Properties

Label 520.6.a.e
Level $520$
Weight $6$
Character orbit 520.a
Self dual yes
Analytic conductor $83.400$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,6,Mod(1,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 520.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(83.3995863027\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 1392x^{6} - 960x^{5} + 541704x^{4} + 955392x^{3} - 49992640x^{2} - 201007872x + 5544720 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{15}\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 2) q^{3} - 25 q^{5} + ( - \beta_{2} + 23) q^{7} + (\beta_{3} - \beta_{2} - 3 \beta_1 + 109) q^{9} + (\beta_{7} - \beta_{4} - 4 \beta_1 + 16) q^{11} + 169 q^{13} + ( - 25 \beta_1 + 50) q^{15}+ \cdots + ( - 169 \beta_{7} - 37 \beta_{6} + \cdots + 39118) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{3} - 200 q^{5} + 184 q^{7} + 872 q^{9} + 128 q^{11} + 1352 q^{13} + 400 q^{15} + 1656 q^{17} - 2112 q^{19} - 1352 q^{21} - 1144 q^{23} + 5000 q^{25} - 6112 q^{27} - 6672 q^{29} - 2984 q^{31}+ \cdots + 312944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 1392x^{6} - 960x^{5} + 541704x^{4} + 955392x^{3} - 49992640x^{2} - 201007872x + 5544720 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 163 \nu^{7} + 574 \nu^{6} + 250262 \nu^{5} - 902522 \nu^{4} - 114612364 \nu^{3} + \cdots + 17405786520 ) / 283757760 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 163 \nu^{7} + 574 \nu^{6} + 250262 \nu^{5} - 902522 \nu^{4} - 114612364 \nu^{3} + \cdots - 81341913960 ) / 283757760 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 20 \nu^{7} + 167 \nu^{6} + 21286 \nu^{5} - 160462 \nu^{4} - 6054464 \nu^{3} + \cdots + 2326668840 ) / 21827520 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 406 \nu^{7} + 12310 \nu^{6} + 547190 \nu^{5} - 14254391 \nu^{4} - 198999712 \nu^{3} + \cdots - 70426804860 ) / 141878880 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 250 \nu^{7} + 1119 \nu^{6} - 359938 \nu^{5} - 2053654 \nu^{4} + 152417592 \nu^{3} + \cdots - 89164763640 ) / 94585920 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 1376 \nu^{7} - 5543 \nu^{6} - 1880389 \nu^{5} + 6171619 \nu^{4} + 696868448 \nu^{3} + \cdots - 73845429300 ) / 141878880 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - \beta_{2} + \beta _1 + 348 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{7} + \beta_{6} - 7\beta_{4} - 4\beta_{3} - 14\beta_{2} + 620\beta _1 + 360 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 16\beta_{7} - 104\beta_{6} + 32\beta_{5} - 40\beta_{4} + 760\beta_{3} - 1064\beta_{2} + 776\beta _1 + 213564 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( - 1552 \beta_{7} + 152 \beta_{6} + 352 \beta_{5} - 8552 \beta_{4} - 2928 \beta_{3} - 10688 \beta_{2} + \cdots + 238080 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 22688 \beta_{7} - 121648 \beta_{6} + 50816 \beta_{5} - 48368 \beta_{4} + 567420 \beta_{3} + \cdots + 146608176 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( - 985272 \beta_{7} - 322308 \beta_{6} + 542208 \beta_{5} - 8157156 \beta_{4} - 2077200 \beta_{3} + \cdots + 184820832 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−27.7866
−21.5235
−9.07452
−4.68805
0.0273980
12.7436
22.2538
28.0480
0 −29.7866 0 −25.0000 0 138.753 0 644.243 0
1.2 0 −23.5235 0 −25.0000 0 −122.557 0 310.356 0
1.3 0 −11.0745 0 −25.0000 0 109.586 0 −120.355 0
1.4 0 −6.68805 0 −25.0000 0 140.231 0 −198.270 0
1.5 0 −1.97260 0 −25.0000 0 −39.7415 0 −239.109 0
1.6 0 10.7436 0 −25.0000 0 −213.035 0 −127.575 0
1.7 0 20.2538 0 −25.0000 0 32.4777 0 167.214 0
1.8 0 26.0480 0 −25.0000 0 138.286 0 435.496 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 520.6.a.e 8
4.b odd 2 1 1040.6.a.z 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
520.6.a.e 8 1.a even 1 1 trivial
1040.6.a.z 8 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 16 T_{3}^{7} - 1280 T_{3}^{6} - 17216 T_{3}^{5} + 449704 T_{3}^{4} + 5029696 T_{3}^{3} + \cdots - 580250736 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(520))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} + 16 T^{7} + \cdots - 580250736 \) Copy content Toggle raw display
$5$ \( (T + 25)^{8} \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots - 99\!\cdots\!80 \) Copy content Toggle raw display
$11$ \( T^{8} + \cdots - 22\!\cdots\!08 \) Copy content Toggle raw display
$13$ \( (T - 169)^{8} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 22\!\cdots\!40 \) Copy content Toggle raw display
$19$ \( T^{8} + \cdots + 11\!\cdots\!36 \) Copy content Toggle raw display
$23$ \( T^{8} + \cdots + 41\!\cdots\!12 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 23\!\cdots\!36 \) Copy content Toggle raw display
$31$ \( T^{8} + \cdots + 35\!\cdots\!40 \) Copy content Toggle raw display
$37$ \( T^{8} + \cdots + 58\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots - 49\!\cdots\!64 \) Copy content Toggle raw display
$43$ \( T^{8} + \cdots + 73\!\cdots\!88 \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 51\!\cdots\!28 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 12\!\cdots\!32 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 64\!\cdots\!12 \) Copy content Toggle raw display
$61$ \( T^{8} + \cdots - 22\!\cdots\!00 \) Copy content Toggle raw display
$67$ \( T^{8} + \cdots - 89\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots - 21\!\cdots\!52 \) Copy content Toggle raw display
$73$ \( T^{8} + \cdots - 39\!\cdots\!76 \) Copy content Toggle raw display
$79$ \( T^{8} + \cdots - 95\!\cdots\!32 \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 47\!\cdots\!92 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 88\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{8} + \cdots - 18\!\cdots\!00 \) Copy content Toggle raw display
show more
show less