Properties

Label 52.2.l.a.7.1
Level $52$
Weight $2$
Character 52.7
Analytic conductor $0.415$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [52,2,Mod(7,52)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(52, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("52.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 52 = 2^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 52.l (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.415222090511\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 7.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 52.7
Dual form 52.2.l.a.15.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(1.73205 - 1.00000i) q^{4} +(2.36603 + 2.36603i) q^{5} +(-2.00000 + 2.00000i) q^{8} +(-1.50000 - 2.59808i) q^{9} +(-4.09808 - 2.36603i) q^{10} +(-1.59808 - 3.23205i) q^{13} +(2.00000 - 3.46410i) q^{16} +(-5.13397 + 2.96410i) q^{17} +(3.00000 + 3.00000i) q^{18} +(6.46410 + 1.73205i) q^{20} +6.19615i q^{25} +(3.36603 + 3.83013i) q^{26} +(5.33013 - 9.23205i) q^{29} +(-1.46410 + 5.46410i) q^{32} +(5.92820 - 5.92820i) q^{34} +(-5.19615 - 3.00000i) q^{36} +(1.30385 + 4.86603i) q^{37} -9.46410 q^{40} +(-11.3301 + 3.03590i) q^{41} +(2.59808 - 9.69615i) q^{45} +(6.06218 + 3.50000i) q^{49} +(-2.26795 - 8.46410i) q^{50} +(-6.00000 - 4.00000i) q^{52} +3.53590 q^{53} +(-3.90192 + 14.5622i) q^{58} +(7.69615 + 13.3301i) q^{61} -8.00000i q^{64} +(3.86603 - 11.4282i) q^{65} +(-5.92820 + 10.2679i) q^{68} +(8.19615 + 2.19615i) q^{72} +(1.16987 - 1.16987i) q^{73} +(-3.56218 - 6.16987i) q^{74} +(12.9282 - 3.46410i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(14.3660 - 8.29423i) q^{82} +(-19.1603 - 5.13397i) q^{85} +(1.09808 + 4.09808i) q^{89} +14.1962i q^{90} +(1.83013 - 6.83013i) q^{97} +(-9.56218 - 2.56218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 6 q^{5} - 8 q^{8} - 6 q^{9} - 6 q^{10} + 4 q^{13} + 8 q^{16} - 24 q^{17} + 12 q^{18} + 12 q^{20} + 10 q^{26} + 4 q^{29} + 8 q^{32} - 4 q^{34} + 26 q^{37} - 24 q^{40} - 28 q^{41} - 16 q^{50}+ \cdots - 14 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/52\mathbb{Z}\right)^\times\).

\(n\) \(27\) \(41\)
\(\chi(n)\) \(-1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.965926 + 0.258819i
\(3\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(4\) 1.73205 1.00000i 0.866025 0.500000i
\(5\) 2.36603 + 2.36603i 1.05812 + 1.05812i 0.998203 + 0.0599153i \(0.0190830\pi\)
0.0599153 + 0.998203i \(0.480917\pi\)
\(6\) 0 0
\(7\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) −1.50000 2.59808i −0.500000 0.866025i
\(10\) −4.09808 2.36603i −1.29593 0.748203i
\(11\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(12\) 0 0
\(13\) −1.59808 3.23205i −0.443227 0.896410i
\(14\) 0 0
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) −5.13397 + 2.96410i −1.24517 + 0.718900i −0.970143 0.242536i \(-0.922021\pi\)
−0.275029 + 0.961436i \(0.588688\pi\)
\(18\) 3.00000 + 3.00000i 0.707107 + 0.707107i
\(19\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(20\) 6.46410 + 1.73205i 1.44542 + 0.387298i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) 6.19615i 1.23923i
\(26\) 3.36603 + 3.83013i 0.660132 + 0.751150i
\(27\) 0 0
\(28\) 0 0
\(29\) 5.33013 9.23205i 0.989780 1.71435i 0.371391 0.928477i \(-0.378881\pi\)
0.618389 0.785872i \(-0.287786\pi\)
\(30\) 0 0
\(31\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(32\) −1.46410 + 5.46410i −0.258819 + 0.965926i
\(33\) 0 0
\(34\) 5.92820 5.92820i 1.01668 1.01668i
\(35\) 0 0
\(36\) −5.19615 3.00000i −0.866025 0.500000i
\(37\) 1.30385 + 4.86603i 0.214351 + 0.799970i 0.986394 + 0.164399i \(0.0525685\pi\)
−0.772043 + 0.635571i \(0.780765\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) −9.46410 −1.49641
\(41\) −11.3301 + 3.03590i −1.76947 + 0.474128i −0.988600 0.150567i \(-0.951890\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) 2.59808 9.69615i 0.387298 1.44542i
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) 0 0
\(49\) 6.06218 + 3.50000i 0.866025 + 0.500000i
\(50\) −2.26795 8.46410i −0.320736 1.19700i
\(51\) 0 0
\(52\) −6.00000 4.00000i −0.832050 0.554700i
\(53\) 3.53590 0.485693 0.242846 0.970065i \(-0.421919\pi\)
