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 32.1860 2.05629
\(246\) 0 0
\(247\) −16.7882 −1.06821
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −4.41742 −0.278825 −0.139413 0.990234i \(-0.544521\pi\)
−0.139413 + 0.990234i \(0.544521\pi\)
\(252\) 0 0
\(253\) 27.1652 1.70786
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.55945 0.222033 0.111016 0.993819i \(-0.464589\pi\)
0.111016 + 0.993819i \(0.464589\pi\)
\(258\) 0 0
\(259\) 11.3060 0.702521
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.33030 −0.390343 −0.195172 0.980769i \(-0.562526\pi\)
−0.195172 + 0.980769i \(0.562526\pi\)
\(264\) 0 0
\(265\) 4.83485 0.297002
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.91915 0.360897 0.180449 0.983584i \(-0.442245\pi\)
0.180449 + 0.983584i \(0.442245\pi\)
\(270\) 0 0
\(271\) −13.1334 −0.797798 −0.398899 0.916995i \(-0.630608\pi\)
−0.398899 + 0.916995i \(0.630608\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.16515 0.432075
\(276\) 0 0
\(277\) 20.3303 1.22153 0.610765 0.791812i \(-0.290862\pi\)
0.610765 + 0.791812i \(0.290862\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 24.5348 1.46362 0.731811 0.681508i \(-0.238676\pi\)
0.731811 + 0.681508i \(0.238676\pi\)
\(282\) 0 0
\(283\) −17.5112 −1.04093 −0.520467 0.853882i \(-0.674242\pi\)
−0.520467 + 0.853882i \(0.674242\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.00000 −0.472225
\(288\) 0 0
\(289\) −14.0000 −0.823529
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −14.8655 −0.868449 −0.434225 0.900805i \(-0.642978\pi\)
−0.434225 + 0.900805i \(0.642978\pi\)
\(294\) 0 0
\(295\) −21.1660 −1.23233
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 49.9129 2.88654
\(300\) 0 0
\(301\) −11.1652 −0.643549
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 3.75015 0.214733
\(306\) 0 0
\(307\) −12.4104 −0.708299 −0.354150 0.935189i \(-0.615230\pi\)
−0.354150 + 0.935189i \(0.615230\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 15.1652 0.859937 0.429968 0.902844i \(-0.358525\pi\)
0.429968 + 0.902844i \(0.358525\pi\)
\(312\) 0 0
\(313\) 19.0000 1.07394 0.536972 0.843600i \(-0.319568\pi\)
0.536972 + 0.843600i \(0.319568\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −27.2759 −1.53197 −0.765983 0.642861i \(-0.777747\pi\)
−0.765983 + 0.642861i \(0.777747\pi\)
\(318\) 0 0
\(319\) 21.8890 1.22555
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 4.41742 0.245792
\(324\) 0 0
\(325\) 13.1652 0.730271
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −35.0224 −1.93085
\(330\) 0 0
\(331\) 1.10440 0.0607034 0.0303517 0.999539i \(-0.490337\pi\)
0.0303517 + 0.999539i \(0.490337\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.74773 0.368668
\(336\) 0 0
\(337\) 17.1652 0.935045 0.467523 0.883981i \(-0.345147\pi\)
0.467523 + 0.883981i \(0.345147\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −31.3676 −1.69865
\(342\) 0 0
\(343\) −22.6120 −1.22093
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 35.5826 1.91017 0.955086 0.296328i \(-0.0957620\pi\)
0.955086 + 0.296328i \(0.0957620\pi\)
\(348\) 0 0
\(349\) −1.16515 −0.0623691 −0.0311846 0.999514i \(-0.509928\pi\)
−0.0311846 + 0.999514i \(0.509928\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 31.3676 1.66953 0.834765 0.550607i \(-0.185604\pi\)
