Properties

Label 52.2.f.b.47.4
Level $52$
Weight $2$
Character 52.47
Analytic conductor $0.415$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [52,2,Mod(31,52)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(52, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("52.31");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 52.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.415222090511\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.18939904.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 47.4
Root \(0.500000 - 0.691860i\) of defining polynomial
Character \(\chi\) \(=\) 52.47
Dual form 52.2.f.b.31.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.842772 - 1.13567i) q^{2} +2.79793i q^{3} +(-0.579471 - 1.91421i) q^{4} +(-0.707107 - 0.707107i) q^{5} +(3.17751 + 2.35802i) q^{6} +(-1.97844 - 1.97844i) q^{7} +(-2.66227 - 0.955161i) q^{8} -4.82843 q^{9} +(-1.39897 + 0.207107i) q^{10} +(1.15894 + 1.15894i) q^{11} +(5.35584 - 1.62132i) q^{12} +(3.53553 + 0.707107i) q^{13} +(-3.91421 + 0.579471i) q^{14} +(1.97844 - 1.97844i) q^{15} +(-3.32843 + 2.21846i) q^{16} +5.82843i q^{17} +(-4.06926 + 5.48348i) q^{18} +(1.63899 - 1.63899i) q^{19} +(-0.943806 + 1.76330i) q^{20} +(5.53553 - 5.53553i) q^{21} +(2.29289 - 0.339446i) q^{22} -3.95687 q^{23} +(2.67248 - 7.44885i) q^{24} -4.00000i q^{25} +(3.78269 - 3.41925i) q^{26} -5.11582i q^{27} +(-2.64070 + 4.93360i) q^{28} -0.585786 q^{29} +(-0.579471 - 3.91421i) q^{30} +(3.95687 - 3.95687i) q^{31} +(-0.285675 + 5.64964i) q^{32} +(-3.24264 + 3.24264i) q^{33} +(6.61914 + 4.91203i) q^{34} +2.79793i q^{35} +(2.79793 + 9.24264i) q^{36} +(-1.87868 + 1.87868i) q^{37} +(-0.480049 - 3.24264i) q^{38} +(-1.97844 + 9.89219i) q^{39} +(1.20711 + 2.55791i) q^{40} +(-4.24264 - 4.24264i) q^{41} +(-1.62132 - 10.9517i) q^{42} +5.11582 q^{43} +(1.54689 - 2.89003i) q^{44} +(3.41421 + 3.41421i) q^{45} +(-3.33474 + 4.49368i) q^{46} +(1.97844 + 1.97844i) q^{47} +(-6.20711 - 9.31271i) q^{48} +0.828427i q^{49} +(-4.54266 - 3.37109i) q^{50} -16.3075 q^{51} +(-0.695185 - 7.17751i) q^{52} -0.242641 q^{53} +(-5.80985 - 4.31147i) q^{54} -1.63899i q^{55} +(3.37740 + 7.15685i) q^{56} +(4.58579 + 4.58579i) q^{57} +(-0.493684 + 0.665257i) q^{58} +(-2.31788 - 2.31788i) q^{59} +(-4.93360 - 2.64070i) q^{60} +0.828427 q^{61} +(-1.15894 - 7.82843i) q^{62} +(9.55274 + 9.55274i) q^{63} +(6.17534 + 5.08579i) q^{64} +(-2.00000 - 3.00000i) q^{65} +(0.949747 + 6.41536i) q^{66} +(-2.79793 + 2.79793i) q^{67} +(11.1569 - 3.37740i) q^{68} -11.0711i q^{69} +(3.17751 + 2.35802i) q^{70} +(-5.25642 + 5.25642i) q^{71} +(12.8546 + 4.61192i) q^{72} +(-9.65685 + 9.65685i) q^{73} +(0.550253 + 3.71685i) q^{74} +11.1917 q^{75} +(-4.08713 - 2.18763i) q^{76} -4.58579i q^{77} +(9.56684 + 10.5837i) q^{78} -9.55274i q^{79} +(3.92224 + 0.784864i) q^{80} -0.171573 q^{81} +(-8.39380 + 1.24264i) q^{82} +(6.75481 - 6.75481i) q^{83} +(-13.8039 - 7.38851i) q^{84} +(4.12132 - 4.12132i) q^{85} +(4.31147 - 5.80985i) q^{86} -1.63899i q^{87} +(-1.97844 - 4.19239i) q^{88} +(6.24264 - 6.24264i) q^{89} +(6.75481 - 1.00000i) q^{90} +(-5.59587 - 8.39380i) q^{91} +(2.29289 + 7.57430i) q^{92} +(11.0711 + 11.0711i) q^{93} +(3.91421 - 0.579471i) q^{94} -2.31788 q^{95} +(-15.8073 - 0.799300i) q^{96} +(0.414214 + 0.414214i) q^{97} +(0.940816 + 0.698175i) q^{98} +(-5.59587 - 5.59587i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 8 q^{6} - 4 q^{8} - 16 q^{9} - 20 q^{14} - 4 q^{16} - 8 q^{20} + 16 q^{21} + 24 q^{22} + 32 q^{24} + 8 q^{26} + 12 q^{28} - 16 q^{29} - 4 q^{32} + 8 q^{33} + 4 q^{34} - 32 q^{37} + 4 q^{40}+ \cdots - 16 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/52\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.842772 1.13567i 0.595930 0.803037i
\(3\) 2.79793i 1.61539i 0.589602 + 0.807694i \(0.299284\pi\)
−0.589602 + 0.807694i \(0.700716\pi\)
\(4\) −0.579471 1.91421i −0.289735 0.957107i
\(5\) −0.707107 0.707107i −0.316228 0.316228i 0.531089 0.847316i \(-0.321783\pi\)
−0.847316 + 0.531089i \(0.821783\pi\)
\(6\) 3.17751 + 2.35802i 1.29721 + 0.962657i
\(7\) −1.97844 1.97844i −0.747779 0.747779i 0.226283 0.974062i \(-0.427343\pi\)
−0.974062 + 0.226283i \(0.927343\pi\)
\(8\) −2.66227 0.955161i −0.941254 0.337700i
\(9\) −4.82843 −1.60948
\(10\) −1.39897 + 0.207107i −0.442392 + 0.0654929i
\(11\) 1.15894 + 1.15894i 0.349434 + 0.349434i 0.859899 0.510465i \(-0.170527\pi\)
−0.510465 + 0.859899i \(0.670527\pi\)
\(12\) 5.35584 1.62132i 1.54610 0.468035i
\(13\) 3.53553 + 0.707107i 0.980581 + 0.196116i
\(14\) −3.91421 + 0.579471i −1.04612 + 0.154870i
\(15\) 1.97844 1.97844i 0.510830 0.510830i
\(16\) −3.32843 + 2.21846i −0.832107 + 0.554615i
\(17\) 5.82843i 1.41360i 0.707413 + 0.706801i \(0.249862\pi\)
−0.707413 + 0.706801i \(0.750138\pi\)
\(18\) −4.06926 + 5.48348i −0.959134 + 1.29247i
\(19\) 1.63899 1.63899i 0.376010 0.376010i −0.493650 0.869661i \(-0.664338\pi\)
0.869661 + 0.493650i \(0.164338\pi\)
\(20\) −0.943806 + 1.76330i −0.211041 + 0.394286i
\(21\) 5.53553 5.53553i 1.20795 1.20795i
\(22\) 2.29289 0.339446i 0.488846 0.0723702i
\(23\) −3.95687 −0.825065 −0.412533 0.910943i \(-0.635356\pi\)
−0.412533 + 0.910943i \(0.635356\pi\)
\(24\) 2.67248 7.44885i 0.545517 1.52049i
\(25\) 4.00000i 0.800000i
\(26\) 3.78269 3.41925i 0.741846 0.670571i
\(27\) 5.11582i 0.984539i
\(28\) −2.64070 + 4.93360i −0.499046 + 0.932362i
\(29\) −0.585786 −0.108778 −0.0543889 0.998520i \(-0.517321\pi\)
−0.0543889 + 0.998520i \(0.517321\pi\)
\(30\) −0.579471 3.91421i −0.105796 0.714634i
\(31\) 3.95687 3.95687i 0.710676 0.710676i −0.256001 0.966677i \(-0.582405\pi\)
0.966677 + 0.256001i \(0.0824050\pi\)
\(32\) −0.285675 + 5.64964i −0.0505007 + 0.998724i
\(33\) −3.24264 + 3.24264i −0.564471 + 0.564471i
\(34\) 6.61914 + 4.91203i 1.13517 + 0.842407i
\(35\) 2.79793i 0.472937i
\(36\) 2.79793 + 9.24264i 0.466322 + 1.54044i
\(37\) −1.87868 + 1.87868i −0.308853 + 0.308853i −0.844465 0.535611i \(-0.820081\pi\)
0.535611 + 0.844465i \(0.320081\pi\)
\(38\) −0.480049 3.24264i −0.0778743 0.526026i
\(39\) −1.97844 + 9.89219i −0.316803 + 1.58402i
\(40\) 1.20711 + 2.55791i 0.190860 + 0.404441i
\(41\) −4.24264 4.24264i −0.662589 0.662589i 0.293400 0.955990i \(-0.405213\pi\)
−0.955990 + 0.293400i \(0.905213\pi\)
\(42\) −1.62132 10.9517i −0.250175 1.68988i
\(43\) 5.11582 0.780155 0.390077 0.920782i \(-0.372448\pi\)
0.390077 + 0.920782i \(0.372448\pi\)
\(44\) 1.54689 2.89003i 0.233202 0.435689i
\(45\) 3.41421 + 3.41421i 0.508961 + 0.508961i
\(46\) −3.33474 + 4.49368i −0.491681 + 0.662558i
\(47\) 1.97844 + 1.97844i 0.288585 + 0.288585i 0.836520 0.547936i \(-0.184586\pi\)
−0.547936 + 0.836520i \(0.684586\pi\)
\(48\) −6.20711 9.31271i −0.895919 1.34417i
\(49\) 0.828427i 0.118347i
\(50\) −4.54266 3.37109i −0.642429 0.476744i
\(51\) −16.3075 −2.28351
\(52\) −0.695185 7.17751i −0.0964049 0.995342i
\(53\) −0.242641 −0.0333293 −0.0166646 0.999861i \(-0.505305\pi\)
−0.0166646 + 0.999861i \(0.505305\pi\)
\(54\) −5.80985 4.31147i −0.790621 0.586716i
\(55\) 1.63899i 0.221002i
\(56\) 3.37740 + 7.15685i 0.451325 + 0.956375i
\(57\) 4.58579 + 4.58579i 0.607402 + 0.607402i
\(58\) −0.493684 + 0.665257i −0.0648239 + 0.0873526i
\(59\) −2.31788 2.31788i −0.301763 0.301763i 0.539940 0.841703i \(-0.318447\pi\)
−0.841703 + 0.539940i \(0.818447\pi\)
\(60\) −4.93360 2.64070i −0.636925 0.340914i
\(61\) 0.828427 0.106069 0.0530346 0.998593i \(-0.483111\pi\)
0.0530346 + 0.998593i \(0.483111\pi\)
\(62\) −1.15894 7.82843i −0.147186 0.994211i
\(63\) 9.55274 + 9.55274i 1.20353 + 1.20353i
\(64\) 6.17534 + 5.08579i 0.771917 + 0.635723i
\(65\) −2.00000 3.00000i −0.248069 0.372104i