0.242846 + 0.970065i \(0.421919\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −3.90192 + 14.5622i −0.512348 + 1.91211i
\(59\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(60\) 0 0
\(61\) 7.69615 + 13.3301i 0.985391 + 1.70675i 0.640184 + 0.768221i \(0.278858\pi\)
0.345207 + 0.938527i \(0.387809\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 8.00000i 1.00000i
\(65\) 3.86603 11.4282i 0.479521 1.41749i
\(66\) 0 0
\(67\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(68\) −5.92820 + 10.2679i −0.718900 + 1.24517i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(72\) 8.19615 + 2.19615i 0.965926 + 0.258819i
\(73\) 1.16987 1.16987i 0.136923 0.136923i −0.635323 0.772246i \(-0.719133\pi\)
0.772246 + 0.635323i \(0.219133\pi\)
\(74\) −3.56218 6.16987i −0.414095 0.717233i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 12.9282 3.46410i 1.44542 0.387298i
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 14.3660 8.29423i 1.58646 0.915944i
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 0 0
\(85\) −19.1603 5.13397i −2.07822 0.556858i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1.09808 + 4.09808i 0.116396 + 0.434395i 0.999388 0.0349934i \(-0.0111410\pi\)
−0.882992 + 0.469389i \(0.844474\pi\)
\(90\) 14.1962i 1.49641i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.83013 6.83013i 0.185821 0.693494i −0.808632 0.588315i \(-0.799792\pi\)
0.994453 0.105180i \(-0.0335417\pi\)
\(98\) −9.56218 2.56218i −0.965926 0.258819i
\(99\) 0 0
\(100\) 6.19615 + 10.7321i 0.619615 + 1.07321i
\(101\) 7.16025 + 4.13397i 0.712472 + 0.411346i 0.811976 0.583691i \(-0.198392\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 9.66025 + 3.26795i 0.947266 + 0.320449i
\(105\) 0 0
\(106\) −4.83013 + 1.29423i −0.469143 + 0.125707i
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) 0 0
\(109\) −7.00000 7.00000i −0.670478 0.670478i 0.287348 0.957826i \(-0.407226\pi\)
−0.957826 + 0.287348i \(0.907226\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.0622 17.4282i −0.946570 1.63951i −0.752577 0.658505i \(-0.771189\pi\)
−0.193993 0.981003i \(-0.562144\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 21.3205i 1.97956i
\(117\) −6.00000 + 9.00000i −0.554700 + 0.832050i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.52628 + 5.50000i −0.866025 + 0.500000i
\(122\) −15.3923 15.3923i −1.39355 1.39355i
\(123\) 0 0
\(124\) 0 0
\(125\) −2.83013 + 2.83013i −0.253134 + 0.253134i
\(126\) 0 0
\(127\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(128\) 2.92820 + 10.9282i 0.258819 + 0.965926i
\(129\) 0 0
\(130\) −1.09808 + 17.0263i −0.0963077 + 1.49330i
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 4.33975 16.1962i 0.372130 1.38881i
\(137\) 12.9641 + 3.47372i 1.10760 + 0.296780i 0.765855 0.643013i \(-0.222316\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −12.0000 −1.00000
\(145\) 34.4545 9.23205i 2.86129 0.766680i
\(146\) −1.16987 + 2.02628i −0.0968194 + 0.167696i
\(147\) 0 0
\(148\) 7.12436 + 7.12436i 0.585618 + 0.585618i
\(149\) −2.16025 + 8.06218i −0.176975 + 0.660479i 0.819232 + 0.573462i \(0.194400\pi\)
−0.996207 + 0.0870170i \(0.972267\pi\)
\(150\) 0 0
\(151\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(152\) 0 0
\(153\) 15.4019 + 8.89230i 1.24517 + 0.718900i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 13.0526 1.04171 0.520854 0.853646i \(-0.325614\pi\)
0.520854 + 0.853646i \(0.325614\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) −16.3923 + 9.46410i −1.29593 + 0.748203i
\(161\) 0 0
\(162\) 3.29423 12.2942i 0.258819 0.965926i
\(163\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(164\) −16.5885 + 16.5885i −1.29534 + 1.29534i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(168\) 0 0
\(169\) −7.89230 + 10.3301i −0.607100 + 0.794625i
\(170\) 28.0526 2.15153
\(171\) 0 0
\(172\) 0 0
\(173\) 3.46410 2.00000i 0.263371 0.152057i −0.362500 0.931984i \(-0.618077\pi\)
0.625871 + 0.779926i \(0.284744\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) −3.00000 5.19615i −0.224860 0.389468i
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) −5.19615 19.3923i −0.387298 1.44542i
