Properties

Label 520.6.a.f.1.4
Level $520$
Weight $6$
Character 520.1
Self dual yes
Analytic conductor $83.400$
Analytic rank $1$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [520,6,Mod(1,520)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(520, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("520.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 520 = 2^{3} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 520.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(83.3995863027\)
Analytic rank: \(1\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 1344x^{6} - 288x^{5} + 542568x^{4} - 84480x^{3} - 68942848x^{2} + 12558720x + 2674054800 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{15}\cdot 3\cdot 5 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(9.12057\) of defining polynomial
Character \(\chi\) \(=\) 520.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-9.12057 q^{3} -25.0000 q^{5} -144.052 q^{7} -159.815 q^{9} +23.7578 q^{11} +169.000 q^{13} +228.014 q^{15} +2132.02 q^{17} +1778.03 q^{19} +1313.84 q^{21} -1674.13 q^{23} +625.000 q^{25} +3673.90 q^{27} +4178.58 q^{29} +16.6679 q^{31} -216.685 q^{33} +3601.31 q^{35} -1720.13 q^{37} -1541.38 q^{39} -16050.6 q^{41} -4407.92 q^{43} +3995.38 q^{45} +1552.64 q^{47} +3944.04 q^{49} -19445.3 q^{51} +9246.04 q^{53} -593.945 q^{55} -16216.6 q^{57} -6141.23 q^{59} +43277.4 q^{61} +23021.7 q^{63} -4225.00 q^{65} -22908.3 q^{67} +15269.0 q^{69} +19984.4 q^{71} -44846.4 q^{73} -5700.36 q^{75} -3422.36 q^{77} -82083.4 q^{79} +5327.01 q^{81} +6507.80 q^{83} -53300.6 q^{85} -38111.0 q^{87} +42668.5 q^{89} -24344.8 q^{91} -152.021 q^{93} -44450.7 q^{95} +38025.5 q^{97} -3796.86 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 200 q^{5} - 184 q^{7} + 744 q^{9} - 720 q^{11} + 1352 q^{13} - 248 q^{17} - 2544 q^{19} + 4520 q^{21} - 88 q^{23} + 5000 q^{25} - 864 q^{27} + 2224 q^{29} + 5368 q^{31} + 9720 q^{33} + 4600 q^{35}+ \cdots - 395808 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −9.12057 −0.585085 −0.292542 0.956253i \(-0.594501\pi\)
−0.292542 + 0.956253i \(0.594501\pi\)
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) −144.052 −1.11116 −0.555578 0.831465i \(-0.687503\pi\)
−0.555578 + 0.831465i \(0.687503\pi\)
\(8\) 0 0
\(9\) −159.815 −0.657676
\(10\) 0 0
\(11\) 23.7578 0.0592004 0.0296002 0.999562i \(-0.490577\pi\)
0.0296002 + 0.999562i \(0.490577\pi\)
\(12\) 0 0
\(13\) 169.000 0.277350
\(14\) 0 0
\(15\) 228.014 0.261658
\(16\) 0 0
\(17\) 2132.02 1.78924 0.894622 0.446824i \(-0.147445\pi\)
0.894622 + 0.446824i \(0.147445\pi\)
\(18\) 0 0
\(19\) 1778.03 1.12994 0.564969 0.825112i \(-0.308888\pi\)
0.564969 + 0.825112i \(0.308888\pi\)
\(20\) 0 0
\(21\) 1313.84 0.650120
\(22\) 0 0
\(23\) −1674.13 −0.659888 −0.329944 0.944001i \(-0.607030\pi\)