\(66\) 0.949747 + 6.41536i 0.116906 + 0.789676i
\(67\) −2.79793 + 2.79793i −0.341822 + 0.341822i −0.857052 0.515230i \(-0.827706\pi\)
0.515230 + 0.857052i \(0.327706\pi\)
\(68\) 11.1569 3.37740i 1.35297 0.409570i
\(69\) 11.0711i 1.33280i
\(70\) 3.17751 + 2.35802i 0.379786 + 0.281837i
\(71\) −5.25642 + 5.25642i −0.623822 + 0.623822i −0.946507 0.322684i \(-0.895415\pi\)
0.322684 + 0.946507i \(0.395415\pi\)
\(72\) 12.8546 + 4.61192i 1.51492 + 0.543520i
\(73\) −9.65685 + 9.65685i −1.13025 + 1.13025i −0.140114 + 0.990135i \(0.544747\pi\)
−0.990135 + 0.140114i \(0.955253\pi\)
\(74\) 0.550253 + 3.71685i 0.0639656 + 0.432075i
\(75\) 11.1917 1.29231
\(76\) −4.08713 2.18763i −0.468826 0.250939i
\(77\) 4.58579i 0.522599i
\(78\) 9.56684 + 10.5837i 1.08323 + 1.19837i
\(79\) 9.55274i 1.07477i −0.843338 0.537384i \(-0.819413\pi\)
0.843338 0.537384i \(-0.180587\pi\)
\(80\) 3.92224 + 0.784864i 0.438520 + 0.0877505i
\(81\) −0.171573 −0.0190637
\(82\) −8.39380 + 1.24264i −0.926940 + 0.137227i
\(83\) 6.75481 6.75481i 0.741436 0.741436i −0.231418 0.972854i \(-0.574337\pi\)
0.972854 + 0.231418i \(0.0743365\pi\)
\(84\) −13.8039 7.38851i −1.50613 0.806153i
\(85\) 4.12132 4.12132i 0.447020 0.447020i
\(86\) 4.31147 5.80985i 0.464917 0.626493i
\(87\) 1.63899i 0.175718i
\(88\) −1.97844 4.19239i −0.210902 0.446910i
\(89\) 6.24264 6.24264i 0.661719 0.661719i −0.294066 0.955785i \(-0.595009\pi\)
0.955785 + 0.294066i \(0.0950087\pi\)
\(90\) 6.75481 1.00000i 0.712019 0.105409i
\(91\) −5.59587 8.39380i −0.586606 0.879909i
\(92\) 2.29289 + 7.57430i 0.239051 + 0.789676i
\(93\) 11.0711 + 11.0711i 1.14802 + 1.14802i
\(94\) 3.91421 0.579471i 0.403720 0.0597679i
\(95\) −2.31788 −0.237810
\(96\) −15.8073 0.799300i −1.61333 0.0815782i
\(97\) 0.414214 + 0.414214i 0.0420570 + 0.0420570i 0.727823 0.685766i \(-0.240532\pi\)
−0.685766 + 0.727823i \(0.740532\pi\)
\(98\) 0.940816 + 0.698175i 0.0950368 + 0.0705263i
\(99\) −5.59587 5.59587i −0.562406 0.562406i
\(100\) −7.65685 + 2.31788i −0.765685 + 0.231788i
\(101\) 10.8284i 1.07747i 0.842476 + 0.538734i \(0.181097\pi\)
−0.842476 + 0.538734i \(0.818903\pi\)
\(102\) −13.7435 + 18.5199i −1.36081 + 1.83374i
\(103\) 4.91697 0.484484 0.242242 0.970216i \(-0.422117\pi\)
0.242242 + 0.970216i \(0.422117\pi\)
\(104\) −8.73714 5.25951i −0.856747 0.515737i
\(105\) −7.82843 −0.763976
\(106\) −0.204491 + 0.275559i −0.0198619 + 0.0267646i
\(107\) 10.2316i 0.989129i 0.869141 + 0.494565i \(0.164672\pi\)
−0.869141 + 0.494565i \(0.835328\pi\)
\(108\) −9.79276 + 2.96447i −0.942309 + 0.285256i
\(109\) −4.70711 4.70711i −0.450859 0.450859i 0.444781 0.895640i \(-0.353282\pi\)
−0.895640 + 0.444781i \(0.853282\pi\)
\(110\) −1.86135 1.38130i −0.177472 0.131701i
\(111\) −5.25642 5.25642i −0.498917 0.498917i
\(112\) 10.9742 + 2.19600i 1.03696 + 0.207502i
\(113\) 15.3137 1.44059 0.720296 0.693667i \(-0.244006\pi\)
0.720296 + 0.693667i \(0.244006\pi\)
\(114\) 9.07269 1.34315i 0.849735 0.125797i
\(115\) 2.79793 + 2.79793i 0.260909 + 0.260909i
\(116\) 0.339446 + 1.12132i 0.0315168 + 0.104112i
\(117\) −17.0711 3.41421i −1.57822 0.315644i
\(118\) −4.58579 + 0.678892i −0.422156 + 0.0624971i
\(119\) 11.5312 11.5312i 1.05706 1.05706i
\(120\) −7.15685 + 3.37740i −0.653328 + 0.308313i
\(121\) 8.31371i 0.755792i
\(122\) 0.698175 0.940816i 0.0632098 0.0851775i
\(123\) 11.8706 11.8706i 1.07034 1.07034i
\(124\) −9.86720 5.28141i −0.886100 0.474285i
\(125\) −6.36396 + 6.36396i −0.569210 + 0.569210i
\(126\) 18.8995 2.79793i 1.68370 0.249260i
\(127\) −18.4266 −1.63510 −0.817548 0.575861i \(-0.804667\pi\)
−0.817548 + 0.575861i \(0.804667\pi\)
\(128\) 10.9802 2.72696i 0.970517 0.241031i
\(129\) 14.3137i 1.26025i
\(130\) −5.09254 0.256986i −0.446645 0.0225391i
\(131\) 10.7117i 0.935884i 0.883759 + 0.467942i \(0.155004\pi\)
−0.883759 + 0.467942i \(0.844996\pi\)
\(132\) 8.08612 + 4.32809i 0.703807 + 0.376712i
\(133\) −6.48528 −0.562345
\(134\) 0.819496 + 5.53553i 0.0707936 + 0.478197i
\(135\) −3.61743 + 3.61743i −0.311339 + 0.311339i
\(136\) 5.56708 15.5168i 0.477374 1.33056i
\(137\) 8.65685 8.65685i 0.739605 0.739605i −0.232897 0.972502i \(-0.574820\pi\)
0.972502 + 0.232897i \(0.0748204\pi\)
\(138\) −12.5730 9.33039i −1.07029 0.794255i
\(139\) 21.9034i 1.85782i 0.370302 + 0.928912i \(0.379254\pi\)
−0.370302 + 0.928912i \(0.620746\pi\)
\(140\) 5.35584 1.62132i 0.452651 0.137027i
\(141\) −5.53553 + 5.53553i −0.466176 + 0.466176i
\(142\) 1.53957 + 10.3995i 0.129198 + 0.872706i
\(143\) 3.27798 + 4.91697i 0.274119 + 0.411178i
\(144\) 16.0711 10.7117i 1.33926 0.892640i
\(145\) 0.414214 + 0.414214i 0.0343986 + 0.0343986i
\(146\) 2.82843 + 19.1055i 0.234082 + 1.58118i
\(147\) −2.31788 −0.191176
\(148\) 4.68483 + 2.50755i 0.385091 + 0.206120i
\(149\) −6.48528 6.48528i −0.531295 0.531295i 0.389663 0.920958i \(-0.372592\pi\)
−0.920958 + 0.389663i \(0.872592\pi\)
\(150\) 9.43208 12.7101i 0.770126 1.03777i
\(151\) 1.29954 + 1.29954i 0.105755 + 0.105755i 0.758005 0.652249i \(-0.226174\pi\)
−0.652249 + 0.758005i \(0.726174\pi\)
\(152\) −5.92893 + 2.79793i −0.480900 + 0.226942i
\(153\) 28.1421i 2.27516i
\(154\) −5.20792 3.86477i −0.419666 0.311432i
\(155\) −5.59587 −0.449471
\(156\) 20.0822 1.94508i 1.60786 0.155731i
\(157\) 12.0000 0.957704 0.478852 0.877896i \(-0.341053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) −10.8487 8.05078i −0.863077 0.640486i
\(159\) 0.678892i 0.0538397i
\(160\) 4.19690 3.79289i 0.331794 0.299855i
\(161\) 7.82843 + 7.82843i 0.616966 + 0.616966i
\(162\) −0.144597 + 0.194849i −0.0113606 + 0.0153088i
\(163\) 10.7117 + 10.7117i 0.839004 + 0.839004i 0.988728 0.149724i \(-0.0478386\pi\)
−0.149724 + 0.988728i \(0.547839\pi\)
\(164\) −5.66283 + 10.5798i −0.442193 + 0.826144i
\(165\) 4.58579 0.357003
\(166\) −1.97844 13.3640i −0.153557 1.03724i
\(167\) −9.55274 9.55274i −0.739213 0.739213i 0.233213 0.972426i \(-0.425076\pi\)
−0.972426 + 0.233213i \(0.925076\pi\)
\(168\) −20.0244 + 9.44975i −1.54492 + 0.729064i
\(169\) 12.0000 + 5.00000i 0.923077 + 0.384615i
\(170\) −1.20711 8.15377i −0.0925809 0.625366i
\(171\) −7.91375 + 7.91375i −0.605179 + 0.605179i
\(172\) −2.96447 9.79276i −0.226038 0.746691i
\(173\) 12.3848i 0.941597i 0.882241 + 0.470799i \(0.156034\pi\)
−0.882241 + 0.470799i \(0.843966\pi\)
\(174\) −1.86135 1.38130i −0.141108 0.104716i
\(175\) −7.91375 + 7.91375i −0.598223 + 0.598223i
\(176\) −6.42852 1.28639i −0.484568 0.0969649i
\(177\) 6.48528 6.48528i 0.487464 0.487464i
\(178\) −1.82843 12.3507i −0.137046 0.925722i
\(179\) 7.43370 0.555621 0.277810 0.960636i \(-0.410391\pi\)
0.277810 + 0.960636i \(0.410391\pi\)
\(180\) 4.55710 8.51397i 0.339666 0.634594i
\(181\) 11.4142i 0.848412i 0.905566 + 0.424206i \(0.139447\pi\)
−0.905566 + 0.424206i \(0.860553\pi\)
\(182\) −14.2486 0.719028i −1.05618 0.0532979i
\(183\) 2.31788i 0.171343i
\(184\) 10.5343 + 3.77945i 0.776596 + 0.278625i
\(185\) 2.65685 0.195336
\(186\) 21.9034 3.24264i 1.60604 0.237762i
\(187\) −6.75481 + 6.75481i −0.493960 + 0.493960i
\(188\) 2.64070 4.93360i 0.192593 0.359820i
\(189\) −10.1213 + 10.1213i −0.736218 + 0.736218i
\(190\) −1.95345 + 2.63234i −0.141718 + 0.190970i
\(191\) 24.0225i 1.73820i −0.494633 0.869102i \(-0.664698\pi\)
0.494633 0.869102i \(-0.335302\pi\)
\(192\) −14.2297 + 17.2782i −1.02694 + 1.24694i
\(193\) −6.07107 + 6.07107i −0.437005 + 0.437005i −0.891003 0.453998i \(-0.849997\pi\)
0.453998 + 0.891003i \(0.349997\pi\)
\(194\) 0.819496 0.121320i 0.0588363 0.00871029i
\(195\) 8.39380 5.59587i 0.601092 0.400728i
\(196\) 1.58579 0.480049i 0.113270 0.0342892i
\(197\) −18.6066 18.6066i −1.32567 1.32567i −0.909111 0.416555i \(-0.863237\pi\)
−0.416555 0.909111i \(-0.636763\pi\)