\(181\) 8.32051i 0.618458i −0.950988 0.309229i \(-0.899929\pi\)
0.950988 0.309229i \(-0.100071\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.42820 + 14.5981i −0.619654 + 1.07327i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 0 0
\(193\) −6.93782 25.8923i −0.499395 1.86377i −0.503871 0.863779i \(-0.668091\pi\)
0.00447566 0.999990i \(-0.498575\pi\)
\(194\) 10.0000i 0.717958i
\(195\) 0 0
\(196\) 14.0000 1.00000
\(197\) −20.4904 + 5.49038i −1.45988 + 0.391173i −0.899448 0.437028i \(-0.856031\pi\)
−0.560431 + 0.828201i \(0.689365\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) −12.3923 12.3923i −0.876268 0.876268i
\(201\) 0 0
\(202\) −11.2942 3.02628i −0.794659 0.212928i
\(203\) 0 0
\(204\) 0 0
\(205\) −33.9904 19.6244i −2.37399 1.37062i
\(206\) 0 0
\(207\) 0 0
\(208\) −14.3923 0.928203i −0.997927 0.0643593i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 6.12436 3.53590i 0.420622 0.242846i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 12.1244 + 7.00000i 0.821165 + 0.474100i
\(219\) 0 0
\(220\) 0 0
\(221\) 17.7846 + 11.8564i 1.19632 + 0.797548i
\(222\) 0 0
\(223\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(224\) 0 0
\(225\) 16.0981 9.29423i 1.07321 0.619615i
\(226\) 20.1244 + 20.1244i 1.33865 + 1.33865i
\(227\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(228\) 0 0
\(229\) −17.0000 + 17.0000i −1.12339 + 1.12339i −0.132164 + 0.991228i \(0.542192\pi\)
−0.991228 + 0.132164i \(0.957808\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 7.80385 + 29.1244i 0.512348 + 1.91211i
\(233\) 16.0000i 1.04819i −0.851658 0.524097i \(-0.824403\pi\)
0.851658 0.524097i \(-0.175597\pi\)
\(234\) 4.90192 14.4904i 0.320449 0.947266i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(240\) 0 0
\(241\) −0.0358984 0.00961894i −0.00231242 0.000619611i 0.257663 0.966235i \(-0.417048\pi\)
−0.259975 + 0.965615i \(0.583714\pi\)
\(242\) 11.0000 11.0000i 0.707107 0.707107i
\(243\) 0 0
\(244\) 26.6603 + 15.3923i 1.70675 + 0.985391i
\(245\) 6.06218 + 22.6244i 0.387298 + 1.44542i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 2.83013 4.90192i 0.178993 0.310025i
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −15.3564 8.86603i −0.957906 0.553047i −0.0623783 0.998053i \(-0.519869\pi\)
−0.895528 + 0.445005i \(0.853202\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −4.73205 23.6603i −0.293469 1.46735i
\(261\) −31.9808 −1.97956
\(262\) 0 0
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 8.36603 + 8.36603i 0.513921 + 0.513921i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.0000 + 17.3205i 0.609711 + 1.05605i 0.991288 + 0.131713i \(0.0420477\pi\)
−0.381577 + 0.924337i \(0.624619\pi\)
\(270\) 0 0
\(271\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(272\) 23.7128i 1.43780i
\(273\) 0 0
\(274\) −18.9808 −1.14667
\(275\) 0 0
\(276\) 0 0
\(277\) 25.6244 14.7942i 1.53962 0.888899i 0.540758 0.841178i \(-0.318138\pi\)
0.998861 0.0477206i \(-0.0151957\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 23.6865 23.6865i 1.41302 1.41302i 0.677466 0.735554i \(-0.263078\pi\)
0.735554 0.677466i \(-0.236922\pi\)
\(282\) 0 0
\(283\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 16.3923 4.39230i 0.965926 0.258819i
\(289\) 9.07180 15.7128i 0.533635 0.924283i
\(290\) −43.6865 + 25.2224i −2.56536 + 1.48111i
\(291\) 0 0
\(292\) 0.856406 3.19615i 0.0501174 0.187041i
\(293\) 30.7224 + 8.23205i 1.79482 + 0.480922i 0.993151 0.116841i \(-0.0372769\pi\)
0.801673 + 0.597763i \(0.203944\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −12.3397 7.12436i −0.717233 0.414095i
\(297\) 0 0
\(298\) 11.8038i 0.683779i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −13.3301 + 49.7487i −0.763281 + 2.84860i
\(306\) −24.2942 6.50962i −1.38881 0.372130i
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −24.0000 −1.35656 −0.678280 0.734803i \(-0.737274\pi\)
−0.678280 + 0.734803i \(0.737274\pi\)
\(314\) −17.8301 + 4.77757i −1.00621 + 0.269614i
\(315\) 0 0
\(316\) 0 0
\(317\) −20.1506 20.1506i −1.13177 1.13177i −0.989882 0.141890i \(-0.954682\pi\)