0.834765 + 0.550607i \(0.185604\pi\)
\(354\) 0 0
\(355\) 1.10440 0.0586155
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −21.9129 −1.15652 −0.578259 0.815853i \(-0.696268\pi\)
−0.578259 + 0.815853i \(0.696268\pi\)
\(360\) 0 0
\(361\) −12.4955 −0.657655
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −16.3115 −0.853781
\(366\) 0 0
\(367\) 26.2668 1.37112 0.685558 0.728018i \(-0.259558\pi\)
0.685558 + 0.728018i \(0.259558\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.00000 −0.415339
\(372\) 0 0
\(373\) −14.0000 −0.724893 −0.362446 0.932005i \(-0.618058\pi\)
−0.362446 + 0.932005i \(0.618058\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 40.2186 2.07136
\(378\) 0 0
\(379\) 5.10080 0.262011 0.131005 0.991382i \(-0.458180\pi\)
0.131005 + 0.991382i \(0.458180\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 15.5826 0.796232 0.398116 0.917335i \(-0.369664\pi\)
0.398116 + 0.917335i \(0.369664\pi\)
\(384\) 0 0
\(385\) −41.4955 −2.11480
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 33.1950 1.68305 0.841527 0.540215i \(-0.181657\pi\)
0.841527 + 0.540215i \(0.181657\pi\)
\(390\) 0 0
\(391\) −13.1334 −0.664185
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −25.0780 −1.26181
\(396\) 0 0
\(397\) −17.7477 −0.890733 −0.445366 0.895348i \(-0.646927\pi\)
−0.445366 + 0.895348i \(0.646927\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −0.0953502 −0.00476156 −0.00238078 0.999997i \(-0.500758\pi\)
−0.00238078 + 0.999997i \(0.500758\pi\)
\(402\) 0 0
\(403\) −57.6344 −2.87098
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.25227 −0.458618
\(408\) 0 0
\(409\) 16.1652 0.799315 0.399658 0.916664i \(-0.369129\pi\)
0.399658 + 0.916664i \(0.369129\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 35.0224 1.72334
\(414\) 0 0
\(415\) −40.1232 −1.96957
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −7.16515 −0.350041 −0.175020 0.984565i \(-0.555999\pi\)
−0.175020 + 0.984565i \(0.555999\pi\)
\(420\) 0 0
\(421\) −0.582576 −0.0283930 −0.0141965 0.999899i \(-0.504519\pi\)
−0.0141965 + 0.999899i \(0.504519\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.46410 −0.168034
\(426\) 0 0
\(427\) −6.20520 −0.300291
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −39.1652 −1.88652 −0.943259 0.332057i \(-0.892258\pi\)
−0.943259 + 0.332057i \(0.892258\pi\)
\(432\) 0 0
\(433\) −23.3303 −1.12118 −0.560591 0.828093i \(-0.689426\pi\)
−0.560591 + 0.828093i \(0.689426\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −19.3386 −0.925091
\(438\) 0 0
\(439\) 21.1660 1.01020 0.505099 0.863061i \(-0.331456\pi\)
0.505099 + 0.863061i \(0.331456\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −36.6606 −1.74180 −0.870899 0.491462i \(-0.836463\pi\)
−0.870899 + 0.491462i \(0.836463\pi\)
\(444\) 0 0
\(445\) 32.5826 1.54456
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −29.5402 −1.39409 −0.697044 0.717028i \(-0.745502\pi\)
−0.697044 + 0.717028i \(0.745502\pi\)
\(450\) 0 0
\(451\) 6.54680 0.308277
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −76.2432 −3.57434
\(456\) 0 0
\(457\) 8.16515 0.381950 0.190975 0.981595i \(-0.438835\pi\)
0.190975 + 0.981595i \(0.438835\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 5.48220 0.255332 0.127666 0.991817i \(-0.459251\pi\)