\(198\) −11.0711 + 1.63899i −0.786787 + 0.116478i
\(199\) 16.5064 1.17011 0.585053 0.810995i \(-0.301074\pi\)
0.585053 + 0.810995i \(0.301074\pi\)
\(200\) −3.82064 + 10.6491i −0.270160 + 0.753003i
\(201\) −7.82843 7.82843i −0.552175 0.552175i
\(202\) 12.2975 + 9.12589i 0.865247 + 0.642096i
\(203\) 1.15894 + 1.15894i 0.0813418 + 0.0813418i
\(204\) 9.44975 + 31.2161i 0.661615 + 2.18557i
\(205\) 6.00000i 0.419058i
\(206\) 4.14389 5.58404i 0.288718 0.389058i
\(207\) 19.1055 1.32792
\(208\) −13.3365 + 5.48989i −0.924717 + 0.380656i
\(209\) 3.79899 0.262782
\(210\) −6.59758 + 8.89047i −0.455276 + 0.613501i
\(211\) 9.75158i 0.671327i −0.941982 0.335663i \(-0.891040\pi\)
0.941982 0.335663i \(-0.108960\pi\)
\(212\) 0.140603 + 0.464466i 0.00965667 + 0.0318997i
\(213\) −14.7071 14.7071i −1.00771 1.00771i
\(214\) 11.6197 + 8.62293i 0.794307 + 0.589452i
\(215\) −3.61743 3.61743i −0.246707 0.246707i
\(216\) −4.88643 + 13.6197i −0.332479 + 0.926701i
\(217\) −15.6569 −1.06286
\(218\) −9.31271 + 1.37868i −0.630737 + 0.0933760i
\(219\) −27.0192 27.0192i −1.82579 1.82579i
\(220\) −3.13738 + 0.949747i −0.211522 + 0.0640320i
\(221\) −4.12132 + 20.6066i −0.277230 + 1.38615i
\(222\) −10.3995 + 1.53957i −0.697968 + 0.103329i
\(223\) −17.8059 + 17.8059i −1.19237 + 1.19237i −0.215975 + 0.976399i \(0.569293\pi\)
−0.976399 + 0.215975i \(0.930707\pi\)
\(224\) 11.7426 10.6123i 0.784588 0.709061i
\(225\) 19.3137i 1.28758i
\(226\) 12.9060 17.3912i 0.858492 1.15685i
\(227\) 12.8307 12.8307i 0.851605 0.851605i −0.138726 0.990331i \(-0.544301\pi\)
0.990331 + 0.138726i \(0.0443007\pi\)
\(228\) 6.12085 11.4355i 0.405363 0.757335i
\(229\) 14.7071 14.7071i 0.971873 0.971873i −0.0277421 0.999615i \(-0.508832\pi\)
0.999615 + 0.0277421i \(0.00883173\pi\)
\(230\) 5.53553 0.819496i 0.365002 0.0540359i
\(231\) 12.8307 0.844200
\(232\) 1.55952 + 0.559520i 0.102388 + 0.0367343i
\(233\) 11.9706i 0.784218i −0.919919 0.392109i \(-0.871746\pi\)
0.919919 0.392109i \(-0.128254\pi\)
\(234\) −18.2644 + 16.5096i −1.19398 + 1.07927i
\(235\) 2.79793i 0.182517i
\(236\) −3.09378 + 5.78007i −0.201388 + 0.376250i
\(237\) 26.7279 1.73617
\(238\) −3.37740 22.8137i −0.218925 1.47879i
\(239\) −8.25319 + 8.25319i −0.533855 + 0.533855i −0.921717 0.387862i \(-0.873214\pi\)
0.387862 + 0.921717i \(0.373214\pi\)
\(240\) −2.19600 + 10.9742i −0.141751 + 0.708380i
\(241\) 13.0711 13.0711i 0.841981 0.841981i −0.147135 0.989116i \(-0.547005\pi\)
0.989116 + 0.147135i \(0.0470052\pi\)
\(242\) −9.44159 7.00656i −0.606928 0.450399i
\(243\) 15.8275i 1.01533i
\(244\) −0.480049 1.58579i −0.0307320 0.101520i
\(245\) 0.585786 0.585786i 0.0374245 0.0374245i
\(246\) −3.47682 23.4853i −0.221674 1.49737i
\(247\) 6.95365 4.63577i 0.442450 0.294967i
\(248\) −14.3137 + 6.75481i −0.908921 + 0.428931i
\(249\) 18.8995 + 18.8995i 1.19771 + 1.19771i
\(250\) 1.86396 + 12.5907i 0.117887 + 0.796306i
\(251\) −18.1454 −1.14533 −0.572663 0.819791i \(-0.694090\pi\)
−0.572663 + 0.819791i \(0.694090\pi\)
\(252\) 12.7504 23.8215i 0.803203 1.50061i
\(253\) −4.58579 4.58579i −0.288306 0.288306i
\(254\) −15.5294 + 20.9264i −0.974402 + 1.31304i
\(255\) 11.5312 + 11.5312i 0.722110 + 0.722110i
\(256\) 6.15685 14.7680i 0.384803 0.922999i
\(257\) 0.656854i 0.0409734i 0.999790 + 0.0204867i \(0.00652158\pi\)
−0.999790 + 0.0204867i \(0.993478\pi\)
\(258\) 16.2556 + 12.0632i 1.01203 + 0.751022i
\(259\) 7.43370 0.461908
\(260\) −4.58370 + 5.56684i −0.284269 + 0.345241i
\(261\) 2.82843 0.175075
\(262\) 12.1649 + 9.02750i 0.751549 + 0.557721i
\(263\) 8.87385i 0.547185i −0.961846 0.273592i \(-0.911788\pi\)
0.961846 0.273592i \(-0.0882119\pi\)
\(264\) 11.7300 5.53553i 0.721933 0.340689i
\(265\) 0.171573 + 0.171573i 0.0105396 + 0.0105396i
\(266\) −5.46561 + 7.36511i −0.335118 + 0.451584i
\(267\) 17.4665 + 17.4665i 1.06893 + 1.06893i
\(268\) 6.97716 + 3.73452i 0.426198 + 0.228122i
\(269\) −8.14214 −0.496435 −0.248217 0.968704i \(-0.579845\pi\)
−0.248217 + 0.968704i \(0.579845\pi\)
\(270\) 1.05952 + 7.15685i 0.0644803 + 0.435552i
\(271\) 13.1702 + 13.1702i 0.800031 + 0.800031i 0.983100 0.183069i \(-0.0586033\pi\)
−0.183069 + 0.983100i \(0.558603\pi\)
\(272\) −12.9301 19.3995i −0.784005 1.17627i
\(273\) 23.4853 15.6569i 1.42139 0.947596i
\(274\) −2.53553 17.1270i −0.153177 1.03468i
\(275\) 4.63577 4.63577i 0.279547 0.279547i
\(276\) −21.1924 + 6.41536i −1.27563 + 0.386159i
\(277\) 6.00000i 0.360505i 0.983620 + 0.180253i \(0.0576915\pi\)
−0.983620 + 0.180253i \(0.942309\pi\)
\(278\) 24.8749 + 18.4596i 1.49190 + 1.10713i
\(279\) −19.1055 + 19.1055i −1.14382 + 1.14382i
\(280\) 2.67248 7.44885i 0.159711 0.445154i
\(281\) −7.75736 + 7.75736i −0.462765 + 0.462765i −0.899561 0.436796i \(-0.856113\pi\)
0.436796 + 0.899561i \(0.356113\pi\)
\(282\) 1.62132 + 10.9517i 0.0965482 + 0.652165i
\(283\) −1.35778 −0.0807119 −0.0403560 0.999185i \(-0.512849\pi\)
−0.0403560 + 0.999185i \(0.512849\pi\)
\(284\) 13.1079 + 7.01597i 0.777808 + 0.416321i
\(285\) 6.48528i 0.384155i
\(286\) 8.34663 + 0.421197i 0.493546 + 0.0249059i
\(287\) 16.7876i 0.990940i
\(288\) 1.37936 27.2789i 0.0812797 1.60742i
\(289\) −16.9706 −0.998268
\(290\) 0.819496 0.121320i 0.0481224 0.00712418i
\(291\) −1.15894 + 1.15894i −0.0679384 + 0.0679384i
\(292\) 24.0811 + 12.8894i 1.40924 + 0.754296i
\(293\) −19.1924 + 19.1924i −1.12123 + 1.12123i −0.129675 + 0.991557i \(0.541393\pi\)
−0.991557 + 0.129675i \(0.958607\pi\)
\(294\) −1.95345 + 2.63234i −0.113927 + 0.153521i
\(295\) 3.27798i 0.190851i
\(296\) 6.79599 3.20711i 0.395009 0.186409i
\(297\) 5.92893 5.92893i 0.344032 0.344032i
\(298\) −12.8307 + 1.89949i −0.743264 + 0.110035i
\(299\) −13.9897 2.79793i −0.809043 0.161809i
\(300\) −6.48528 21.4234i −0.374428 1.23688i
\(301\) −10.1213 10.1213i −0.583383 0.583383i
\(302\) 2.57107 0.380628i 0.147948 0.0219027i
\(303\) −30.2972 −1.74053
\(304\) −1.81922 + 9.09130i −0.104340 + 0.521422i
\(305\) −0.585786 0.585786i −0.0335420 0.0335420i
\(306\) −31.9600 23.7174i −1.82703 1.35583i
\(307\) −19.1055 19.1055i −1.09041 1.09041i −0.995485 0.0949226i \(-0.969740\pi\)
−0.0949226 0.995485i \(-0.530260\pi\)
\(308\) −8.77817 + 2.65733i −0.500183 + 0.151415i
\(309\) 13.7574i 0.782629i
\(310\) −4.71604 + 6.35503i −0.267853 + 0.360941i
\(311\) 22.7811 1.29180 0.645900 0.763422i \(-0.276482\pi\)
0.645900 + 0.763422i \(0.276482\pi\)
\(312\) 14.7158 24.4459i 0.833116 1.38398i
\(313\) −13.4853 −0.762233 −0.381117 0.924527i \(-0.624460\pi\)
−0.381117 + 0.924527i \(0.624460\pi\)
\(314\) 10.1133 13.6280i 0.570724 0.769072i
\(315\) 13.5096i 0.761181i
\(316\) −18.2860 + 5.53553i −1.02867 + 0.311398i
\(317\) −4.34315 4.34315i −0.243935 0.243935i 0.574541 0.818476i \(-0.305181\pi\)
−0.818476 + 0.574541i \(0.805181\pi\)
\(318\) −0.770994 0.572151i −0.0432352 0.0320847i
\(319\) −0.678892 0.678892i −0.0380107 0.0380107i
\(320\) −0.770428 7.96282i −0.0430682 0.445135i
\(321\) −28.6274 −1.59783
\(322\) 15.4881 2.29289i 0.863115 0.127778i
\(323\) 9.55274 + 9.55274i 0.531529 + 0.531529i
\(324\) 0.0994215 + 0.328427i 0.00552342 + 0.0182460i
\(325\) 2.82843 14.1421i 0.156893 0.784465i
\(326\) 21.1924 3.13738i 1.17374 0.173763i
\(327\) 13.1702 13.1702i 0.728312 0.728312i
\(328\) 7.24264 + 15.3474i 0.399908 + 0.847421i
\(329\) 7.82843i 0.431595i
\(330\) 3.86477 5.20792i 0.212749 0.286686i
\(331\) −14.6686 + 14.6686i −0.806257 + 0.806257i −0.984065 0.177808i \(-0.943099\pi\)
0.177808 + 0.984065i \(0.443099\pi\)
\(332\) −16.8444 9.01593i −0.924454 0.494813i
\(333\) 9.07107 9.07107i 0.497091 0.497091i
\(334\) −18.8995 + 2.79793i −1.03413 + 0.153096i
\(335\) 3.95687 0.216187
\(336\) −6.14425 + 30.7050i −0.335196 + 1.67509i