−0.141890 0.989882i \(-0.545318\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 18.9282 18.9282i 1.05812 1.05812i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 20.0263 9.90192i 1.11086 0.549260i
\(326\) 0 0
\(327\) 0 0
\(328\) 16.5885 28.7321i 0.915944 1.58646i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(332\) 0 0
\(333\) 10.6865 10.6865i 0.585618 0.585618i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 36.7128i 1.99987i 0.0112091 + 0.999937i \(0.496432\pi\)
−0.0112091 + 0.999937i \(0.503568\pi\)
\(338\) 7.00000 17.0000i 0.380750 0.924678i
\(339\) 0 0
\(340\) −38.3205 + 10.2679i −2.07822 + 0.556858i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −4.00000 + 4.00000i −0.215041 + 0.215041i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) −8.41858 31.4186i −0.450636 1.68180i −0.700609 0.713545i \(-0.747088\pi\)
0.249973 0.968253i \(-0.419578\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.42820 1.72243i 0.342139 0.0916758i −0.0836583 0.996495i \(-0.526660\pi\)
0.425797 + 0.904819i \(0.359994\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 6.00000 + 6.00000i 0.317999 + 0.317999i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(360\) 14.1962 + 24.5885i 0.748203 + 1.29593i
\(361\) −16.4545 9.50000i −0.866025 0.500000i
\(362\) 3.04552 + 11.3660i 0.160069 + 0.597385i
\(363\) 0 0
\(364\) 0 0
\(365\) 5.53590 0.289762
\(366\) 0 0
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) 24.8827 + 24.8827i 1.29534 + 1.29534i
\(370\) 6.16987 23.0263i 0.320756 1.19708i
\(371\) 0 0
\(372\) 0 0
\(373\) 2.93782 + 5.08846i 0.152115 + 0.263470i 0.932005 0.362446i \(-0.118058\pi\)
−0.779890 + 0.625917i \(0.784725\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −38.3564 2.47372i −1.97546 0.127403i
\(378\) 0 0
\(379\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 18.9545 + 32.8301i 0.964758 + 1.67101i
\(387\) 0 0
\(388\) −3.66025 13.6603i −0.185821 0.693494i
\(389\) 34.3205i 1.74012i −0.492947 0.870059i \(-0.664080\pi\)
0.492947 0.870059i \(-0.335920\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −19.1244 + 5.12436i −0.965926 + 0.258819i
\(393\) 0 0
\(394\) 25.9808 15.0000i 1.30889 0.755689i
\(395\) 0 0
\(396\) 0 0
\(397\) 34.1506 + 9.15064i 1.71397 + 0.459257i 0.976392 0.216004i \(-0.0693024\pi\)
0.737579 + 0.675261i \(0.235969\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 21.4641 + 12.3923i 1.07321 + 0.619615i
\(401\) −2.17949 8.13397i −0.108839 0.406191i 0.889914 0.456129i \(-0.150764\pi\)
−0.998752 + 0.0499376i \(0.984098\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 16.5359 0.822692
\(405\) −29.0885 + 7.79423i −1.44542 + 0.387298i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −10.4019 + 38.8205i −0.514342 + 1.91955i −0.148340 + 0.988936i \(0.547393\pi\)
−0.366002 + 0.930614i \(0.619274\pi\)
\(410\) 53.6147 + 14.3660i 2.64784 + 0.709487i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 20.0000 4.00000i 0.980581 0.196116i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0 0
\(421\) 15.3660 + 15.3660i 0.748894 + 0.748894i 0.974272 0.225377i \(-0.0723615\pi\)
−0.225377 + 0.974272i \(0.572361\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −7.07180 + 7.07180i −0.343437 + 0.343437i
\(425\) −18.3660 31.8109i −0.890883 1.54305i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(432\) 0 0
\(433\) −35.8923 + 20.7224i −1.72487 + 0.995857i −0.816968 + 0.576683i \(0.804347\pi\)
−0.907906 + 0.419173i \(0.862320\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −19.1244 5.12436i −0.915891 0.245412i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 21.0000i 1.00000i
\(442\) −28.6340 9.68653i −1.36198 0.460741i
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) −7.09808 + 12.2942i −0.336481 + 0.582802i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −36.8827 9.88269i −1.74060 0.466393i −0.758021 0.652230i \(-0.773834\pi\)
−0.982581 + 0.185837i \(0.940500\pi\)
\(450\) −18.5885 + 18.5885i −0.876268 + 0.876268i
\(451\) 0 0
\(452\) −34.8564 20.1244i −1.63951 0.946570i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 37.1865 9.96410i 1.73951 0.466101i 0.757174 0.653213i \(-0.226579\pi\)
0.982339 + 0.187112i \(0.0599128\pi\)
\(458\) 17.0000 29.4449i 0.794358 1.37587i