−0.329944 + 0.944001i \(0.607030\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 3673.90 0.969881
\(28\) 0 0
\(29\) 4178.58 0.922643 0.461321 0.887233i \(-0.347376\pi\)
0.461321 + 0.887233i \(0.347376\pi\)
\(30\) 0 0
\(31\) 16.6679 0.00311513 0.00155757 0.999999i \(-0.499504\pi\)
0.00155757 + 0.999999i \(0.499504\pi\)
\(32\) 0 0
\(33\) −216.685 −0.0346372
\(34\) 0 0
\(35\) 3601.31 0.496924
\(36\) 0 0
\(37\) −1720.13 −0.206565 −0.103283 0.994652i \(-0.532935\pi\)
−0.103283 + 0.994652i \(0.532935\pi\)
\(38\) 0 0
\(39\) −1541.38 −0.162273
\(40\) 0 0
\(41\) −16050.6 −1.49118 −0.745591 0.666404i \(-0.767833\pi\)
−0.745591 + 0.666404i \(0.767833\pi\)
\(42\) 0 0
\(43\) −4407.92 −0.363549 −0.181774 0.983340i \(-0.558184\pi\)
−0.181774 + 0.983340i \(0.558184\pi\)
\(44\) 0 0
\(45\) 3995.38 0.294122
\(46\) 0 0
\(47\) 1552.64 0.102524 0.0512622 0.998685i \(-0.483676\pi\)
0.0512622 + 0.998685i \(0.483676\pi\)
\(48\) 0 0
\(49\) 3944.04 0.234666
\(50\) 0 0
\(51\) −19445.3 −1.04686
\(52\) 0 0
\(53\) 9246.04 0.452133 0.226067 0.974112i \(-0.427413\pi\)
0.226067 + 0.974112i \(0.427413\pi\)
\(54\) 0 0
\(55\) −593.945 −0.0264752
\(56\) 0 0
\(57\) −16216.6 −0.661110
\(58\) 0 0
\(59\) −6141.23 −0.229681 −0.114841 0.993384i \(-0.536636\pi\)
−0.114841 + 0.993384i \(0.536636\pi\)
\(60\) 0 0
\(61\) 43277.4 1.48914 0.744571 0.667543i \(-0.232654\pi\)
0.744571 + 0.667543i \(0.232654\pi\)
\(62\) 0 0
\(63\) 23021.7 0.730780
\(64\) 0 0
\(65\) −4225.00 −0.124035
\(66\) 0 0
\(67\) −22908.3 −0.623455 −0.311728 0.950172i \(-0.600908\pi\)
−0.311728 + 0.950172i \(0.600908\pi\)
\(68\) 0 0
\(69\) 15269.0 0.386090
\(70\) 0 0
\(71\) 19984.4 0.470485 0.235243 0.971937i \(-0.424412\pi\)
0.235243 + 0.971937i \(0.424412\pi\)
\(72\) 0 0
\(73\) −44846.4 −0.984965 −0.492482 0.870322i \(-0.663910\pi\)
−0.492482 + 0.870322i \(0.663910\pi\)
\(74\) 0 0
\(75\) −5700.36 −0.117017
\(76\) 0 0
\(77\) −3422.36 −0.0657808
\(78\) 0 0
\(79\) −82083.4 −1.47975 −0.739873 0.672746i \(-0.765115\pi\)
−0.739873 + 0.672746i \(0.765115\pi\)
\(80\) 0 0
\(81\) 5327.01 0.0902134
\(82\) 0 0
\(83\) 6507.80 0.103690 0.0518452 0.998655i \(-0.483490\pi\)
0.0518452 + 0.998655i \(0.483490\pi\)
\(84\) 0 0
\(85\) −53300.6 −0.800174
\(86\) 0 0
\(87\) −38111.0 −0.539824
\(88\) 0 0
\(89\) 42668.5 0.570995 0.285498 0.958379i \(-0.407841\pi\)
0.285498 + 0.958379i \(0.407841\pi\)
\(90\) 0 0
\(91\) −24344.8 −0.308179
\(92\) 0 0
\(93\) −152.021 −0.00182262
\(94\) 0 0
\(95\) −44450.7 −0.505324
\(96\) 0 0
\(97\) 38025.5 0.410341 0.205171 0.978726i \(-0.434225\pi\)
0.205171 + 0.978726i \(0.434225\pi\)
\(98\) 0 0
\(99\) −3796.86 −0.0389347
\(100\) 0 0
\(101\) 56768.0 0.553733 0.276867 0.960908i \(-0.410704\pi\)
0.276867 + 0.960908i \(0.410704\pi\)
\(102\) 0 0
\(103\) 162419. 1.50850 0.754248 0.656590i \(-0.228002\pi\)
0.754248 + 0.656590i \(0.228002\pi\)
\(104\) 0 0
\(105\) −32845.9 −0.290743