0.127666 + 0.991817i \(0.459251\pi\)
\(462\) 0 0
\(463\) 3.65480 0.169853 0.0849265 0.996387i \(-0.472934\pi\)
0.0849265 + 0.996387i \(0.472934\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −0.834849 −0.0386322 −0.0193161 0.999813i \(-0.506149\pi\)
−0.0193161 + 0.999813i \(0.506149\pi\)
\(468\) 0 0
\(469\) −11.1652 −0.515559
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.13701 0.420120
\(474\) 0 0
\(475\) −5.10080 −0.234041
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 22.7477 1.03937 0.519685 0.854358i \(-0.326049\pi\)
0.519685 + 0.854358i \(0.326049\pi\)
\(480\) 0 0
\(481\) −17.0000 −0.775133
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −13.6657 −0.620528
\(486\) 0 0
\(487\) −18.9572 −0.859033 −0.429517 0.903059i \(-0.641316\pi\)
−0.429517 + 0.903059i \(0.641316\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.58258 0.161679 0.0808397 0.996727i \(-0.474240\pi\)
0.0808397 + 0.996727i \(0.474240\pi\)
\(492\) 0 0
\(493\) −10.5826 −0.476615
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −1.82740 −0.0819701
\(498\) 0 0
\(499\) −33.9180 −1.51838 −0.759189 0.650870i \(-0.774404\pi\)
−0.759189 + 0.650870i \(0.774404\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −15.1652 −0.676181 −0.338090 0.941114i \(-0.609781\pi\)
−0.338090 + 0.941114i \(0.609781\pi\)
\(504\) 0 0
\(505\) 36.6606 1.63138
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 33.1950 1.47134 0.735672 0.677338i \(-0.236867\pi\)
0.735672 + 0.677338i \(0.236867\pi\)
\(510\) 0 0
\(511\) 26.9898 1.19396
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 32.8348 1.44688
\(516\) 0 0
\(517\) 28.6606 1.26049
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −5.48220 −0.240180 −0.120090 0.992763i \(-0.538318\pi\)
−0.120090 + 0.992763i \(0.538318\pi\)
\(522\) 0 0
\(523\) 21.5076 0.940462 0.470231 0.882543i \(-0.344171\pi\)
0.470231 + 0.882543i \(0.344171\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15.1652 0.660604
\(528\) 0 0
\(529\) 34.4955 1.49980
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 12.0290 0.521034
\(534\) 0 0
\(535\) 18.9572 0.819592
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 43.5826 1.87723
\(540\) 0 0
\(541\) −2.91288 −0.125234 −0.0626172 0.998038i \(-0.519945\pi\)
−0.0626172 + 0.998038i \(0.519945\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 38.5819 1.65267
\(546\) 0 0
\(547\) −13.8564 −0.592457 −0.296229 0.955117i \(-0.595729\pi\)
−0.296229 + 0.955117i \(0.595729\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −15.5826 −0.663840
\(552\) 0 0
\(553\) 41.4955 1.76457
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 33.8227 1.43311 0.716556 0.697529i \(-0.245717\pi\)
0.716556 + 0.697529i \(0.245717\pi\)
\(558\) 0 0
\(559\) 16.7882 0.710066
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 24.0000 1.01148 0.505740 0.862686i \(-0.331220\pi\)
0.505740 + 0.862686i \(0.331220\pi\)
\(564\) 0 0
\(565\) −50.9129 −2.14192
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −20.6893 −0.867339 −0.433669 0.901072i \(-0.642781\pi\)
−0.433669 + 0.901072i \(0.642781\pi\)
\(570\) 0 0
\(571\) −21.1660 −0.885770 −0.442885 0.896578i \(-0.646045\pi\)
−0.442885 + 0.896578i \(0.646045\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 15.1652 0.632431
\(576\) 0 0