\(459\) 0 0
\(460\) 0 0
\(461\) 10.8397 40.4545i 0.504857 1.88415i 0.0391109 0.999235i \(-0.487547\pi\)
0.465746 0.884918i \(-0.345786\pi\)
\(462\) 0 0
\(463\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(464\) −21.3205 36.9282i −0.989780 1.71435i
\(465\) 0 0
\(466\) 5.85641 + 21.8564i 0.271293 + 1.01248i
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) −1.39230 + 21.5885i −0.0643593 + 0.997927i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −5.30385 9.18653i −0.242846 0.420622i
\(478\) 0 0
\(479\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(480\) 0 0
\(481\) 13.6436 11.9904i 0.622094 0.546714i
\(482\) 0.0525589 0.00239399
\(483\) 0 0
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) 20.4904 11.8301i 0.930420 0.537178i
\(486\) 0 0
\(487\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(488\) −42.0526 11.2679i −1.90363 0.510076i
\(489\) 0 0
\(490\) −16.5622 28.6865i −0.748203 1.29593i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 63.1962i 2.84621i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(500\) −2.07180 + 7.73205i −0.0926536 + 0.345788i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 0 0
\(505\) 7.16025 + 26.7224i 0.318627 + 1.18913i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 1.66987 0.447441i 0.0740158 0.0198325i −0.221621 0.975133i \(-0.571135\pi\)
0.295637 + 0.955300i \(0.404468\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) 24.2224 + 6.49038i 1.06841 + 0.286278i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 15.1244 + 30.5885i 0.663247 + 1.34139i
\(521\) 39.0526 1.71092 0.855462 0.517866i \(-0.173273\pi\)
0.855462 + 0.517866i \(0.173273\pi\)
\(522\) 43.6865 11.7058i 1.91211 0.512348i
\(523\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) −14.4904 8.36603i −0.629422 0.363397i
\(531\) 0 0
\(532\) 0 0
\(533\) 27.9186 + 31.7679i 1.20929 + 1.37602i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −20.0000 20.0000i −0.862261 0.862261i
\(539\) 0 0
\(540\) 0 0
\(541\) −21.3468 + 21.3468i −0.917770 + 0.917770i −0.996867 0.0790969i \(-0.974796\pi\)
0.0790969 + 0.996867i \(0.474796\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −8.67949 32.3923i −0.372130 1.38881i
\(545\) 33.1244i 1.41889i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 25.9282 6.94744i 1.10760 0.296780i
\(549\) 23.0885 39.9904i 0.985391 1.70675i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) −29.5885 + 29.5885i −1.25709 + 1.25709i
\(555\) 0 0
\(556\) 0 0
\(557\) 9.54552 + 35.6244i 0.404457 + 1.50945i 0.805056 + 0.593199i \(0.202135\pi\)
−0.400599 + 0.916253i \(0.631198\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −23.6865 + 41.0263i −0.999156 + 1.73059i
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 17.4282 65.0429i 0.733210 2.73638i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 34.6410 + 20.0000i 1.45223 + 0.838444i 0.998608 0.0527519i \(-0.0167993\pi\)
0.453619 + 0.891196i \(0.350133\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −20.7846 + 12.0000i −0.866025 + 0.500000i
\(577\) −33.1506 33.1506i −1.38008 1.38008i −0.844459 0.535620i \(-0.820078\pi\)
−0.535620 0.844459i \(-0.679922\pi\)
\(578\) −6.64102 + 24.7846i −0.276230 + 1.03090i
\(579\) 0 0
\(580\) 50.4449 50.4449i 2.09461 2.09461i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 4.67949i 0.193639i
\(585\) −35.4904 + 7.09808i −1.46735 + 0.293469i
\(586\) −44.9808 −1.85814
\(587\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 19.4641 + 5.21539i 0.799970 + 0.214351i
\(593\) −34.3468 + 34.3468i −1.41045 + 1.41045i −0.653698 + 0.756756i \(0.726783\pi\)
−0.756756 + 0.653698i \(0.773217\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 4.32051 + 16.1244i 0.176975 + 0.660479i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) −7.66987 + 13.2846i −0.312861 + 0.541891i −0.978980 0.203954i \(-0.934621\pi\)
0.666120 + 0.745845i \(0.267954\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −35.5526 9.52628i −1.44542 0.387298i
\(606\) 0 0
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 72.8372i 2.94909i
\(611\) 0 0
\(612\) 35.5692 1.43780