\(106\) 0 0
\(107\) −173227. −1.46270 −0.731349 0.682003i \(-0.761109\pi\)
−0.731349 + 0.682003i \(0.761109\pi\)
\(108\) 0 0
\(109\) −111738. −0.900815 −0.450408 0.892823i \(-0.648721\pi\)
−0.450408 + 0.892823i \(0.648721\pi\)
\(110\) 0 0
\(111\) 15688.6 0.120858
\(112\) 0 0
\(113\) 59496.9 0.438327 0.219164 0.975688i \(-0.429667\pi\)
0.219164 + 0.975688i \(0.429667\pi\)
\(114\) 0 0
\(115\) 41853.3 0.295111
\(116\) 0 0
\(117\) −27008.8 −0.182406
\(118\) 0 0
\(119\) −307122. −1.98813
\(120\) 0 0
\(121\) −160487. −0.996495
\(122\) 0 0
\(123\) 146390. 0.872468
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) 50779.4 0.279369 0.139685 0.990196i \(-0.455391\pi\)
0.139685 + 0.990196i \(0.455391\pi\)
\(128\) 0 0
\(129\) 40202.7 0.212707
\(130\) 0 0
\(131\) −172865. −0.880094 −0.440047 0.897975i \(-0.645038\pi\)
−0.440047 + 0.897975i \(0.645038\pi\)
\(132\) 0 0
\(133\) −256129. −1.25554
\(134\) 0 0
\(135\) −91847.6 −0.433744
\(136\) 0 0
\(137\) −149678. −0.681329 −0.340664 0.940185i \(-0.610652\pi\)
−0.340664 + 0.940185i \(0.610652\pi\)
\(138\) 0 0
\(139\) −331638. −1.45589 −0.727943 0.685638i \(-0.759523\pi\)
−0.727943 + 0.685638i \(0.759523\pi\)
\(140\) 0 0
\(141\) −14161.0 −0.0599854
\(142\) 0 0
\(143\) 4015.07 0.0164192
\(144\) 0 0
\(145\) −104464. −0.412618
\(146\) 0 0
\(147\) −35971.9 −0.137300
\(148\) 0 0
\(149\) 97173.1 0.358575 0.179288 0.983797i \(-0.442621\pi\)
0.179288 + 0.983797i \(0.442621\pi\)
\(150\) 0 0
\(151\) −451968. −1.61311 −0.806557 0.591156i \(-0.798672\pi\)
−0.806557 + 0.591156i \(0.798672\pi\)
\(152\) 0 0
\(153\) −340730. −1.17674
\(154\) 0 0
\(155\) −416.697 −0.00139313
\(156\) 0 0
\(157\) 274661. 0.889299 0.444649 0.895705i \(-0.353328\pi\)
0.444649 + 0.895705i \(0.353328\pi\)
\(158\) 0 0
\(159\) −84329.2 −0.264536
\(160\) 0 0
\(161\) 241162. 0.733238
\(162\) 0 0
\(163\) 27177.3 0.0801193 0.0400596 0.999197i \(-0.487245\pi\)
0.0400596 + 0.999197i \(0.487245\pi\)
\(164\) 0 0
\(165\) 5417.12 0.0154902
\(166\) 0 0
\(167\) −1208.42 −0.00335294 −0.00167647 0.999999i \(-0.500534\pi\)
−0.00167647 + 0.999999i \(0.500534\pi\)
\(168\) 0 0
\(169\) 28561.0 0.0769231
\(170\) 0 0
\(171\) −284156. −0.743133
\(172\) 0 0
\(173\) 447636. 1.13713 0.568565 0.822639i \(-0.307499\pi\)
0.568565 + 0.822639i \(0.307499\pi\)
\(174\) 0 0
\(175\) −90032.6 −0.222231
\(176\) 0 0
\(177\) 56011.5 0.134383
\(178\) 0 0
\(179\) 398599. 0.929831 0.464915 0.885355i \(-0.346085\pi\)
0.464915 + 0.885355i \(0.346085\pi\)
\(180\) 0 0
\(181\) −179681. −0.407667 −0.203834 0.979006i \(-0.565340\pi\)
−0.203834 + 0.979006i \(0.565340\pi\)
\(182\) 0 0
\(183\) −394714. −0.871275
\(184\) 0 0
\(185\) 43003.3 0.0923788
\(186\) 0 0
\(187\) 50652.2 0.105924
\(188\) 0 0
\(189\) −529234. −1.07769
\(190\) 0 0
\(191\) −717340. −1.42279 −0.711397 0.702791i \(-0.751937\pi\)
−0.711397 + 0.702791i \(0.751937\pi\)