\(577\) 18.1652 0.756225 0.378113 0.925760i \(-0.376573\pi\)
0.378113 + 0.925760i \(0.376573\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 66.3900 2.75432
\(582\) 0 0
\(583\) 6.54680 0.271141
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.41742 −0.182327 −0.0911633 0.995836i \(-0.529059\pi\)
−0.0911633 + 0.995836i \(0.529059\pi\)
\(588\) 0 0
\(589\) 22.3303 0.920104
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −12.1244 −0.497888 −0.248944 0.968518i \(-0.580083\pi\)
−0.248944 + 0.968518i \(0.580083\pi\)
\(594\) 0 0
\(595\) 20.0616 0.822446
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −31.1652 −1.27337 −0.636687 0.771123i \(-0.719696\pi\)
−0.636687 + 0.771123i \(0.719696\pi\)
\(600\) 0 0
\(601\) −14.4955 −0.591282 −0.295641 0.955299i \(-0.595533\pi\)
−0.295641 + 0.955299i \(0.595533\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.85455 0.197366
\(606\) 0 0
\(607\) 30.6446 1.24383 0.621913 0.783086i \(-0.286356\pi\)
0.621913 + 0.783086i \(0.286356\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 52.6606 2.13042
\(612\) 0 0
\(613\) −30.0000 −1.21169 −0.605844 0.795583i \(-0.707165\pi\)
−0.605844 + 0.795583i \(0.707165\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −10.6784 −0.429894 −0.214947 0.976626i \(-0.568958\pi\)
−0.214947 + 0.976626i \(0.568958\pi\)
\(618\) 0 0
\(619\) 40.1232 1.61269 0.806344 0.591447i \(-0.201443\pi\)
0.806344 + 0.591447i \(0.201443\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −53.9129 −2.15997
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.47315 0.178356
\(630\) 0 0
\(631\) −22.6120 −0.900170 −0.450085 0.892986i \(-0.648606\pi\)
−0.450085 + 0.892986i \(0.648606\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 48.2432 1.91447
\(636\) 0 0
\(637\) 80.0780 3.17281
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 19.2433 0.760063 0.380032 0.924974i \(-0.375913\pi\)
0.380032 + 0.924974i \(0.375913\pi\)
\(642\) 0 0
\(643\) 26.2668 1.03586 0.517931 0.855422i \(-0.326702\pi\)
0.517931 + 0.855422i \(0.326702\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13.9129 0.546972 0.273486 0.961876i \(-0.411823\pi\)
0.273486 + 0.961876i \(0.411823\pi\)
\(648\) 0 0
\(649\) −28.6606 −1.12503
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −25.8854 −1.01297 −0.506487 0.862247i \(-0.669056\pi\)
−0.506487 + 0.862247i \(0.669056\pi\)
\(654\) 0 0
\(655\) 9.47860 0.370360
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 34.7477 1.35358 0.676790 0.736176i \(-0.263371\pi\)
0.676790 + 0.736176i \(0.263371\pi\)
\(660\) 0 0
\(661\) 11.7477 0.456934 0.228467 0.973552i \(-0.426629\pi\)
0.228467 + 0.973552i \(0.426629\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 29.5402 1.14552
\(666\) 0 0
\(667\) 46.3284 1.79384
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 5.07803 0.196035
\(672\) 0 0
\(673\) −21.8348 −0.841672 −0.420836 0.907137i \(-0.638263\pi\)
−0.420836 + 0.907137i \(0.638263\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −36.8498 −1.41625 −0.708127 0.706085i \(-0.750459\pi\)
−0.708127 + 0.706085i \(0.750459\pi\)
\(678\) 0 0
\(679\) 22.6120 0.867769
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 0 0
\(685\) 22.9129 0.875456
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.0290 0.458269
\(690\) 0 0