\(613\) −42.0885 + 11.2776i −1.69994 + 0.455497i −0.972924 0.231127i \(-0.925759\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 7.35641 27.4545i 0.296158 1.10528i −0.644136 0.764911i \(-0.722783\pi\)
0.940294 0.340365i \(-0.110551\pi\)
\(618\) 0 0
\(619\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 17.5885 0.703538
\(626\) 32.7846 8.78461i 1.31034 0.351104i
\(627\) 0 0
\(628\) 22.6077 13.0526i 0.902145 0.520854i
\(629\) −21.1173 21.1173i −0.842002 0.842002i
\(630\) 0 0
\(631\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 34.9019 + 20.1506i 1.38613 + 0.800284i
\(635\) 0 0
\(636\) 0 0
\(637\) 1.62436 25.1865i 0.0643593 0.997927i
\(638\) 0 0
\(639\) 0 0
\(640\) −18.9282 + 32.7846i −0.748203 + 1.29593i
\(641\) −27.6506 + 15.9641i −1.09213 + 0.630544i −0.934144 0.356897i \(-0.883835\pi\)
−0.157991 + 0.987441i \(0.550502\pi\)
\(642\) 0 0
\(643\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) −6.58846 24.5885i −0.258819 0.965926i
\(649\) 0 0
\(650\) −23.7321 + 20.8564i −0.930848 + 0.818056i
\(651\) 0 0
\(652\) 0 0
\(653\) −22.0000 + 38.1051i −0.860927 + 1.49117i 0.0101092 + 0.999949i \(0.496782\pi\)
−0.871036 + 0.491220i \(0.836551\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −12.1436 + 45.3205i −0.474128 + 1.76947i
\(657\) −4.79423 1.28461i −0.187041 0.0501174i
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −11.6962 43.6506i −0.454928 1.69781i −0.688301 0.725426i \(-0.741643\pi\)
0.233373 0.972387i \(-0.425024\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −10.6865 + 18.5096i −0.414095 + 0.717233i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 37.9186 + 21.8923i 1.46165 + 0.843886i 0.999088 0.0426985i \(-0.0135955\pi\)
0.462566 + 0.886585i \(0.346929\pi\)
\(674\) −13.4378 50.1506i −0.517606 1.93173i
\(675\) 0 0
\(676\) −3.33975 + 25.7846i −0.128452 + 0.991716i
\(677\) 2.00000 0.0768662 0.0384331 0.999261i \(-0.487763\pi\)
0.0384331 + 0.999261i \(0.487763\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 48.5885 28.0526i 1.86328 1.07577i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(684\) 0 0
\(685\) 22.4545 + 38.8923i 0.857942 + 1.48600i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −5.65064 11.4282i −0.215272 0.435380i
\(690\) 0 0
\(691\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(692\) 4.00000 6.92820i 0.152057 0.263371i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 49.1699 49.1699i 1.86244 1.86244i
\(698\) 23.0000 + 39.8372i 0.870563 + 1.50786i
\(699\) 0 0
\(700\) 0 0
\(701\) 10.0000i 0.377695i 0.982006 + 0.188847i \(0.0604752\pi\)
−0.982006 + 0.188847i \(0.939525\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −8.15064 + 4.70577i −0.306753 + 0.177104i
\(707\) 0 0
\(708\) 0 0
\(709\) −48.5526 13.0096i −1.82343 0.488586i −0.826227 0.563337i \(-0.809517\pi\)
−0.997202 + 0.0747503i \(0.976184\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −10.3923 6.00000i −0.389468 0.224860i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) −28.3923 28.3923i −1.05812 1.05812i
\(721\) 0 0
\(722\) 25.9545 + 6.95448i 0.965926 + 0.258819i
\(723\) 0 0
\(724\) −8.32051 14.4115i −0.309229 0.535601i
\(725\) 57.2032 + 33.0263i 2.12447 + 1.22657i
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) −7.56218 + 2.02628i −0.279889 + 0.0749960i
\(731\) 0 0
\(732\) 0 0
\(733\) −7.15064 7.15064i −0.264115 0.264115i 0.562609 0.826723i \(-0.309798\pi\)
−0.826723 + 0.562609i \(0.809798\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) −43.0981 24.8827i −1.58646 0.915944i
\(739\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(740\) 33.7128i 1.23931i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(744\) 0 0
\(745\) −24.1865 + 13.9641i −0.886126 + 0.511605i
\(746\) −5.87564 5.87564i −0.215123 0.215123i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 53.3013 10.6603i 1.94112 0.388224i
\(755\) 0 0
\(756\) 0 0
\(757\) −9.00000 + 15.5885i −0.327111 + 0.566572i −0.981937 0.189207i \(-0.939408\pi\)
0.654827 + 0.755779i \(0.272742\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.36603 0.366025i −0.0495184 0.0132684i 0.233975 0.972243i \(-0.424827\pi\)