\(192\) 0 0
\(193\) 12670.9 0.0244859 0.0122429 0.999925i \(-0.496103\pi\)
0.0122429 + 0.999925i \(0.496103\pi\)
\(194\) 0 0
\(195\) 38534.4 0.0725708
\(196\) 0 0
\(197\) −22270.9 −0.0408859 −0.0204429 0.999791i \(-0.506508\pi\)
−0.0204429 + 0.999791i \(0.506508\pi\)
\(198\) 0 0
\(199\) −585539. −1.04815 −0.524074 0.851673i \(-0.675589\pi\)
−0.524074 + 0.851673i \(0.675589\pi\)
\(200\) 0 0
\(201\) 208936. 0.364774
\(202\) 0 0
\(203\) −601933. −1.02520
\(204\) 0 0
\(205\) 401264. 0.666877
\(206\) 0 0
\(207\) 267552. 0.433992
\(208\) 0 0
\(209\) 42242.1 0.0668928
\(210\) 0 0
\(211\) −410386. −0.634581 −0.317290 0.948328i \(-0.602773\pi\)
−0.317290 + 0.948328i \(0.602773\pi\)
\(212\) 0 0
\(213\) −182269. −0.275274
\(214\) 0 0
\(215\) 110198. 0.162584
\(216\) 0 0
\(217\) −2401.05 −0.00346139
\(218\) 0 0
\(219\) 409025. 0.576288
\(220\) 0 0
\(221\) 360312. 0.496247
\(222\) 0 0
\(223\) 360489. 0.485434 0.242717 0.970097i \(-0.421961\pi\)
0.242717 + 0.970097i \(0.421961\pi\)
\(224\) 0 0
\(225\) −99884.5 −0.131535
\(226\) 0 0
\(227\) −942901. −1.21451 −0.607256 0.794506i \(-0.707730\pi\)
−0.607256 + 0.794506i \(0.707730\pi\)
\(228\) 0 0
\(229\) 1.17645e6 1.48247 0.741233 0.671248i \(-0.234241\pi\)
0.741233 + 0.671248i \(0.234241\pi\)
\(230\) 0 0
\(231\) 31213.9 0.0384874
\(232\) 0 0
\(233\) −30735.0 −0.0370889 −0.0185445 0.999828i \(-0.505903\pi\)
−0.0185445 + 0.999828i \(0.505903\pi\)
\(234\) 0 0
\(235\) −38816.1 −0.0458503
\(236\) 0 0
\(237\) 748647. 0.865777
\(238\) 0 0
\(239\) −36995.5 −0.0418942 −0.0209471 0.999781i \(-0.506668\pi\)
−0.0209471 + 0.999781i \(0.506668\pi\)
\(240\) 0 0
\(241\) −1.24246e6 −1.37797 −0.688985 0.724776i \(-0.741943\pi\)
−0.688985 + 0.724776i \(0.741943\pi\)
\(242\) 0 0
\(243\) −941344. −1.02266
\(244\) 0 0
\(245\) −98601.0 −0.104946
\(246\) 0 0
\(247\) 300487. 0.313389
\(248\) 0 0
\(249\) −59354.8 −0.0606677
\(250\) 0 0
\(251\) 974724. 0.976556 0.488278 0.872688i \(-0.337625\pi\)
0.488278 + 0.872688i \(0.337625\pi\)
\(252\) 0 0
\(253\) −39773.7 −0.0390656
\(254\) 0 0
\(255\) 486131. 0.468170
\(256\) 0 0
\(257\) 435882. 0.411658 0.205829 0.978588i \(-0.434011\pi\)
0.205829 + 0.978588i \(0.434011\pi\)
\(258\) 0 0
\(259\) 247789. 0.229526
\(260\) 0 0
\(261\) −667801. −0.606800
\(262\) 0 0
\(263\) −80454.7 −0.0717236 −0.0358618 0.999357i \(-0.511418\pi\)
−0.0358618 + 0.999357i \(0.511418\pi\)
\(264\) 0 0
\(265\) −231151. −0.202200
\(266\) 0 0
\(267\) −389161. −0.334081
\(268\) 0 0
\(269\) −235559. −0.198481 −0.0992406 0.995063i \(-0.531641\pi\)
−0.0992406 + 0.995063i \(0.531641\pi\)
\(270\) 0 0
\(271\) −311240. −0.257438 −0.128719 0.991681i \(-0.541086\pi\)
−0.128719 + 0.991681i \(0.541086\pi\)
\(272\) 0 0
\(273\) 222039. 0.180311
\(274\) 0 0
\(275\) 14848.6 0.0118401
\(276\) 0 0
\(277\) −286468. −0.224325 −0.112162 0.993690i \(-0.535778\pi\)