\(337\) 8.17157i 0.445134i 0.974917 + 0.222567i \(0.0714436\pi\)
−0.974917 + 0.222567i \(0.928556\pi\)
\(338\) 15.7916 9.41412i 0.858949 0.512061i
\(339\) 42.8467i 2.32711i
\(340\) −10.2773 5.50090i −0.557363 0.298328i
\(341\) 9.17157 0.496669
\(342\) 2.31788 + 15.6569i 0.125337 + 0.846626i
\(343\) −12.2101 + 12.2101i −0.659282 + 0.659282i
\(344\) −13.6197 4.88643i −0.734323 0.263458i
\(345\) −7.82843 + 7.82843i −0.421468 + 0.421468i
\(346\) 14.0650 + 10.4375i 0.756137 + 0.561126i
\(347\) 9.35390i 0.502143i 0.967968 + 0.251072i \(0.0807830\pi\)
−0.967968 + 0.251072i \(0.919217\pi\)
\(348\) −3.13738 + 0.949747i −0.168181 + 0.0509118i
\(349\) −0.464466 + 0.464466i −0.0248623 + 0.0248623i −0.719429 0.694566i \(-0.755596\pi\)
0.694566 + 0.719429i \(0.255596\pi\)
\(350\) 2.31788 + 15.6569i 0.123896 + 0.836894i
\(351\) 3.61743 18.0871i 0.193084 0.965420i
\(352\) −6.87868 + 6.21652i −0.366635 + 0.331342i
\(353\) −4.41421 4.41421i −0.234945 0.234945i 0.579808 0.814753i \(-0.303127\pi\)
−0.814753 + 0.579808i \(0.803127\pi\)
\(354\) −1.89949 12.8307i −0.100957 0.681945i
\(355\) 7.43370 0.394540
\(356\) −15.5672 8.33232i −0.825059 0.441612i
\(357\) 32.2635 + 32.2635i 1.70756 + 1.70756i
\(358\) 6.26491 8.44219i 0.331111 0.446184i
\(359\) 3.95687 + 3.95687i 0.208836 + 0.208836i 0.803773 0.594937i \(-0.202823\pi\)
−0.594937 + 0.803773i \(0.702823\pi\)
\(360\) −5.82843 12.3507i −0.307185 0.650938i
\(361\) 13.6274i 0.717232i
\(362\) 12.9627 + 9.61958i 0.681306 + 0.505594i
\(363\) 23.2612 1.22090
\(364\) −12.8249 + 15.5756i −0.672206 + 0.816385i
\(365\) 13.6569 0.714832
\(366\) 2.63234 + 1.95345i 0.137595 + 0.102108i
\(367\) 15.1486i 0.790751i −0.918520 0.395375i \(-0.870615\pi\)
0.918520 0.395375i \(-0.129385\pi\)
\(368\) 13.1702 8.77817i 0.686542 0.457594i
\(369\) 20.4853 + 20.4853i 1.06642 + 1.06642i
\(370\) 2.23912 3.01730i 0.116406 0.156862i
\(371\) 0.480049 + 0.480049i 0.0249229 + 0.0249229i
\(372\) 14.7770 27.6077i 0.766153 1.43140i
\(373\) 30.6274 1.58583 0.792914 0.609334i \(-0.208563\pi\)
0.792914 + 0.609334i \(0.208563\pi\)
\(374\) 1.97844 + 13.3640i 0.102303 + 0.691034i
\(375\) −17.8059 17.8059i −0.919494 0.919494i
\(376\) −3.37740 7.15685i −0.174176 0.369087i
\(377\) −2.07107 0.414214i −0.106665 0.0213331i
\(378\) 2.96447 + 20.0244i 0.152476 + 1.02994i
\(379\) 13.9897 13.9897i 0.718601 0.718601i −0.249718 0.968319i \(-0.580338\pi\)
0.968319 + 0.249718i \(0.0803379\pi\)
\(380\) 1.34315 + 4.43692i 0.0689019 + 0.227609i
\(381\) 51.5563i 2.64131i
\(382\) −27.2815 20.2454i −1.39584 1.03585i
\(383\) 11.5312 11.5312i 0.589216 0.589216i −0.348203 0.937419i \(-0.613208\pi\)
0.937419 + 0.348203i \(0.113208\pi\)
\(384\) 7.62984 + 30.7217i 0.389359 + 1.56776i
\(385\) −3.24264 + 3.24264i −0.165260 + 0.165260i
\(386\) 1.77817 + 12.0112i 0.0905067 + 0.611355i
\(387\) −24.7013 −1.25564
\(388\) 0.552869 1.03292i 0.0280676 0.0524385i
\(389\) 22.1421i 1.12265i −0.827595 0.561325i \(-0.810292\pi\)
0.827595 0.561325i \(-0.189708\pi\)
\(390\) 0.719028 14.2486i 0.0364094 0.721505i
\(391\) 23.0624i 1.16631i
\(392\) 0.791281 2.20549i 0.0399657 0.111394i
\(393\) −29.9706 −1.51181
\(394\) −36.8120 + 5.44975i −1.85456 + 0.274554i
\(395\) −6.75481 + 6.75481i −0.339871 + 0.339871i
\(396\) −7.46904 + 13.9543i −0.375333 + 0.701231i
\(397\) −1.51472 + 1.51472i −0.0760215 + 0.0760215i −0.744095 0.668074i \(-0.767119\pi\)
0.668074 + 0.744095i \(0.267119\pi\)
\(398\) 13.9111 18.7457i 0.697302 0.939639i
\(399\) 18.1454i 0.908405i
\(400\) 8.87385 + 13.3137i 0.443692 + 0.665685i
\(401\) 19.4853 19.4853i 0.973049 0.973049i −0.0265977 0.999646i \(-0.508467\pi\)
0.999646 + 0.0265977i \(0.00846731\pi\)
\(402\) −15.4881 + 2.29289i −0.772474 + 0.114359i
\(403\) 16.7876 11.1917i 0.836250 0.557500i
\(404\) 20.7279 6.27476i 1.03125 0.312181i
\(405\) 0.121320 + 0.121320i 0.00602846 + 0.00602846i
\(406\) 2.29289 0.339446i 0.113794 0.0168464i
\(407\) −4.35456 −0.215848
\(408\) 43.4151 + 15.5763i 2.14937 + 0.771143i
\(409\) 5.14214 + 5.14214i 0.254262 + 0.254262i 0.822716 0.568453i \(-0.192458\pi\)
−0.568453 + 0.822716i \(0.692458\pi\)
\(410\) 6.81399 + 5.05663i 0.336519 + 0.249729i
\(411\) 24.2213 + 24.2213i 1.19475 + 1.19475i
\(412\) −2.84924 9.41214i −0.140372 0.463703i
\(413\) 9.17157i 0.451304i
\(414\) 16.1016 21.6974i 0.791349 1.06637i
\(415\) −9.55274 −0.468926
\(416\) −5.00491 + 19.7725i −0.245386 + 0.969425i
\(417\) −61.2843 −3.00110
\(418\) 3.20168 4.31438i 0.156599 0.211023i
\(419\) 5.11582i 0.249924i 0.992162 + 0.124962i \(0.0398809\pi\)
−0.992162 + 0.124962i \(0.960119\pi\)
\(420\) 4.53635 + 14.9853i 0.221351 + 0.731207i
\(421\) 0.0208153 + 0.0208153i 0.00101447 + 0.00101447i 0.707614 0.706599i \(-0.249772\pi\)
−0.706599 + 0.707614i \(0.749772\pi\)
\(422\) −11.0745 8.21836i −0.539100 0.400064i
\(423\) −9.55274 9.55274i −0.464470 0.464470i
\(424\) 0.645974 + 0.231761i 0.0313713 + 0.0112553i
\(425\) 23.3137 1.13088
\(426\) −29.0971 + 4.30761i −1.40976 + 0.208704i
\(427\) −1.63899 1.63899i −0.0793163 0.0793163i
\(428\) 19.5855 5.92893i 0.946702 0.286586i
\(429\) −13.7574 + 9.17157i −0.664212 + 0.442808i
\(430\) −7.15685 + 1.05952i −0.345134 + 0.0510946i
\(431\) −26.0009 + 26.0009i −1.25242 + 1.25242i −0.297786 + 0.954633i \(0.596248\pi\)
−0.954633 + 0.297786i \(0.903752\pi\)
\(432\) 11.3492 + 17.0276i 0.546041 + 0.819242i
\(433\) 9.68629i 0.465493i 0.972537 + 0.232747i \(0.0747713\pi\)
−0.972537 + 0.232747i \(0.925229\pi\)
\(434\) −13.1952 + 17.7809i −0.633388 + 0.853513i
\(435\) −1.15894 + 1.15894i −0.0555670 + 0.0555670i
\(436\) −6.28278 + 11.7380i −0.300890 + 0.562150i
\(437\) −6.48528 + 6.48528i −0.310233 + 0.310233i
\(438\) −53.4558 + 7.91375i −2.55422 + 0.378134i
\(439\) 23.7412 1.13311 0.566554 0.824025i \(-0.308276\pi\)
0.566554 + 0.824025i \(0.308276\pi\)
\(440\) −1.56550 + 4.36343i −0.0746323 + 0.208018i
\(441\) 4.00000i 0.190476i
\(442\) 19.9289 + 22.0471i 0.947920 + 1.04867i
\(443\) 27.4993i 1.30653i −0.757129 0.653265i \(-0.773399\pi\)
0.757129 0.653265i \(-0.226601\pi\)
\(444\) −7.01597 + 13.1079i −0.332963 + 0.622071i
\(445\) −8.82843 −0.418508
\(446\) 5.21524 + 35.2279i 0.246949 + 1.66809i
\(447\) 18.1454 18.1454i 0.858247 0.858247i
\(448\) −2.15561 22.2794i −0.101843 1.05260i
\(449\) 0.272078 0.272078i 0.0128402 0.0128402i −0.700658 0.713498i \(-0.747110\pi\)
0.713498 + 0.700658i \(0.247110\pi\)
\(450\) 21.9339 + 16.2771i 1.03397 + 0.767308i
\(451\) 9.83395i 0.463062i
\(452\) −8.87385 29.3137i −0.417391 1.37880i
\(453\) −3.63604 + 3.63604i −0.170836 + 0.170836i
\(454\) −3.75803 25.3848i −0.176373 1.19137i
\(455\) −1.97844 + 9.89219i −0.0927506 + 0.463753i
\(456\) −7.82843 16.5888i −0.366600 0.776840i
\(457\) 3.41421 + 3.41421i 0.159710 + 0.159710i 0.782438 0.622728i \(-0.213976\pi\)
−0.622728 + 0.782438i \(0.713976\pi\)
\(458\) −4.30761 29.0971i −0.201281 1.35962i
\(459\) 29.8172 1.39175
\(460\) 3.73452 6.97716i 0.174123 0.325312i
\(461\) 13.5355 + 13.5355i 0.630413 + 0.630413i 0.948172 0.317759i \(-0.102930\pi\)
−0.317759 + 0.948172i \(0.602930\pi\)
\(462\) 10.8134 14.5714i 0.503084 0.677923i
\(463\) −16.1087 16.1087i −0.748635 0.748635i 0.225588 0.974223i \(-0.427570\pi\)
−0.974223 + 0.225588i \(0.927570\pi\)
\(464\) 1.94975 1.29954i 0.0905148 0.0603299i
\(465\) 15.6569i 0.726069i
\(466\) −13.5946 10.0885i −0.629755 0.467339i
\(467\) −6.95365 −0.321777 −0.160888 0.986973i \(-0.551436\pi\)
−0.160888 + 0.986973i \(0.551436\pi\)
\(468\) 3.35665 + 34.6561i 0.155161 + 1.60198i
\(469\) 11.0711 0.511214
\(470\) −3.17751 2.35802i −0.146568 0.108767i
\(471\) 33.5752i 1.54706i
\(472\) 3.95687 + 8.38478i 0.182130 + 0.385941i