−0.283493 + 0.958974i \(0.591493\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 15.4019 + 57.4808i 0.556858 + 2.07822i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 50.5429 13.5429i 1.82263 0.488371i 0.825518 0.564376i \(-0.190883\pi\)
0.997107 + 0.0760054i \(0.0242166\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −37.9090 37.9090i −1.36437 1.36437i
\(773\) 1.83013 6.83013i 0.0658251 0.245663i −0.925172 0.379549i \(-0.876079\pi\)
0.990997 + 0.133887i \(0.0427458\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 10.0000 + 17.3205i 0.358979 + 0.621770i
\(777\) 0 0
\(778\) 12.5622 + 46.8827i 0.450376 + 1.68083i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 24.2487 14.0000i 0.866025 0.500000i
\(785\) 30.8827 + 30.8827i 1.10225 + 1.10225i
\(786\) 0 0
\(787\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(788\) −30.0000 + 30.0000i −1.06871 + 1.06871i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 30.7846 46.1769i 1.09319 1.63979i
\(794\) −50.0000 −1.77443
\(795\) 0 0
\(796\) 0 0
\(797\) −19.0526 + 11.0000i −0.674876 + 0.389640i −0.797922 0.602761i \(-0.794067\pi\)
0.123045 + 0.992401i \(0.460734\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −33.8564 9.07180i −1.19700 0.320736i
\(801\) 9.00000 9.00000i 0.317999 0.317999i
\(802\) 5.95448 + 10.3135i 0.210260 + 0.364181i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) −22.5885 + 6.05256i −0.794659 + 0.212928i
\(809\) 18.3301 31.7487i 0.644453 1.11623i −0.339975 0.940435i \(-0.610418\pi\)
0.984428 0.175791i \(-0.0562482\pi\)
\(810\) 36.8827 21.2942i 1.29593 0.748203i
\(811\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 56.8372i 1.98726i
\(819\) 0 0
\(820\) −78.4974 −2.74125
\(821\) 15.0263 4.02628i 0.524421 0.140518i 0.0131101 0.999914i \(-0.495827\pi\)
0.511311 + 0.859396i \(0.329160\pi\)
\(822\) 0 0
\(823\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) −31.8397 18.3827i −1.10584 0.638457i −0.168091 0.985771i \(-0.553760\pi\)
−0.937749 + 0.347314i \(0.887094\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −25.8564 + 12.7846i −0.896410 + 0.443227i
\(833\) −41.4974 −1.43780
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(840\) 0 0
\(841\) −42.3205 73.3013i −1.45933 2.52763i
\(842\) −26.6147 15.3660i −0.917204 0.529548i
\(843\) 0 0
\(844\) 0 0
\(845\) −43.1147 + 5.76795i −1.48319 + 0.198423i
\(846\) 0 0
\(847\) 0 0
\(848\) 7.07180 12.2487i 0.242846 0.420622i
\(849\) 0 0
\(850\) 36.7321 + 36.7321i 1.25990 + 1.25990i
\(851\) 0 0
\(852\) 0 0
\(853\) −24.8301 + 24.8301i −0.850167 + 0.850167i −0.990153 0.139986i \(-0.955294\pi\)
0.139986 + 0.990153i \(0.455294\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 46.2295i 1.57917i 0.613642 + 0.789584i \(0.289704\pi\)
−0.613642 + 0.789584i \(0.710296\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 12.9282 + 3.46410i 0.439572 + 0.117783i
\(866\) 41.4449 41.4449i 1.40835 1.40835i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 28.0000 0.948200
\(873\) −20.4904 + 5.49038i −0.693494 + 0.185821i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −0.885263 + 3.30385i −0.0298932 + 0.111563i −0.979260 0.202606i \(-0.935059\pi\)
0.949367 + 0.314169i \(0.101726\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 23.6436 + 13.6506i 0.796573 + 0.459902i 0.842271 0.539054i \(-0.181218\pi\)
−0.0456985 + 0.998955i \(0.514551\pi\)
\(882\) 7.68653 + 28.6865i 0.258819 + 0.965926i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 42.6603 + 2.75129i 1.43482 + 0.0925359i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 5.19615 19.3923i 0.174175 0.650032i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 54.0000 1.80200
\(899\) 0 0
\(900\) 18.5885 32.1962i 0.619615 1.07321i
\(901\) −18.1532 + 10.4808i −0.604771 + 0.349165i
\(902\) 0 0
\(903\) 0 0
\(904\) 54.9808 + 14.7321i 1.82863 + 0.489981i
\(905\) 19.6865 19.6865i 0.654403 0.654403i
\(906\) 0 0
\(907\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(908\) 0 0
\(909\) 24.8038i 0.822692i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −47.1506 + 27.2224i −1.55960 + 0.900438i
\(915\) 0 0
\(916\) −12.4449 + 46.4449i −0.411190 + 1.53458i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 59.2295i 1.95062i