−0.112162 + 0.993690i \(0.535778\pi\)
\(278\) 0 0
\(279\) −2663.78 −0.00204875
\(280\) 0 0
\(281\) −1.26444e6 −0.955280 −0.477640 0.878556i \(-0.658508\pi\)
−0.477640 + 0.878556i \(0.658508\pi\)
\(282\) 0 0
\(283\) −162953. −0.120947 −0.0604737 0.998170i \(-0.519261\pi\)
−0.0604737 + 0.998170i \(0.519261\pi\)
\(284\) 0 0
\(285\) 405416. 0.295657
\(286\) 0 0
\(287\) 2.31212e6 1.65693
\(288\) 0 0
\(289\) 3.12566e6 2.20139
\(290\) 0 0
\(291\) −346814. −0.240084
\(292\) 0 0
\(293\) 446869. 0.304096 0.152048 0.988373i \(-0.451413\pi\)
0.152048 + 0.988373i \(0.451413\pi\)
\(294\) 0 0
\(295\) 153531. 0.102717
\(296\) 0 0
\(297\) 87283.9 0.0574173
\(298\) 0 0
\(299\) −282928. −0.183020
\(300\) 0 0
\(301\) 634971. 0.403959
\(302\) 0 0
\(303\) −517757. −0.323981
\(304\) 0 0
\(305\) −1.08193e6 −0.665965
\(306\) 0 0
\(307\) −1.57280e6 −0.952417 −0.476209 0.879332i \(-0.657989\pi\)
−0.476209 + 0.879332i \(0.657989\pi\)
\(308\) 0 0
\(309\) −1.48136e6 −0.882598
\(310\) 0 0
\(311\) −326273. −0.191285 −0.0956423 0.995416i \(-0.530490\pi\)
−0.0956423 + 0.995416i \(0.530490\pi\)
\(312\) 0 0
\(313\) 1.65961e6 0.957514 0.478757 0.877948i \(-0.341088\pi\)
0.478757 + 0.877948i \(0.341088\pi\)
\(314\) 0 0
\(315\) −575543. −0.326815
\(316\) 0 0
\(317\) −2.30895e6 −1.29052 −0.645262 0.763962i \(-0.723252\pi\)
−0.645262 + 0.763962i \(0.723252\pi\)
\(318\) 0 0
\(319\) 99273.9 0.0546208
\(320\) 0 0
\(321\) 1.57992e6 0.855803
\(322\) 0 0
\(323\) 3.79080e6 2.02174
\(324\) 0 0
\(325\) 105625. 0.0554700
\(326\) 0 0
\(327\) 1.01912e6 0.527053
\(328\) 0 0
\(329\) −223662. −0.113920
\(330\) 0 0
\(331\) −3.59194e6 −1.80202 −0.901008 0.433802i \(-0.857172\pi\)
−0.901008 + 0.433802i \(0.857172\pi\)
\(332\) 0 0
\(333\) 274903. 0.135853
\(334\) 0 0
\(335\) 572707. 0.278818
\(336\) 0 0
\(337\) 1.19237e6 0.571920 0.285960 0.958242i \(-0.407688\pi\)
0.285960 + 0.958242i \(0.407688\pi\)
\(338\) 0 0
\(339\) −542646. −0.256458
\(340\) 0 0
\(341\) 395.992 0.000184417 0
\(342\) 0 0
\(343\) 1.85294e6 0.850405
\(344\) 0 0
\(345\) −381726. −0.172665
\(346\) 0 0
\(347\) −2.93534e6 −1.30868 −0.654341 0.756200i \(-0.727054\pi\)
−0.654341 + 0.756200i \(0.727054\pi\)
\(348\) 0 0
\(349\) 3.71742e6 1.63372 0.816861 0.576835i \(-0.195712\pi\)
0.816861 + 0.576835i \(0.195712\pi\)
\(350\) 0 0
\(351\) 620890. 0.268997
\(352\) 0 0
\(353\) 66123.6 0.0282436 0.0141218 0.999900i \(-0.495505\pi\)
0.0141218 + 0.999900i \(0.495505\pi\)
\(354\) 0 0
\(355\) −499611. −0.210407
\(356\) 0 0
\(357\) 2.80113e6 1.16322
\(358\) 0 0
\(359\) −526246. −0.215503 −0.107751 0.994178i \(-0.534365\pi\)
−0.107751 + 0.994178i \(0.534365\pi\)
\(360\) 0 0
\(361\) 685289. 0.276762
\(362\) 0 0
\(363\) 1.46373e6 0.583034
\(364\) 0 0
\(365\) 1.12116e6 0.440490
\(366\) 0 0
\(367\) 2.00018e6 0.775181 0.387591 0.921832i \(-0.373307\pi\)
0.387591 + 0.921832i \(0.373307\pi\)