\(473\) 5.92893 + 5.92893i 0.272613 + 0.272613i
\(474\) 22.5255 30.3540i 1.03463 1.39420i
\(475\) −6.55596 6.55596i −0.300808 0.300808i
\(476\) −28.7551 15.3912i −1.31799 0.705452i
\(477\) 1.17157 0.0536426
\(478\) 2.41730 + 16.3284i 0.110565 + 0.746845i
\(479\) −7.57430 7.57430i −0.346079 0.346079i 0.512568 0.858647i \(-0.328694\pi\)
−0.858647 + 0.512568i \(0.828694\pi\)
\(480\) 10.6123 + 11.7426i 0.484381 + 0.535976i
\(481\) −7.97056 + 5.31371i −0.363426 + 0.242284i
\(482\) −3.82843 25.8603i −0.174380 1.17790i
\(483\) −21.9034 + 21.9034i −0.996640 + 0.996640i
\(484\) −15.9142 + 4.81755i −0.723373 + 0.218980i
\(485\) 0.585786i 0.0265992i
\(486\) −17.9747 13.3390i −0.815351 0.605068i
\(487\) −6.27476 + 6.27476i −0.284336 + 0.284336i −0.834836 0.550499i \(-0.814437\pi\)
0.550499 + 0.834836i \(0.314437\pi\)
\(488\) −2.20549 0.791281i −0.0998380 0.0358196i
\(489\) −29.9706 + 29.9706i −1.35532 + 1.35532i
\(490\) −0.171573 1.15894i −0.00775087 0.0523556i
\(491\) 2.79793 0.126269 0.0631345 0.998005i \(-0.479890\pi\)
0.0631345 + 0.998005i \(0.479890\pi\)
\(492\) −29.6016 15.8442i −1.33454 0.714313i
\(493\) 3.41421i 0.153768i
\(494\) 0.595662 11.8039i 0.0268001 0.531083i
\(495\) 7.91375i 0.355697i
\(496\) −4.39199 + 21.9483i −0.197206 + 0.985510i
\(497\) 20.7990 0.932962
\(498\) 37.3915 5.53553i 1.67555 0.248053i
\(499\) −3.95687 + 3.95687i −0.177134 + 0.177134i −0.790105 0.612971i \(-0.789974\pi\)
0.612971 + 0.790105i \(0.289974\pi\)
\(500\) 15.8697 + 8.49425i 0.709715 + 0.379874i
\(501\) 26.7279 26.7279i 1.19412 1.19412i
\(502\) −15.2924 + 20.6071i −0.682534 + 0.919739i
\(503\) 23.3436i 1.04084i 0.853911 + 0.520419i \(0.174224\pi\)
−0.853911 + 0.520419i \(0.825776\pi\)
\(504\) −16.3075 34.5563i −0.726396 1.53926i
\(505\) 7.65685 7.65685i 0.340726 0.340726i
\(506\) −9.07269 + 1.34315i −0.403330 + 0.0597101i
\(507\) −13.9897 + 33.5752i −0.621303 + 1.49113i
\(508\) 10.6777 + 35.2724i 0.473745 + 1.56496i
\(509\) 8.34315 + 8.34315i 0.369803 + 0.369803i 0.867405 0.497602i \(-0.165786\pi\)
−0.497602 + 0.867405i \(0.665786\pi\)
\(510\) 22.8137 3.37740i 1.01021 0.149554i
\(511\) 38.2110 1.69035
\(512\) −11.5827 19.4382i −0.511886 0.859054i
\(513\) −8.38478 8.38478i −0.370197 0.370197i
\(514\) 0.745967 + 0.553578i 0.0329032 + 0.0244173i
\(515\) −3.47682 3.47682i −0.153207 0.153207i
\(516\) 27.3995 8.29438i 1.20620 0.365140i
\(517\) 4.58579i 0.201683i
\(518\) 6.26491 8.44219i 0.275264 0.370929i
\(519\) −34.6518 −1.52104
\(520\) 2.45905 + 9.89712i 0.107837 + 0.434018i
\(521\) 11.0000 0.481919 0.240959 0.970535i \(-0.422538\pi\)
0.240959 + 0.970535i \(0.422538\pi\)
\(522\) 2.38372 3.21215i 0.104333 0.140592i
\(523\) 14.8674i 0.650106i −0.945696 0.325053i \(-0.894618\pi\)
0.945696 0.325053i \(-0.105382\pi\)
\(524\) 20.5044 6.20711i 0.895741 0.271159i
\(525\) −22.1421 22.1421i −0.966362 0.966362i
\(526\) −10.0777 7.47863i −0.439409 0.326084i
\(527\) 23.0624 + 23.0624i 1.00461 + 1.00461i
\(528\) 3.59922 17.9866i 0.156636 0.782765i
\(529\) −7.34315 −0.319267
\(530\) 0.339446 0.0502525i 0.0147446 0.00218283i
\(531\) 11.1917 + 11.1917i 0.485680 + 0.485680i
\(532\) 3.75803 + 12.4142i 0.162931 + 0.538224i
\(533\) −12.0000 18.0000i −0.519778 0.779667i
\(534\) 34.5563 5.11582i 1.49540 0.221383i
\(535\) 7.23486 7.23486i 0.312790 0.312790i
\(536\) 10.1213 4.77637i 0.437174 0.206308i
\(537\) 20.7990i 0.897543i
\(538\) −6.86196 + 9.24674i −0.295840 + 0.398655i
\(539\) −0.960099 + 0.960099i −0.0413544 + 0.0413544i
\(540\) 9.02072 + 4.82834i 0.388190 + 0.207778i
\(541\) 16.1213 16.1213i 0.693110 0.693110i −0.269805 0.962915i \(-0.586959\pi\)
0.962915 + 0.269805i \(0.0869593\pi\)
\(542\) 26.0563 3.85745i 1.11922 0.165692i
\(543\) −31.9362 −1.37051
\(544\) −32.9285 1.66504i −1.41180 0.0713879i
\(545\) 6.65685i 0.285148i
\(546\) 2.01179 39.8666i 0.0860968 1.70613i
\(547\) 14.3873i 0.615159i −0.951522 0.307579i \(-0.900481\pi\)
0.951522 0.307579i \(-0.0995189\pi\)
\(548\) −21.5875 11.5547i −0.922171 0.493591i
\(549\) −4.00000 −0.170716
\(550\) −1.35778 9.17157i −0.0578961 0.391077i
\(551\) −0.960099 + 0.960099i −0.0409016 + 0.0409016i
\(552\) −10.5746 + 29.4741i −0.450087 + 1.25450i
\(553\) −18.8995 + 18.8995i −0.803688 + 0.803688i
\(554\) 6.81399 + 5.05663i 0.289499 + 0.214836i
\(555\) 7.43370i 0.315543i
\(556\) 41.9278 12.6924i 1.77814 0.538277i
\(557\) −8.36396 + 8.36396i −0.354392 + 0.354392i −0.861741 0.507349i \(-0.830626\pi\)
0.507349 + 0.861741i \(0.330626\pi\)
\(558\) 5.59587 + 37.7990i 0.236892 + 1.60016i
\(559\) 18.0871 + 3.61743i 0.765005 + 0.153001i
\(560\) −6.20711 9.31271i −0.262298 0.393534i
\(561\) −18.8995 18.8995i −0.797937 0.797937i
\(562\) 2.27208 + 15.3474i 0.0958418 + 0.647393i
\(563\) −28.4594 −1.19942 −0.599710 0.800218i \(-0.704717\pi\)
−0.599710 + 0.800218i \(0.704717\pi\)
\(564\) 13.8039 + 7.38851i 0.581248 + 0.311113i
\(565\) −10.8284 10.8284i −0.455555 0.455555i
\(566\) −1.14430 + 1.54199i −0.0480986 + 0.0648146i
\(567\) 0.339446 + 0.339446i 0.0142554 + 0.0142554i
\(568\) 19.0147 8.97327i 0.797840 0.376510i
\(569\) 29.4853i 1.23609i −0.786144 0.618044i \(-0.787925\pi\)
0.786144 0.618044i \(-0.212075\pi\)
\(570\) −7.36511 5.46561i −0.308490 0.228929i
\(571\) 11.6718 0.488449 0.244224 0.969719i \(-0.421467\pi\)
0.244224 + 0.969719i \(0.421467\pi\)
\(572\) 7.51264 9.12400i 0.314119 0.381494i
\(573\) 67.2132 2.80787
\(574\) 19.0651 + 14.1481i 0.795761 + 0.590531i
\(575\) 15.8275i 0.660052i
\(576\) −29.8172 24.5563i −1.24238 1.02318i
\(577\) −0.485281 0.485281i −0.0202025 0.0202025i 0.696933 0.717136i \(-0.254547\pi\)
−0.717136 + 0.696933i \(0.754547\pi\)
\(578\) −14.3023 + 19.2729i −0.594898 + 0.801646i
\(579\) −16.9864 16.9864i −0.705932 0.705932i
\(580\) 0.552869 1.03292i 0.0229566 0.0428896i
\(581\) −26.7279 −1.10886
\(582\) 0.339446 + 2.29289i 0.0140705 + 0.0950435i
\(583\) −0.281206 0.281206i −0.0116464 0.0116464i
\(584\) 34.9330 16.4853i 1.44554 0.682166i
\(585\) 9.65685 + 14.4853i 0.399262 + 0.598893i
\(586\) 5.62132 + 37.9709i 0.232215 + 1.56856i
\(587\) 25.1814 25.1814i 1.03935 1.03935i 0.0401538 0.999194i \(-0.487215\pi\)
0.999194 0.0401538i \(-0.0127848\pi\)
\(588\) 1.34315 + 4.43692i 0.0553904 + 0.182976i
\(589\) 12.9706i 0.534443i
\(590\) 3.72269 + 2.76259i 0.153261 + 0.113734i
\(591\) 52.0600 52.0600i 2.14146 2.14146i
\(592\) 2.08527 10.4208i 0.0857040 0.428293i
\(593\) −1.44365 + 1.44365i −0.0592836 + 0.0592836i −0.736127 0.676843i \(-0.763347\pi\)
0.676843 + 0.736127i \(0.263347\pi\)
\(594\) −1.73654 11.7300i −0.0712513 0.481289i
\(595\) −16.3075 −0.668544
\(596\) −8.65618 + 16.1722i −0.354571 + 0.662441i
\(597\) 46.1838i 1.89018i
\(598\) −14.9676 + 13.5296i −0.612071 + 0.553265i
\(599\) 13.9073i 0.568237i 0.958789 + 0.284118i \(0.0917009\pi\)
−0.958789 + 0.284118i \(0.908299\pi\)
\(600\) −29.7954 10.6899i −1.21639 0.436413i
\(601\) 15.9706 0.651453 0.325726 0.945464i \(-0.394391\pi\)
0.325726 + 0.945464i \(0.394391\pi\)
\(602\) −20.0244 + 2.96447i −0.816133 + 0.120823i
\(603\) 13.5096 13.5096i 0.550154 0.550154i
\(604\) 1.73456 3.24065i 0.0705782 0.131860i
\(605\) −5.87868 + 5.87868i −0.239002 + 0.239002i
\(606\) −25.5336 + 34.4075i −1.03723 + 1.39771i
\(607\) 25.0990i 1.01874i 0.860548 + 0.509369i \(0.170121\pi\)
−0.860548 + 0.509369i \(0.829879\pi\)
\(608\) 8.79148 + 9.72792i 0.356542 + 0.394519i
\(609\) −3.24264 + 3.24264i −0.131398 + 0.131398i
\(610\) −1.15894 + 0.171573i −0.0469242 + 0.00694678i
\(611\) 5.59587 + 8.39380i 0.226384 + 0.339577i
\(612\) −53.8701 + 16.3075i −2.17757 + 0.659193i
\(613\) 30.8701 + 30.8701i 1.24683 + 1.24683i 0.957112 + 0.289718i \(0.0935614\pi\)