\(691\) −16.4068 −0.624144 −0.312072 0.950058i \(-0.601023\pi\)
−0.312072 + 0.950058i \(0.601023\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 23.1652 0.878704
\(696\) 0 0
\(697\) −3.16515 −0.119889
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −27.2759 −1.03020 −0.515098 0.857132i \(-0.672244\pi\)
−0.515098 + 0.857132i \(0.672244\pi\)
\(702\) 0 0
\(703\) 6.58660 0.248418
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −60.6606 −2.28138
\(708\) 0 0
\(709\) −35.7477 −1.34253 −0.671267 0.741216i \(-0.734250\pi\)
−0.671267 + 0.741216i \(0.734250\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −66.3900 −2.48633
\(714\) 0 0
\(715\) 62.3936 2.33339
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.08712 −0.0778365 −0.0389182 0.999242i \(-0.512391\pi\)
−0.0389182 + 0.999242i \(0.512391\pi\)
\(720\) 0 0
\(721\) −54.3303 −2.02337
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 12.2197 0.453828
\(726\) 0 0
\(727\) 0.723000 0.0268146 0.0134073 0.999910i \(-0.495732\pi\)
0.0134073 + 0.999910i \(0.495732\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.41742 −0.163384
\(732\) 0 0
\(733\) −32.3303 −1.19415 −0.597073 0.802187i \(-0.703670\pi\)
−0.597073 + 0.802187i \(0.703670\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.13701 0.336566
\(738\) 0 0
\(739\) 42.3320 1.55721 0.778604 0.627515i \(-0.215928\pi\)
0.778604 + 0.627515i \(0.215928\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 30.3303 1.11271 0.556355 0.830944i \(-0.312199\pi\)
0.556355 + 0.830944i \(0.312199\pi\)
\(744\) 0 0
\(745\) 2.66970 0.0978101
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −31.3676 −1.14615
\(750\) 0 0
\(751\) −20.4430 −0.745976 −0.372988 0.927836i \(-0.621667\pi\)
−0.372988 + 0.927836i \(0.621667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 32.8348 1.19498
\(756\) 0 0
\(757\) −18.0000 −0.654221 −0.327111 0.944986i \(-0.606075\pi\)
−0.327111 + 0.944986i \(0.606075\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.5167 0.816228 0.408114 0.912931i \(-0.366187\pi\)
0.408114 + 0.912931i \(0.366187\pi\)
\(762\) 0 0
\(763\) −63.8396 −2.31115
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −52.6606 −1.90146
\(768\) 0 0
\(769\) 3.83485 0.138288 0.0691441 0.997607i \(-0.477973\pi\)
0.0691441 + 0.997607i \(0.477973\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −37.6682 −1.35483 −0.677415 0.735601i \(-0.736900\pi\)
−0.677415 + 0.735601i \(0.736900\pi\)
\(774\) 0 0
\(775\) −17.5112 −0.629021
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.66061 −0.166984
\(780\) 0 0
\(781\) 1.49545 0.0535116
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 54.4564 1.94363
\(786\) 0 0
\(787\) −32.4720 −1.15750 −0.578751 0.815504i \(-0.696460\pi\)
−0.578751 + 0.815504i \(0.696460\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 84.2432 2.99534
\(792\) 0 0
\(793\) 9.33030 0.331329
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3.02715 −0.107227 −0.0536136 0.998562i \(-0.517074\pi\)
−0.0536136 + 0.998562i \(0.517074\pi\)
\(798\) 0 0
\(799\) −13.8564 −0.490204
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −22.0871 −0.779438
\(804\) 0 0
\(805\) −87.8258 −3.09545
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 34.5457 1.21456 0.607280 0.794488i \(-0.292260\pi\)