\(368\) 0 0
\(369\) 2.56512e6 0.980714
\(370\) 0 0
\(371\) −1.33191e6 −0.502390
\(372\) 0 0
\(373\) −2.00969e6 −0.747923 −0.373962 0.927444i \(-0.622001\pi\)
−0.373962 + 0.927444i \(0.622001\pi\)
\(374\) 0 0
\(375\) 142509. 0.0523316
\(376\) 0 0
\(377\) 706180. 0.255895
\(378\) 0 0
\(379\) −2.66112e6 −0.951627 −0.475814 0.879546i \(-0.657846\pi\)
−0.475814 + 0.879546i \(0.657846\pi\)
\(380\) 0 0
\(381\) −463137. −0.163455
\(382\) 0 0
\(383\) 620509. 0.216148 0.108074 0.994143i \(-0.465532\pi\)
0.108074 + 0.994143i \(0.465532\pi\)
\(384\) 0 0
\(385\) 85559.1 0.0294181
\(386\) 0 0
\(387\) 704453. 0.239097
\(388\) 0 0
\(389\) −2.57567e6 −0.863010 −0.431505 0.902111i \(-0.642017\pi\)
−0.431505 + 0.902111i \(0.642017\pi\)
\(390\) 0 0
\(391\) −3.56929e6 −1.18070
\(392\) 0 0
\(393\) 1.57663e6 0.514929
\(394\) 0 0
\(395\) 2.05208e6 0.661763
\(396\) 0 0
\(397\) 1.35006e6 0.429909 0.214954 0.976624i \(-0.431040\pi\)
0.214954 + 0.976624i \(0.431040\pi\)
\(398\) 0 0
\(399\) 2.33604e6 0.734596
\(400\) 0 0
\(401\) 4.11854e6 1.27903 0.639517 0.768777i \(-0.279134\pi\)
0.639517 + 0.768777i \(0.279134\pi\)
\(402\) 0 0
\(403\) 2816.87 0.000863982 0
\(404\) 0 0
\(405\) −133175. −0.0403447
\(406\) 0 0
\(407\) −40866.5 −0.0122287
\(408\) 0 0
\(409\) 4.11782e6 1.21719 0.608597 0.793480i \(-0.291733\pi\)
0.608597 + 0.793480i \(0.291733\pi\)
\(410\) 0 0
\(411\) 1.36515e6 0.398635
\(412\) 0 0
\(413\) 884658. 0.255212
\(414\) 0 0
\(415\) −162695. −0.0463718
\(416\) 0 0
\(417\) 3.02473e6 0.851816
\(418\) 0 0
\(419\) −2.18976e6 −0.609343 −0.304672 0.952457i \(-0.598547\pi\)
−0.304672 + 0.952457i \(0.598547\pi\)
\(420\) 0 0
\(421\) −3.46745e6 −0.953465 −0.476732 0.879048i \(-0.658179\pi\)
−0.476732 + 0.879048i \(0.658179\pi\)
\(422\) 0 0
\(423\) −248136. −0.0674278
\(424\) 0 0
\(425\) 1.33251e6 0.357849
\(426\) 0 0
\(427\) −6.23420e6 −1.65467
\(428\) 0 0
\(429\) −36619.7 −0.00960664
\(430\) 0 0
\(431\) −1.63303e6 −0.423449 −0.211724 0.977329i \(-0.567908\pi\)
−0.211724 + 0.977329i \(0.567908\pi\)
\(432\) 0 0
\(433\) 6.86624e6 1.75994 0.879972 0.475025i \(-0.157561\pi\)
0.879972 + 0.475025i \(0.157561\pi\)
\(434\) 0 0
\(435\) 952775. 0.241417
\(436\) 0 0
\(437\) −2.97666e6 −0.745633
\(438\) 0 0
\(439\) −4.93122e6 −1.22122 −0.610608 0.791933i \(-0.709075\pi\)
−0.610608 + 0.791933i \(0.709075\pi\)
\(440\) 0 0
\(441\) −630317. −0.154334
\(442\) 0 0
\(443\) −3.50949e6 −0.849640 −0.424820 0.905278i \(-0.639663\pi\)
−0.424820 + 0.905278i \(0.639663\pi\)
\(444\) 0 0
\(445\) −1.06671e6 −0.255357
\(446\) 0 0
\(447\) −886274. −0.209797
\(448\) 0 0
\(449\) 3.39090e6 0.793777 0.396889 0.917867i \(-0.370090\pi\)
0.396889 + 0.917867i \(0.370090\pi\)
\(450\) 0 0
\(451\) −381326. −0.0882785
\(452\) 0 0
\(453\) 4.12220e6 0.943809
\(454\) 0 0
\(455\) 608621. 0.137822
\(456\) 0 0
\(457\) 4.51109e6 1.01039 0.505197 0.863004i \(-0.331420\pi\)