0.289718 + 0.957112i \(0.406439\pi\)
\(614\) −37.7990 + 5.59587i −1.52544 + 0.225831i
\(615\) −16.7876 −0.676941
\(616\) −4.38016 + 12.2086i −0.176482 + 0.491898i
\(617\) −24.4853 24.4853i −0.985740 0.985740i 0.0141594 0.999900i \(-0.495493\pi\)
−0.999900 + 0.0141594i \(0.995493\pi\)
\(618\) 15.6238 + 11.5943i 0.628480 + 0.466392i
\(619\) −21.1422 21.1422i −0.849775 0.849775i 0.140330 0.990105i \(-0.455184\pi\)
−0.990105 + 0.140330i \(0.955184\pi\)
\(620\) 3.24264 + 10.7117i 0.130228 + 0.430191i
\(621\) 20.2426i 0.812309i
\(622\) 19.1993 25.8718i 0.769822 1.03736i
\(623\) −24.7013 −0.989638
\(624\) −15.3604 37.3145i −0.614906 1.49378i
\(625\) −11.0000 −0.440000
\(626\) −11.3650 + 15.3148i −0.454237 + 0.612101i
\(627\) 10.6293i 0.424494i
\(628\) −6.95365 22.9706i −0.277481 0.916625i
\(629\) −10.9497 10.9497i −0.436595 0.436595i
\(630\) −15.3424 11.3855i −0.611256 0.453610i
\(631\) 1.97844 + 1.97844i 0.0787603 + 0.0787603i 0.745390 0.666629i \(-0.232264\pi\)
−0.666629 + 0.745390i \(0.732264\pi\)
\(632\) −9.12440 + 25.4319i −0.362949 + 1.01163i
\(633\) 27.2843 1.08445
\(634\) −8.59264 + 1.27208i −0.341257 + 0.0505207i
\(635\) 13.0296 + 13.0296i 0.517062 + 0.517062i
\(636\) −1.29954 + 0.393398i −0.0515303 + 0.0155993i
\(637\) −0.585786 + 2.92893i −0.0232097 + 0.116049i
\(638\) −1.34315 + 0.198843i −0.0531756 + 0.00787227i
\(639\) 25.3802 25.3802i 1.00403 1.00403i
\(640\) −9.69239 5.83589i −0.383125 0.230684i
\(641\) 38.1421i 1.50652i 0.657721 + 0.753262i \(0.271521\pi\)
−0.657721 + 0.753262i \(0.728479\pi\)
\(642\) −24.1264 + 32.5112i −0.952192 + 1.28311i
\(643\) −17.2676 + 17.2676i −0.680969 + 0.680969i −0.960219 0.279249i \(-0.909914\pi\)
0.279249 + 0.960219i \(0.409914\pi\)
\(644\) 10.4489 19.5216i 0.411746 0.769260i
\(645\) 10.1213 10.1213i 0.398527 0.398527i
\(646\) 18.8995 2.79793i 0.743591 0.110083i
\(647\) 33.5752 1.31998 0.659988 0.751276i \(-0.270561\pi\)
0.659988 + 0.751276i \(0.270561\pi\)
\(648\) 0.456773 + 0.163880i 0.0179437 + 0.00643780i
\(649\) 5.37258i 0.210892i
\(650\) −13.6770 15.1307i −0.536457 0.593477i
\(651\) 43.8068i 1.71692i
\(652\) 14.2973 26.7116i 0.559927 1.04611i
\(653\) −14.8284 −0.580281 −0.290141 0.956984i \(-0.593702\pi\)
−0.290141 + 0.956984i \(0.593702\pi\)
\(654\) −3.85745 26.0563i −0.150838 1.01888i
\(655\) 7.57430 7.57430i 0.295952 0.295952i
\(656\) 23.5335 + 4.70918i 0.918827 + 0.183863i
\(657\) 46.6274 46.6274i 1.81911 1.81911i
\(658\) −8.89047 6.59758i −0.346587 0.257200i
\(659\) 34.5353i 1.34530i −0.739959 0.672652i \(-0.765155\pi\)
0.739959 0.672652i \(-0.234845\pi\)
\(660\) −2.65733 8.77817i −0.103436 0.341690i
\(661\) −31.0711 + 31.0711i −1.20852 + 1.20852i −0.237020 + 0.971505i \(0.576171\pi\)
−0.971505 + 0.237020i \(0.923829\pi\)
\(662\) 4.29632 + 29.0208i 0.166981 + 1.12793i
\(663\) −57.6559 11.5312i −2.23917 0.447834i
\(664\) −24.4350 + 11.5312i −0.948263 + 0.447496i
\(665\) 4.58579 + 4.58579i 0.177829 + 0.177829i
\(666\) −2.65685 17.9465i −0.102951 0.695414i
\(667\) 2.31788 0.0897488
\(668\) −12.7504 + 23.8215i −0.493330 + 0.921682i
\(669\) −49.8198 49.8198i −1.92614 1.92614i
\(670\) 3.33474 4.49368i 0.128832 0.173606i
\(671\) 0.960099 + 0.960099i 0.0370642 + 0.0370642i
\(672\) 29.6924 + 32.8551i 1.14541 + 1.26741i
\(673\) 42.7990i 1.64978i −0.565293 0.824890i \(-0.691237\pi\)
0.565293 0.824890i \(-0.308763\pi\)
\(674\) 9.28017 + 6.88677i 0.357459 + 0.265269i
\(675\) −20.4633 −0.787631
\(676\) 2.61742 25.8679i 0.100670 0.994920i
\(677\) −31.2132 −1.19962 −0.599810 0.800142i \(-0.704757\pi\)
−0.599810 + 0.800142i \(0.704757\pi\)
\(678\) 48.6595 + 36.1100i 1.86876 + 1.38680i
\(679\) 1.63899i 0.0628987i
\(680\) −14.9086 + 7.03553i −0.571718 + 0.269800i
\(681\) 35.8995 + 35.8995i 1.37567 + 1.37567i
\(682\) 7.72954 10.4158i 0.295980 0.398843i
\(683\) −31.4562 31.4562i −1.20364 1.20364i −0.973052 0.230584i \(-0.925936\pi\)
−0.230584 0.973052i \(-0.574064\pi\)
\(684\) 19.7344 + 10.5628i 0.754563 + 0.403879i
\(685\) −12.2426 −0.467767
\(686\) 3.57625 + 24.1569i 0.136542 + 0.922313i
\(687\) 41.1495 + 41.1495i 1.56995 + 1.56995i
\(688\) −17.0276 + 11.3492i −0.649172 + 0.432686i
\(689\) −0.857864 0.171573i −0.0326820 0.00653641i
\(690\) 2.29289 + 15.4881i 0.0872890 + 0.589620i
\(691\) −2.31788 + 2.31788i −0.0881764 + 0.0881764i −0.749819 0.661643i \(-0.769860\pi\)
0.661643 + 0.749819i \(0.269860\pi\)
\(692\) 23.7071 7.17662i 0.901209 0.272814i
\(693\) 22.1421i 0.841110i
\(694\) 10.6229 + 7.88320i 0.403240 + 0.299242i
\(695\) 15.4881 15.4881i 0.587495 0.587495i
\(696\) −1.56550 + 4.36343i −0.0593401 + 0.165395i
\(697\) 24.7279 24.7279i 0.936637 0.936637i
\(698\) 0.136039 + 0.918917i 0.00514915 + 0.0347815i
\(699\) 33.4928 1.26682
\(700\) 19.7344 + 10.5628i 0.745890 + 0.399237i
\(701\) 31.3553i 1.18427i 0.805837 + 0.592137i \(0.201716\pi\)
−0.805837 + 0.592137i \(0.798284\pi\)
\(702\) −17.4923 19.3515i −0.660203 0.730376i
\(703\) 6.15828i 0.232264i
\(704\) 1.26272 + 13.0510i 0.0475907 + 0.491877i
\(705\) 7.82843 0.294836
\(706\) −8.73324 + 1.29289i −0.328680 + 0.0486587i
\(707\) 21.4234 21.4234i 0.805708 0.805708i
\(708\) −16.1722 8.65618i −0.607790 0.325319i
\(709\) −2.97056 + 2.97056i −0.111562 + 0.111562i −0.760684 0.649122i \(-0.775136\pi\)
0.649122 + 0.760684i \(0.275136\pi\)
\(710\) 6.26491 8.44219i 0.235118 0.316830i
\(711\) 46.1247i 1.72981i
\(712\) −22.5823 + 10.6569i −0.846308 + 0.399382i
\(713\) −15.6569 + 15.6569i −0.586354 + 0.586354i
\(714\) 63.8312 9.44975i 2.38882 0.353648i
\(715\) 1.15894 5.79471i 0.0433420 0.216710i
\(716\) −4.30761 14.2297i −0.160983 0.531788i
\(717\) −23.0919 23.0919i −0.862382 0.862382i
\(718\) 7.82843 1.15894i 0.292154 0.0432513i
\(719\) −17.0688 −0.636559 −0.318279 0.947997i \(-0.603105\pi\)
−0.318279 + 0.947997i \(0.603105\pi\)
\(720\) −18.9383 3.78966i −0.705787 0.141232i
\(721\) −9.72792 9.72792i −0.362287 0.362287i
\(722\) 15.4762 + 11.4848i 0.575964 + 0.427420i
\(723\) 36.5720 + 36.5720i 1.36013 + 1.36013i
\(724\) 21.8492 6.61420i 0.812021 0.245815i
\(725\) 2.34315i 0.0870222i
\(726\) 19.6039 26.4169i 0.727568 0.980424i
\(727\) −43.1279 −1.59953 −0.799763 0.600316i \(-0.795042\pi\)
−0.799763 + 0.600316i \(0.795042\pi\)
\(728\) 6.88026 + 27.6915i 0.255000 + 1.02631i
\(729\) 43.7696 1.62109
\(730\) 11.5096 15.5096i 0.425990 0.574037i
\(731\) 29.8172i 1.10283i
\(732\) 4.43692 1.34315i 0.163993 0.0496441i
\(733\) −14.8492 14.8492i −0.548469 0.548469i 0.377529 0.925998i \(-0.376774\pi\)
−0.925998 + 0.377529i \(0.876774\pi\)
\(734\) −17.2037 12.7668i −0.635002 0.471232i
\(735\) 1.63899 + 1.63899i 0.0604551 + 0.0604551i
\(736\) 1.13038 22.3549i 0.0416664 0.824013i
\(737\) −6.48528 −0.238888
\(738\) 40.5288 6.00000i 1.49189 0.220863i
\(739\) 37.5321 + 37.5321i 1.38064 + 1.38064i 0.843482 + 0.537157i \(0.180502\pi\)
0.537157 + 0.843482i \(0.319498\pi\)
\(740\) −1.53957 5.08579i −0.0565957 0.186957i
\(741\) 12.9706 + 19.4558i 0.476486 + 0.714728i
\(742\) 0.949747 0.140603i 0.0348663 0.00516171i
\(743\) −9.21329 + 9.21329i −0.338003 + 0.338003i −0.855615 0.517612i \(-0.826821\pi\)
0.517612 + 0.855615i \(0.326821\pi\)
\(744\) −18.8995 40.0488i −0.692889 1.46826i
\(745\) 9.17157i 0.336020i
\(746\) 25.8119 34.7825i 0.945042 1.27348i
\(747\) −32.6151 + 32.6151i −1.19332 + 1.19332i
\(748\) 16.8444 + 9.01593i 0.615891 + 0.329655i
\(749\) 20.2426 20.2426i 0.739650 0.739650i
\(750\) −35.2279 + 5.21524i −1.28634 + 0.190434i
\(751\) −8.31143 −0.303289 −0.151644 0.988435i \(-0.548457\pi\)
−0.151644 + 0.988435i \(0.548457\pi\)
\(752\) −10.9742 2.19600i −0.400187 0.0800798i
\(753\) 50.7696i 1.85015i
\(754\) −2.21585 + 2.00295i −0.0806963 + 0.0729432i