0.607280 + 0.794488i \(0.292260\pi\)
\(810\) 0 0
\(811\) 17.5112 0.614902 0.307451 0.951564i \(-0.400524\pi\)
0.307451 + 0.951564i \(0.400524\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9.66970 0.338715
\(816\) 0 0
\(817\) −6.50455 −0.227565
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −16.6929 −0.582585 −0.291292 0.956634i \(-0.594085\pi\)
−0.291292 + 0.956634i \(0.594085\pi\)
\(822\) 0 0
\(823\) −45.2240 −1.57641 −0.788205 0.615413i \(-0.788989\pi\)
−0.788205 + 0.615413i \(0.788989\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 18.7477 0.651922 0.325961 0.945383i \(-0.394312\pi\)
0.325961 + 0.945383i \(0.394312\pi\)
\(828\) 0 0
\(829\) 28.3303 0.983952 0.491976 0.870609i \(-0.336275\pi\)
0.491976 + 0.870609i \(0.336275\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −21.0707 −0.730055
\(834\) 0 0
\(835\) 41.2276 1.42674
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −17.2523 −0.595615 −0.297807 0.954626i \(-0.596255\pi\)
−0.297807 + 0.954626i \(0.596255\pi\)
\(840\) 0 0
\(841\) 8.33030 0.287252
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 80.2464 2.76056
\(846\) 0 0
\(847\) −8.03260 −0.276004
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −19.5826 −0.671282
\(852\) 0 0
\(853\) −36.3303 −1.24393 −0.621963 0.783047i \(-0.713665\pi\)
−0.621963 + 0.783047i \(0.713665\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −34.7364 −1.18657 −0.593286 0.804992i \(-0.702170\pi\)
−0.593286 + 0.804992i \(0.702170\pi\)
\(858\) 0 0
\(859\) −6.54680 −0.223374 −0.111687 0.993743i \(-0.535625\pi\)
−0.111687 + 0.993743i \(0.535625\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −51.4083 −1.74996 −0.874980 0.484159i \(-0.839126\pi\)
−0.874980 + 0.484159i \(0.839126\pi\)
\(864\) 0 0
\(865\) 6.49545 0.220852
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −33.9578 −1.15194
\(870\) 0 0
\(871\) 16.7882 0.568847
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 34.7477 1.17469
\(876\) 0 0
\(877\) −24.0780 −0.813057 −0.406529 0.913638i \(-0.633261\pi\)
−0.406529 + 0.913638i \(0.633261\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −33.1950 −1.11837 −0.559184 0.829043i \(-0.688886\pi\)
−0.559184 + 0.829043i \(0.688886\pi\)
\(882\) 0 0
\(883\) −43.7780 −1.47325 −0.736624 0.676303i \(-0.763581\pi\)
−0.736624 + 0.676303i \(0.763581\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.4174 −0.551243 −0.275622 0.961266i \(-0.588884\pi\)
−0.275622 + 0.961266i \(0.588884\pi\)
\(888\) 0 0
\(889\) −79.8258 −2.67727
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −20.4032 −0.682767
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −53.4955 −1.78417
\(900\) 0 0
\(901\) −3.16515 −0.105446
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.29150 −0.175895
\(906\) 0 0
\(907\) 29.9216 0.993531 0.496765 0.867885i \(-0.334521\pi\)
0.496765 + 0.867885i \(0.334521\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 31.5826 1.04638 0.523189 0.852217i \(-0.324742\pi\)
0.523189 + 0.852217i \(0.324742\pi\)
\(912\) 0 0
\(913\) −54.3303 −1.79807
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −15.6838 −0.517925
\(918\) 0 0
\(919\) 14.5794 0.480930 0.240465 0.970658i \(-0.422700\pi\)
0.240465 + 0.970658i \(0.422700\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.74773 0.0904425