0.505197 + 0.863004i \(0.331420\pi\)
\(458\) 0 0
\(459\) 7.83284e6 1.73535
\(460\) 0 0
\(461\) 6.59378e6 1.44505 0.722524 0.691346i \(-0.242982\pi\)
0.722524 + 0.691346i \(0.242982\pi\)
\(462\) 0 0
\(463\) −2.93685e6 −0.636692 −0.318346 0.947975i \(-0.603127\pi\)
−0.318346 + 0.947975i \(0.603127\pi\)
\(464\) 0 0
\(465\) 3800.51 0.000815098 0
\(466\) 0 0
\(467\) 2.25729e6 0.478956 0.239478 0.970902i \(-0.423024\pi\)
0.239478 + 0.970902i \(0.423024\pi\)
\(468\) 0 0
\(469\) 3.29999e6 0.692756
\(470\) 0 0
\(471\) −2.50506e6 −0.520315
\(472\) 0 0
\(473\) −104722. −0.0215222
\(474\) 0 0
\(475\) 1.11127e6 0.225988
\(476\) 0 0
\(477\) −1.47766e6 −0.297357
\(478\) 0 0
\(479\) −1.84731e6 −0.367875 −0.183937 0.982938i \(-0.558884\pi\)
−0.183937 + 0.982938i \(0.558884\pi\)
\(480\) 0 0
\(481\) −290702. −0.0572909
\(482\) 0 0
\(483\) −2.19954e6 −0.429006
\(484\) 0 0
\(485\) −950637. −0.183510
\(486\) 0 0
\(487\) 816228. 0.155951 0.0779757 0.996955i \(-0.475154\pi\)
0.0779757 + 0.996955i \(0.475154\pi\)
\(488\) 0 0
\(489\) −247872. −0.0468766
\(490\) 0 0
\(491\) 2.50572e6 0.469060 0.234530 0.972109i \(-0.424645\pi\)
0.234530 + 0.972109i \(0.424645\pi\)
\(492\) 0 0
\(493\) 8.90882e6 1.65083
\(494\) 0 0
\(495\) 94921.5 0.0174121
\(496\) 0 0
\(497\) −2.87880e6 −0.522782
\(498\) 0 0
\(499\) 2.27095e6 0.408279 0.204139 0.978942i \(-0.434560\pi\)
0.204139 + 0.978942i \(0.434560\pi\)
\(500\) 0 0
\(501\) 11021.4 0.00196175
\(502\) 0 0
\(503\) 2.03375e6 0.358407 0.179204 0.983812i \(-0.442648\pi\)
0.179204 + 0.983812i \(0.442648\pi\)
\(504\) 0 0
\(505\) −1.41920e6 −0.247637
\(506\) 0 0
\(507\) −260493. −0.0450065
\(508\) 0 0
\(509\) −7.83309e6 −1.34011 −0.670053 0.742314i \(-0.733728\pi\)
−0.670053 + 0.742314i \(0.733728\pi\)
\(510\) 0 0
\(511\) 6.46023e6 1.09445
\(512\) 0 0
\(513\) 6.53231e6 1.09591
\(514\) 0 0
\(515\) −4.06048e6 −0.674620
\(516\) 0 0
\(517\) 36887.4 0.00606948
\(518\) 0 0
\(519\) −4.08270e6 −0.665317
\(520\) 0 0
\(521\) −4.79078e6 −0.773236 −0.386618 0.922240i \(-0.626357\pi\)
−0.386618 + 0.922240i \(0.626357\pi\)
\(522\) 0 0
\(523\) 9.54776e6 1.52633 0.763163 0.646206i \(-0.223645\pi\)
0.763163 + 0.646206i \(0.223645\pi\)
\(524\) 0 0
\(525\) 821149. 0.130024
\(526\) 0 0
\(527\) 35536.3 0.00557373
\(528\) 0 0
\(529\) −3.63362e6 −0.564548
\(530\) 0 0
\(531\) 981462. 0.151056
\(532\) 0 0
\(533\) −2.71254e6 −0.413579
\(534\) 0 0
\(535\) 4.33066e6 0.654139
\(536\) 0 0
\(537\) −3.63545e6 −0.544030
\(538\) 0 0
\(539\) 93701.7 0.0138923
\(540\) 0 0
\(541\) −8.13405e6 −1.19485 −0.597425 0.801925i \(-0.703809\pi\)
−0.597425 + 0.801925i \(0.703809\pi\)
\(542\) 0 0
\(543\) 1.63879e6 0.238520
\(544\) 0 0
\(545\) 2.79346e6 0.402857
\(546\) 0 0
\(547\) 1.23827e7 1.76948 0.884741 0.466084i \(-0.154335\pi\)
0.884741 + 0.466084i \(0.154335\pi\)
\(548\) 0 0
\(549\) −6.91638e6 −0.979373