\(755\) 1.83783i 0.0668856i
\(756\) 25.2394 + 13.5094i 0.917947 + 0.491331i
\(757\) 44.7279 1.62566 0.812832 0.582498i \(-0.197925\pi\)
0.812832 + 0.582498i \(0.197925\pi\)
\(758\) −4.09748 27.6777i −0.148827 1.00530i
\(759\) 12.8307 12.8307i 0.465726 0.465726i
\(760\) 6.17083 + 2.21395i 0.223839 + 0.0803084i
\(761\) −0.343146 + 0.343146i −0.0124390 + 0.0124390i −0.713299 0.700860i \(-0.752800\pi\)
0.700860 + 0.713299i \(0.252800\pi\)
\(762\) −58.5508 43.4502i −2.12107 1.57404i
\(763\) 18.6254i 0.674286i
\(764\) −45.9841 + 13.9203i −1.66365 + 0.503619i
\(765\) −19.8995 + 19.8995i −0.719468 + 0.719468i
\(766\) −3.37740 22.8137i −0.122031 0.824293i
\(767\) −6.55596 9.83395i −0.236722 0.355083i
\(768\) 41.3198 + 17.2265i 1.49100 + 0.621606i
\(769\) −1.65685 1.65685i −0.0597477 0.0597477i 0.676602 0.736349i \(-0.263452\pi\)
−0.736349 + 0.676602i \(0.763452\pi\)
\(770\) 0.949747 + 6.41536i 0.0342265 + 0.231194i
\(771\) −1.83783 −0.0661880
\(772\) 15.1393 + 8.10331i 0.544876 + 0.291645i
\(773\) 32.1213 + 32.1213i 1.15532 + 1.15532i 0.985469 + 0.169854i \(0.0543298\pi\)
0.169854 + 0.985469i \(0.445670\pi\)
\(774\) −20.8176 + 28.0525i −0.748273 + 1.00832i
\(775\) −15.8275 15.8275i −0.568540 0.568540i
\(776\) −0.707107 1.49839i −0.0253837 0.0537890i
\(777\) 20.7990i 0.746160i
\(778\) −25.1461 18.6608i −0.901530 0.669021i
\(779\) −13.9073 −0.498281
\(780\) −15.5756 12.8249i −0.557697 0.459204i
\(781\) −12.1838 −0.435969
\(782\) −26.1911 19.4363i −0.936592 0.695041i
\(783\) 2.99678i 0.107096i
\(784\) −1.83783 2.75736i −0.0656369 0.0984771i
\(785\) −8.48528 8.48528i −0.302853 0.302853i
\(786\) −25.2584 + 34.0365i −0.900936 + 1.21404i
\(787\) −18.4266 18.4266i −0.656837 0.656837i 0.297793 0.954630i \(-0.403749\pi\)
−0.954630 + 0.297793i \(0.903749\pi\)
\(788\) −24.8350 + 46.3990i −0.884711 + 1.65290i
\(789\) 24.8284 0.883915
\(790\) 1.97844 + 13.3640i 0.0703896 + 0.475468i
\(791\) −30.2972 30.2972i −1.07724 1.07724i
\(792\) 9.55274 + 20.2426i 0.339442 + 0.719291i
\(793\) 2.92893 + 0.585786i 0.104009 + 0.0208019i
\(794\) 0.443651 + 2.99678i 0.0157446 + 0.106352i
\(795\) −0.480049 + 0.480049i −0.0170256 + 0.0170256i
\(796\) −9.56497 31.5968i −0.339021 1.11992i
\(797\) 31.1716i 1.10415i −0.833793 0.552077i \(-0.813835\pi\)
0.833793 0.552077i \(-0.186165\pi\)
\(798\) −20.6071 15.2924i −0.729483 0.541346i
\(799\) −11.5312 + 11.5312i −0.407944 + 0.407944i
\(800\) 22.5985 + 1.14270i 0.798979 + 0.0404006i
\(801\) −30.1421 + 30.1421i −1.06502 + 1.06502i
\(802\) −5.70711 38.5504i −0.201525 1.36126i
\(803\) −22.3835 −0.789895
\(804\) −10.4489 + 19.5216i −0.368506 + 0.688475i
\(805\) 11.0711i 0.390204i
\(806\) 1.43806 28.4972i 0.0506534 1.00377i
\(807\) 22.7811i 0.801934i
\(808\) 10.3429 28.8282i 0.363862 1.01417i
\(809\) −6.85786 −0.241110 −0.120555 0.992707i \(-0.538467\pi\)
−0.120555 + 0.992707i \(0.538467\pi\)
\(810\) 0.240025 0.0355339i 0.00843361 0.00124853i
\(811\) −6.55596 + 6.55596i −0.230211 + 0.230211i −0.812781 0.582570i \(-0.802047\pi\)
0.582570 + 0.812781i \(0.302047\pi\)
\(812\) 1.54689 2.89003i 0.0542852 0.101420i
\(813\) −36.8492 + 36.8492i −1.29236 + 1.29236i
\(814\) −3.66990 + 4.94532i −0.128630 + 0.173333i
\(815\) 15.1486i 0.530632i
\(816\) 54.2785 36.1777i 1.90013 1.26647i
\(817\) 8.38478 8.38478i 0.293346 0.293346i
\(818\) 10.1734 1.50610i 0.355704 0.0526594i
\(819\) 27.0192 + 40.5288i 0.944128 + 1.41619i
\(820\) 11.4853 3.47682i 0.401083 0.121416i
\(821\) −2.22183 2.22183i −0.0775422 0.0775422i 0.667272 0.744814i \(-0.267462\pi\)
−0.744814 + 0.667272i \(0.767462\pi\)
\(822\) 47.9203 7.09425i 1.67141 0.247440i
\(823\) 54.0385 1.88366 0.941831 0.336087i \(-0.109103\pi\)
0.941831 + 0.336087i \(0.109103\pi\)
\(824\) −13.0903 4.69650i −0.456022 0.163610i
\(825\) 12.9706 + 12.9706i 0.451577 + 0.451577i
\(826\) 10.4158 + 7.72954i 0.362413 + 0.268945i
\(827\) 32.3339 + 32.3339i 1.12436 + 1.12436i 0.991078 + 0.133281i \(0.0425513\pi\)
0.133281 + 0.991078i \(0.457449\pi\)
\(828\) −11.0711 36.5720i −0.384746 1.27096i
\(829\) 22.3848i 0.777455i −0.921353 0.388728i \(-0.872915\pi\)
0.921353 0.388728i \(-0.127085\pi\)
\(830\) −8.05078 + 10.8487i −0.279447 + 0.376564i
\(831\) −16.7876 −0.582355
\(832\) 18.2369 + 22.3476i 0.632251 + 0.774763i
\(833\) −4.82843 −0.167295
\(834\) −51.6487 + 69.5984i −1.78845 + 2.41000i
\(835\) 13.5096i 0.467519i
\(836\) −2.20140 7.27208i −0.0761371 0.251510i
\(837\) −20.2426 20.2426i −0.699688 0.699688i
\(838\) 5.80985 + 4.31147i 0.200698 + 0.148937i
\(839\) 24.0225 + 24.0225i 0.829347 + 0.829347i 0.987426 0.158079i \(-0.0505302\pi\)
−0.158079 + 0.987426i \(0.550530\pi\)
\(840\) 20.8414 + 7.47741i 0.719095 + 0.257995i
\(841\) −28.6569 −0.988167
\(842\) 0.0411817 0.00609665i 0.00141922 0.000210105i
\(843\) −21.7046 21.7046i −0.747545 0.747545i
\(844\) −18.6666 + 5.65076i −0.642531 + 0.194507i
\(845\) −4.94975 12.0208i −0.170276 0.413529i
\(846\) −18.8995 + 2.79793i −0.649778 + 0.0961949i
\(847\) −16.4481 + 16.4481i −0.565165 + 0.565165i
\(848\) 0.807612 0.538289i 0.0277335 0.0184849i
\(849\) 3.79899i 0.130381i
\(850\) 19.6481 26.4766i 0.673926 0.908139i
\(851\) 7.43370 7.43370i 0.254824 0.254824i
\(852\) −19.6302 + 36.6749i −0.672520 + 1.25646i
\(853\) −39.5772 + 39.5772i −1.35510 + 1.35510i −0.475240 + 0.879856i \(0.657639\pi\)
−0.879856 + 0.475240i \(0.842361\pi\)
\(854\) −3.24264 + 0.480049i −0.110961 + 0.0164270i
\(855\) 11.1917 0.382749
\(856\) 9.77285 27.2393i 0.334029 0.931022i
\(857\) 30.1421i 1.02964i 0.857300 + 0.514818i \(0.172140\pi\)
−0.857300 + 0.514818i \(0.827860\pi\)
\(858\) −1.17848 + 23.3533i −0.0402327 + 0.797268i
\(859\) 35.3307i 1.20547i 0.797943 + 0.602733i \(0.205922\pi\)
−0.797943 + 0.602733i \(0.794078\pi\)
\(860\) −4.82834 + 9.02072i −0.164645 + 0.307604i
\(861\) −46.9706 −1.60075
\(862\) 7.61548 + 51.4411i 0.259384 + 1.75209i
\(863\) 25.3220 25.3220i 0.861971 0.861971i −0.129596 0.991567i \(-0.541368\pi\)
0.991567 + 0.129596i \(0.0413681\pi\)
\(864\) 28.9025 + 1.46146i 0.983283 + 0.0497199i
\(865\) 8.75736 8.75736i 0.297759 0.297759i
\(866\) 11.0004 + 8.16333i 0.373808 + 0.277401i
\(867\) 47.4825i 1.61259i
\(868\) 9.07269 + 29.9706i 0.307947 + 1.01727i
\(869\) 11.0711 11.0711i 0.375560 0.375560i
\(870\) 0.339446 + 2.29289i 0.0115083 + 0.0777364i
\(871\) −11.8706 + 7.91375i −0.402221 + 0.268147i
\(872\) 8.03553 + 17.0276i 0.272118 + 0.576628i
\(873\) −2.00000 2.00000i −0.0676897 0.0676897i
\(874\) 1.89949 + 12.8307i 0.0642514 + 0.434006i
\(875\) 25.1814 0.851286
\(876\) −36.0637 + 67.3774i −1.21848 + 2.27647i
\(877\) 14.2635 + 14.2635i 0.481643 + 0.481643i 0.905656 0.424013i \(-0.139379\pi\)
−0.424013 + 0.905656i \(0.639379\pi\)
\(878\) 20.0085 26.9621i 0.675253 0.909927i
\(879\) −53.6990 53.6990i −1.81122 1.81122i
\(880\) 3.63604 + 5.45526i 0.122571 + 0.183897i
\(881\) 12.3137i 0.414859i −0.978250 0.207430i \(-0.933490\pi\)
0.978250 0.207430i \(-0.0665098\pi\)
\(882\) −4.54266 3.37109i −0.152959 0.113510i
\(883\) 34.4529 1.15943 0.579717 0.814818i \(-0.303163\pi\)
0.579717 + 0.814818i \(0.303163\pi\)
\(884\) 41.8336 4.05184i 1.40702 0.136278i
\(885\) −9.17157 −0.308299
\(886\) −31.2300 23.1756i −1.04919 0.778600i
\(887\) 46.5224i 1.56207i −0.624488 0.781035i \(-0.714692\pi\)
0.624488 0.781035i \(-0.285308\pi\)
\(888\) 8.97327 + 19.0147i 0.301123 + 0.638092i
\(889\) 36.4558 + 36.4558i 1.22269 + 1.22269i
\(890\) −7.44035 + 10.0261i −0.249401 + 0.336077i
\(891\) −0.198843 0.198843i −0.00666149 0.00666149i
\(892\) 44.4024 + 23.7663i 1.48670 + 0.795756i
\(893\) 6.48528 0.217022
\(894\) −5.31466 35.8995i −0.177749 1.20066i
\(895\) −5.25642 5.25642i −0.175703 0.175703i