\(924\) 0 0
\(925\) −5.16515 −0.169829
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −15.5885 −0.511441 −0.255720 0.966751i \(-0.582313\pi\)
−0.255720 + 0.966751i \(0.582313\pi\)
\(930\) 0 0
\(931\) −31.0260 −1.01684
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −16.4174 −0.536907
\(936\) 0 0
\(937\) −16.1652 −0.528092 −0.264046 0.964510i \(-0.585057\pi\)
−0.264046 + 0.964510i \(0.585057\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −28.9126 −0.942523 −0.471261 0.881994i \(-0.656201\pi\)
−0.471261 + 0.881994i \(0.656201\pi\)
\(942\) 0 0
\(943\) 13.8564 0.451227
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17.0780 −0.554961 −0.277481 0.960731i \(-0.589499\pi\)
−0.277481 + 0.960731i \(0.589499\pi\)
\(948\) 0 0
\(949\) −40.5826 −1.31737
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 17.0345 0.551800 0.275900 0.961186i \(-0.411024\pi\)
0.275900 + 0.961186i \(0.411024\pi\)
\(954\) 0 0
\(955\) −20.0616 −0.649178
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −37.9129 −1.22427
\(960\) 0 0
\(961\) 45.6606 1.47292
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −32.1860 −1.03610
\(966\) 0 0
\(967\) −14.5794 −0.468842 −0.234421 0.972135i \(-0.575319\pi\)
−0.234421 + 0.972135i \(0.575319\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −26.7477 −0.858375 −0.429188 0.903215i \(-0.641200\pi\)
−0.429188 + 0.903215i \(0.641200\pi\)
\(972\) 0 0
\(973\) −38.3303 −1.22881
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 29.5402 0.945075 0.472538 0.881311i \(-0.343338\pi\)
0.472538 + 0.881311i \(0.343338\pi\)
\(978\) 0 0
\(979\) 44.1196 1.41007
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 2.50455 0.0798826 0.0399413 0.999202i \(-0.487283\pi\)
0.0399413 + 0.999202i \(0.487283\pi\)
\(984\) 0 0
\(985\) −38.8258 −1.23709
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 19.3386 0.614932
\(990\) 0 0
\(991\) 18.2342 0.579229 0.289614 0.957143i \(-0.406473\pi\)
0.289614 + 0.957143i \(0.406473\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 46.3303 1.46877
\(996\) 0 0
\(997\) −37.7477 −1.19548 −0.597741 0.801689i \(-0.703935\pi\)
−0.597741 + 0.801689i \(0.703935\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5184.2.a.cd.1.3 4
3.2 odd 2 5184.2.a.ce.1.1 4
4.3 odd 2 5184.2.a.ce.1.4 4
8.3 odd 2 2592.2.a.v.1.2 4
8.5 even 2 2592.2.a.w.1.1 yes 4
12.11 even 2 inner 5184.2.a.cd.1.2 4
24.5 odd 2 2592.2.a.v.1.3 yes 4
24.11 even 2 2592.2.a.w.1.4 yes 4
72.5 odd 6 2592.2.i.bh.865.2 8
72.11 even 6 2592.2.i.bg.1729.1 8
72.13 even 6 2592.2.i.bg.865.4 8
72.29 odd 6 2592.2.i.bh.1729.2 8
72.43 odd 6 2592.2.i.bh.1729.3 8
72.59 even 6 2592.2.i.bg.865.1 8
72.61 even 6 2592.2.i.bg.1729.4 8
72.67 odd 6 2592.2.i.bh.865.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2592.2.a.v.1.2 4 8.3 odd 2
2592.2.a.v.1.3 yes 4 24.5 odd 2
2592.2.a.w.1.1 yes 4 8.5 even 2
2592.2.a.w.1.4 yes 4 24.11 even 2
2592.2.i.bg.865.1 8 72.59 even 6
2592.2.i.bg.865.4 8 72.13 even 6
2592.2.i.bg.1729.1 8 72.11 even 6
2592.2.i.bg.1729.4 8 72.61 even 6
2592.2.i.bh.865.2 8 72.5 odd 6
2592.2.i.bh.865.3 8 72.67 odd 6
2592.2.i.bh.1729.2 8 72.29 odd 6
2592.2.i.bh.1729.3 8 72.43 odd 6
5184.2.a.cd.1.2 4 12.11 even 2 inner
5184.2.a.cd.1.3 4 1.1 even 1 trivial
5184.2.a.ce.1.1 4 3.2 odd 2
5184.2.a.ce.1.4 4 4.3 odd 2