\(923\) 0 0
\(924\) 0 0
\(925\) −30.1506 + 8.07884i −0.991347 + 0.265631i
\(926\) 0 0
\(927\) 0 0
\(928\) 42.6410 + 42.6410i 1.39976 + 1.39976i
\(929\) −6.91858 + 25.8205i −0.226991 + 0.847143i 0.754606 + 0.656179i \(0.227828\pi\)
−0.981597 + 0.190965i \(0.938838\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −16.0000 27.7128i −0.524097 0.907763i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) −6.00000 30.0000i −0.196116 0.980581i
\(937\) 22.5692 0.737304 0.368652 0.929567i \(-0.379819\pi\)
0.368652 + 0.929567i \(0.379819\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 19.0000 + 19.0000i 0.619382 + 0.619382i 0.945373 0.325991i \(-0.105698\pi\)
−0.325991 + 0.945373i \(0.605698\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(948\) 0 0
\(949\) −5.65064 1.91154i −0.183427 0.0620513i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 48.4974 28.0000i 1.57099 0.907009i 0.574937 0.818198i \(-0.305026\pi\)
0.996048 0.0888114i \(-0.0283068\pi\)
\(954\) 10.6077 + 10.6077i 0.343437 + 0.343437i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000i 1.00000i
\(962\) −14.2487 + 21.3731i −0.459397 + 0.689095i
\(963\) 0 0
\(964\) −0.0717968 + 0.0192379i −0.00231242 + 0.000619611i
\(965\) 44.8468 77.6769i 1.44367 2.50051i
\(966\) 0 0
\(967\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(968\) 8.05256 30.0526i 0.258819 0.965926i
\(969\) 0 0
\(970\) −23.6603 + 23.6603i −0.759685 + 0.759685i
\(971\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 61.5692 1.97078
\(977\) −59.8468 + 16.0359i −1.91467 + 0.513034i −0.922890 + 0.385063i \(0.874180\pi\)
−0.991778 + 0.127971i \(0.959153\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 33.1244 + 33.1244i 1.05812 + 1.05812i
\(981\) −7.68653 + 28.6865i −0.245412 + 0.915891i
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) −61.4711 35.4904i −1.95863 1.13082i
\(986\) −23.1314 86.3275i −0.736654 2.74923i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 20.6962 + 35.8468i 0.655454 + 1.13528i 0.981780 + 0.190022i \(0.0608559\pi\)
−0.326326 + 0.945257i \(0.605811\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 52.2.l.a.7.1 4
3.2 odd 2 468.2.cb.d.163.1 4
4.3 odd 2 CM 52.2.l.a.7.1 4
8.3 odd 2 832.2.bu.d.319.1 4
8.5 even 2 832.2.bu.d.319.1 4
12.11 even 2 468.2.cb.d.163.1 4
13.2 odd 12 inner 52.2.l.a.15.1 yes 4
13.3 even 3 676.2.l.c.427.1 4
13.4 even 6 676.2.f.d.99.1 4
13.5 odd 4 676.2.l.c.19.1 4
13.6 odd 12 676.2.f.e.239.2 4
13.7 odd 12 676.2.f.d.239.1 4
13.8 odd 4 676.2.l.e.19.1 4
13.9 even 3 676.2.f.e.99.2 4
13.10 even 6 676.2.l.e.427.1 4
13.11 odd 12 676.2.l.d.587.1 4
13.12 even 2 676.2.l.d.319.1 4
39.2 even 12 468.2.cb.d.379.1 4
52.3 odd 6 676.2.l.c.427.1 4
52.7 even 12 676.2.f.d.239.1 4
52.11 even 12 676.2.l.d.587.1 4
52.15 even 12 inner 52.2.l.a.15.1 yes 4
52.19 even 12 676.2.f.e.239.2 4
52.23 odd 6 676.2.l.e.427.1 4
52.31 even 4 676.2.l.c.19.1 4
52.35 odd 6 676.2.f.e.99.2 4
52.43 odd 6 676.2.f.d.99.1 4
52.47 even 4 676.2.l.e.19.1 4
52.51 odd 2 676.2.l.d.319.1 4
104.67 even 12 832.2.bu.d.639.1 4
104.93 odd 12 832.2.bu.d.639.1 4
156.119 odd 12 468.2.cb.d.379.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
52.2.l.a.7.1 4 1.1 even 1 trivial
52.2.l.a.7.1 4 4.3 odd 2 CM
52.2.l.a.15.1 yes 4 13.2 odd 12 inner
52.2.l.a.15.1 yes 4 52.15 even 12 inner
468.2.cb.d.163.1 4 3.2 odd 2
468.2.cb.d.163.1 4 12.11 even 2
468.2.cb.d.379.1 4 39.2 even 12
468.2.cb.d.379.1 4 156.119 odd 12
676.2.f.d.99.1 4 13.4 even 6
676.2.f.d.99.1 4 52.43 odd 6
676.2.f.d.239.1 4 13.7 odd 12
676.2.f.d.239.1 4 52.7 even 12
676.2.f.e.99.2 4 13.9 even 3
676.2.f.e.99.2 4 52.35 odd 6
676.2.f.e.239.2 4 13.6 odd 12
676.2.f.e.239.2 4 52.19 even 12
676.2.l.c.19.1 4 13.5 odd 4
676.2.l.c.19.1 4 52.31 even 4
676.2.l.c.427.1 4 13.3 even 3
676.2.l.c.427.1 4 52.3 odd 6
676.2.l.d.319.1 4 13.12 even 2
676.2.l.d.319.1 4 52.51 odd 2
676.2.l.d.587.1 4 13.11 odd 12
676.2.l.d.587.1 4 52.11 even 12
676.2.l.e.19.1 4 13.8 odd 4
676.2.l.e.19.1 4 52.47 even 4
676.2.l.e.427.1 4 13.10 even 6
676.2.l.e.427.1 4 52.23 odd 6
832.2.bu.d.319.1 4 8.3 odd 2
832.2.bu.d.319.1 4 8.5 even 2
832.2.bu.d.639.1 4 104.67 even 12
832.2.bu.d.639.1 4 104.93 odd 12