\(896\) −27.1186 16.3284i −0.905970 0.545494i
\(897\) 7.82843 39.1421i 0.261384 1.30692i
\(898\) −0.0796898 0.538289i −0.00265928 0.0179629i
\(899\) −2.31788 + 2.31788i −0.0773057 + 0.0773057i
\(900\) 36.9706 11.1917i 1.23235 0.373058i
\(901\) 1.41421i 0.0471143i
\(902\) −11.1681 8.28777i −0.371856 0.275953i
\(903\) 28.3188 28.3188i 0.942390 0.942390i
\(904\) −40.7692 14.6271i −1.35596 0.486489i
\(905\) 8.07107 8.07107i 0.268291 0.268291i
\(906\) 1.06497 + 7.19367i 0.0353813 + 0.238994i
\(907\) −16.3075 −0.541483 −0.270742 0.962652i \(-0.587269\pi\)
−0.270742 + 0.962652i \(0.587269\pi\)
\(908\) −31.9958 17.1257i −1.06182 0.568337i
\(909\) 52.2843i 1.73416i
\(910\) 9.56684 + 10.5837i 0.317138 + 0.350846i
\(911\) 4.91697i 0.162907i −0.996677 0.0814533i \(-0.974044\pi\)
0.996677 0.0814533i \(-0.0259561\pi\)
\(912\) −25.4368 5.09006i −0.842298 0.168549i
\(913\) 15.6569 0.518166
\(914\) 6.75481 1.00000i 0.223429 0.0330771i
\(915\) 1.63899 1.63899i 0.0541834 0.0541834i
\(916\) −36.6749 19.6302i −1.21177 0.648600i
\(917\) 21.1924 21.1924i 0.699834 0.699834i
\(918\) 25.1291 33.8623i 0.829383 1.11762i
\(919\) 25.6614i 0.846493i 0.906015 + 0.423246i \(0.139110\pi\)
−0.906015 + 0.423246i \(0.860890\pi\)
\(920\) −4.77637 10.1213i −0.157472 0.333690i
\(921\) 53.4558 53.4558i 1.76143 1.76143i
\(922\) 26.7792 3.96447i 0.881926 0.130563i
\(923\) −22.3011 + 14.8674i −0.734050 + 0.489366i
\(924\) −7.43503 24.5607i −0.244594 0.807989i
\(925\) 7.51472 + 7.51472i 0.247082 + 0.247082i
\(926\) −31.8701 + 4.71813i −1.04732 + 0.155047i
\(927\) −23.7412 −0.779765
\(928\) 0.167345 3.30948i 0.00549336 0.108639i
\(929\) 20.6274 + 20.6274i 0.676764 + 0.676764i 0.959266 0.282503i \(-0.0911647\pi\)
−0.282503 + 0.959266i \(0.591165\pi\)
\(930\) −17.7809 13.1952i −0.583060 0.432686i
\(931\) 1.35778 + 1.35778i 0.0444996 + 0.0444996i
\(932\) −22.9142 + 6.93659i −0.750580 + 0.227216i
\(933\) 63.7401i 2.08676i
\(934\) −5.86034 + 7.89702i −0.191756 + 0.258398i
\(935\) 9.55274 0.312408
\(936\) 42.1866 + 25.3952i 1.37891 + 0.830067i
\(937\) −8.97056 −0.293056 −0.146528 0.989207i \(-0.546810\pi\)
−0.146528 + 0.989207i \(0.546810\pi\)
\(938\) 9.33039 12.5730i 0.304648 0.410524i
\(939\) 37.7309i 1.23130i
\(940\) −5.35584 + 1.62132i −0.174688 + 0.0528816i
\(941\) 34.2635 + 34.2635i 1.11696 + 1.11696i 0.992186 + 0.124771i \(0.0398197\pi\)
0.124771 + 0.992186i \(0.460180\pi\)
\(942\) 38.1302 + 28.2962i 1.24235 + 0.921941i
\(943\) 16.7876 + 16.7876i 0.546679 + 0.546679i
\(944\) 12.8570 + 2.57277i 0.418461 + 0.0837365i
\(945\) 14.3137 0.465625
\(946\) 11.7300 1.73654i 0.381376 0.0564599i
\(947\) 3.07914 + 3.07914i 0.100059 + 0.100059i 0.755364 0.655305i \(-0.227460\pi\)
−0.655305 + 0.755364i \(0.727460\pi\)
\(948\) −15.4881 51.1630i −0.503029 1.66170i
\(949\) −40.9706 + 27.3137i −1.32996 + 0.886640i
\(950\) −12.9706 + 1.92020i −0.420821 + 0.0622994i
\(951\) 12.1518 12.1518i 0.394050 0.394050i
\(952\) −41.7132 + 19.6850i −1.35193 + 0.637993i
\(953\) 51.1421i 1.65666i −0.560243 0.828328i \(-0.689292\pi\)
0.560243 0.828328i \(-0.310708\pi\)
\(954\) 0.987369 1.33051i 0.0319672 0.0430770i
\(955\) −16.9864 + 16.9864i −0.549668 + 0.549668i
\(956\) 20.5809 + 11.0159i 0.665633 + 0.356279i
\(957\) 1.89949 1.89949i 0.0614020 0.0614020i
\(958\) −14.9853 + 2.21846i −0.484152 + 0.0716752i
\(959\) −34.2541 −1.10612
\(960\) 22.2794 2.15561i 0.719065 0.0695719i
\(961\) 0.313708i 0.0101196i
\(962\) −0.682773 + 13.5301i −0.0220135 + 0.436229i
\(963\) 49.4027i 1.59198i
\(964\) −32.5951 17.4465i −1.04982 0.561914i
\(965\) 8.58579 0.276386
\(966\) 6.41536 + 43.3345i 0.206411 + 1.39427i
\(967\) −7.85551 + 7.85551i −0.252616 + 0.252616i −0.822042 0.569426i \(-0.807165\pi\)
0.569426 + 0.822042i \(0.307165\pi\)
\(968\) −7.94093 + 22.1333i −0.255231 + 0.711392i
\(969\) −26.7279 + 26.7279i −0.858625 + 0.858625i
\(970\) −0.665257 0.493684i −0.0213601 0.0158513i
\(971\) 0.877735i 0.0281679i −0.999901 0.0140839i \(-0.995517\pi\)
0.999901 0.0140839i \(-0.00448320\pi\)
\(972\) −30.2972 + 9.17157i −0.971783 + 0.294178i
\(973\) 43.3345 43.3345i 1.38924 1.38924i
\(974\) 1.83783 + 12.4142i 0.0588880 + 0.397777i
\(975\) 39.5687 + 7.91375i 1.26721 + 0.253443i
\(976\) −2.75736 + 1.83783i −0.0882609 + 0.0588276i
\(977\) 35.6274 + 35.6274i 1.13982 + 1.13982i 0.988482 + 0.151340i \(0.0483589\pi\)
0.151340 + 0.988482i \(0.451641\pi\)
\(978\) 8.77817 + 59.2949i 0.280695 + 1.89604i
\(979\) 14.4697 0.462454
\(980\) −1.46077 0.781874i −0.0466625 0.0249761i
\(981\) 22.7279 + 22.7279i 0.725647 + 0.725647i
\(982\) 2.35802 3.17751i 0.0752474 0.101399i
\(983\) 31.3155 + 31.3155i 0.998811 + 0.998811i 0.999999 0.00118842i \(-0.000378287\pi\)
−0.00118842 + 0.999999i \(0.500378\pi\)
\(984\) −42.9411 + 20.2644i −1.36891 + 0.646006i
\(985\) 26.3137i 0.838424i
\(986\) −3.87740 2.87740i −0.123482 0.0916352i
\(987\) 21.9034 0.697193
\(988\) −12.9033 10.6245i −0.410508 0.338010i
\(989\) −20.2426 −0.643679
\(990\) 8.98737 + 6.66949i 0.285637 + 0.211970i
\(991\) 21.4234i 0.680536i 0.940329 + 0.340268i \(0.110518\pi\)
−0.940329 + 0.340268i \(0.889482\pi\)
\(992\) 21.2245 + 23.4853i 0.673879 + 0.745658i
\(993\) −41.0416 41.0416i −1.30242 1.30242i
\(994\) 17.5288 23.6207i 0.555980 0.749203i
\(995\) −11.6718 11.6718i −0.370020 0.370020i
\(996\) 25.2260 47.1294i 0.799315 1.49335i
\(997\) −17.0711 −0.540646 −0.270323 0.962770i \(-0.587131\pi\)
−0.270323 + 0.962770i \(0.587131\pi\)
\(998\) 1.15894 + 7.82843i 0.0366857 + 0.247805i
\(999\) 9.61098 + 9.61098i 0.304078 + 0.304078i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 52.2.f.b.47.4 yes 8
3.2 odd 2 468.2.n.i.307.1 8
4.3 odd 2 inner 52.2.f.b.47.2 yes 8
8.3 odd 2 832.2.k.h.255.4 8
8.5 even 2 832.2.k.h.255.1 8
12.11 even 2 468.2.n.i.307.3 8
13.2 odd 12 676.2.l.l.19.4 16
13.3 even 3 676.2.l.l.319.2 16
13.4 even 6 676.2.l.h.427.4 16
13.5 odd 4 inner 52.2.f.b.31.2 8
13.6 odd 12 676.2.l.l.587.1 16
13.7 odd 12 676.2.l.h.587.4 16
13.8 odd 4 676.2.f.g.239.3 8
13.9 even 3 676.2.l.l.427.1 16
13.10 even 6 676.2.l.h.319.3 16
13.11 odd 12 676.2.l.h.19.1 16
13.12 even 2 676.2.f.g.99.1 8
39.5 even 4 468.2.n.i.343.3 8
52.3 odd 6 676.2.l.l.319.1 16
52.7 even 12 676.2.l.h.587.3 16
52.11 even 12 676.2.l.h.19.4 16
52.15 even 12 676.2.l.l.19.1 16
52.19 even 12 676.2.l.l.587.2 16
52.23 odd 6 676.2.l.h.319.4 16
52.31 even 4 inner 52.2.f.b.31.4 yes 8
52.35 odd 6 676.2.l.l.427.4 16
52.43 odd 6 676.2.l.h.427.1 16
52.47 even 4 676.2.f.g.239.1 8
52.51 odd 2 676.2.f.g.99.3 8
104.5 odd 4 832.2.k.h.447.1 8
104.83 even 4 832.2.k.h.447.4 8
156.83 odd 4 468.2.n.i.343.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.f.b.31.2 8 13.5 odd 4 inner
52.2.f.b.31.4 yes 8 52.31 even 4 inner
52.2.f.b.47.2 yes 8 4.3 odd 2 inner
52.2.f.b.47.4 yes 8 1.1 even 1 trivial
468.2.n.i.307.1 8 3.2 odd 2
468.2.n.i.307.3 8 12.11 even 2
468.2.n.i.343.1 8 156.83 odd 4
468.2.n.i.343.3 8 39.5 even 4
676.2.f.g.99.1 8 13.12 even 2
676.2.f.g.99.3 8 52.51 odd 2
676.2.f.g.239.1 8 52.47 even 4
676.2.f.g.239.3 8 13.8 odd 4
676.2.l.h.19.1 16 13.11 odd 12
676.2.l.h.19.4 16 52.11 even 12
676.2.l.h.319.3 16 13.10 even 6
676.2.l.h.319.4 16 52.23 odd 6
676.2.l.h.427.1 16 52.43 odd 6
676.2.l.h.427.4 16 13.4 even 6
676.2.l.h.587.3 16 52.7 even 12
676.2.l.h.587.4 16 13.7 odd 12
676.2.l.l.19.1 16 52.15 even 12
676.2.l.l.19.4 16 13.2 odd 12
676.2.l.l.319.1 16 52.3 odd 6
676.2.l.l.319.2 16 13.3 even 3
676.2.l.l.427.1 16 13.9 even 3
676.2.l.l.427.4 16 52.35 odd 6
676.2.l.l.587.1 16 13.6 odd 12
676.2.l.l.587.2 16 52.19 even 12
832.2.k.h.255.1 8 8.5 even 2
832.2.k.h.255.4 8 8.3 odd 2
832.2.k.h.447.1 8 104.5 odd 4
832.2.k.h.447.4 8 104.83 even 4