\(550\) 0 0
\(551\) 7.42964e6 1.04253
\(552\) 0 0
\(553\) 1.18243e7 1.64423
\(554\) 0 0
\(555\) −392214. −0.0540494
\(556\) 0 0
\(557\) −1.28798e7 −1.75902 −0.879512 0.475876i \(-0.842131\pi\)
−0.879512 + 0.475876i \(0.842131\pi\)
\(558\) 0 0
\(559\) −744938. −0.100830
\(560\) 0 0
\(561\) −461976. −0.0619745
\(562\) 0 0
\(563\) 81173.2 0.0107930 0.00539649 0.999985i \(-0.498282\pi\)
0.00539649 + 0.999985i \(0.498282\pi\)
\(564\) 0 0
\(565\) −1.48742e6 −0.196026
\(566\) 0 0
\(567\) −767368. −0.100241
\(568\) 0 0
\(569\) −1.30067e7 −1.68418 −0.842089 0.539339i \(-0.818674\pi\)
−0.842089 + 0.539339i \(0.818674\pi\)
\(570\) 0 0
\(571\) −4.60477e6 −0.591041 −0.295521 0.955336i \(-0.595493\pi\)
−0.295521 + 0.955336i \(0.595493\pi\)
\(572\) 0 0
\(573\) 6.54255e6 0.832455
\(574\) 0 0
\(575\) −1.04633e6 −0.131978
\(576\) 0 0
\(577\) −1.11277e7 −1.39144 −0.695722 0.718312i \(-0.744915\pi\)
−0.695722 + 0.718312i \(0.744915\pi\)
\(578\) 0 0
\(579\) −115566. −0.0143263
\(580\) 0 0
\(581\) −937463. −0.115216
\(582\) 0 0
\(583\) 219666. 0.0267665
\(584\) 0 0
\(585\) 675219. 0.0815747
\(586\) 0 0
\(587\) −1.20002e7 −1.43745 −0.718727 0.695292i \(-0.755275\pi\)
−0.718727 + 0.695292i \(0.755275\pi\)
\(588\) 0 0
\(589\) 29636.0 0.00351991
\(590\) 0 0
\(591\) 203124. 0.0239217
\(592\) 0 0
\(593\) 6.68928e6 0.781165 0.390582 0.920568i \(-0.372274\pi\)
0.390582 + 0.920568i \(0.372274\pi\)
\(594\) 0 0
\(595\) 7.67806e6 0.889118
\(596\) 0 0
\(597\) 5.34044e6 0.613256
\(598\) 0 0
\(599\) −2.55395e6 −0.290834 −0.145417 0.989370i \(-0.546452\pi\)
−0.145417 + 0.989370i \(0.546452\pi\)
\(600\) 0 0
\(601\) −1.22145e7 −1.37939 −0.689697 0.724098i \(-0.742256\pi\)
−0.689697 + 0.724098i \(0.742256\pi\)
\(602\) 0 0
\(603\) 3.66109e6 0.410031
\(604\) 0 0
\(605\) 4.01216e6 0.445646
\(606\) 0 0
\(607\) 7.84309e6 0.864004 0.432002 0.901873i \(-0.357807\pi\)
0.432002 + 0.901873i \(0.357807\pi\)
\(608\) 0 0
\(609\) 5.48998e6 0.599829
\(610\) 0 0
\(611\) 262397. 0.0284351
\(612\) 0 0
\(613\) 6.92510e6 0.744347 0.372173 0.928163i \(-0.378613\pi\)
0.372173 + 0.928163i \(0.378613\pi\)
\(614\) 0 0
\(615\) −3.65976e6 −0.390179
\(616\) 0 0
\(617\) −1.34307e7 −1.42032 −0.710159 0.704042i \(-0.751377\pi\)
−0.710159 + 0.704042i \(0.751377\pi\)
\(618\) 0 0
\(619\) −1.53000e7 −1.60497 −0.802483 0.596675i \(-0.796488\pi\)
−0.802483 + 0.596675i \(0.796488\pi\)
\(620\) 0 0
\(621\) −6.15060e6 −0.640013
\(622\) 0 0
\(623\) −6.14649e6 −0.634464
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) −385272. −0.0391380
\(628\) 0 0
\(629\) −3.66736e6 −0.369595
\(630\) 0 0
\(631\) −8.91520e6 −0.891369 −0.445685 0.895190i \(-0.647040\pi\)
−0.445685 + 0.895190i \(0.647040\pi\)
\(632\) 0 0
\(633\) 3.74296e6 0.371283
\(634\) 0 0
\(635\) −1.26949e6 −0.124938
\(636\) 0 0
\(637\) 666543. 0.0650848
\(638\) 0 0
\(639\) −3.19382e6 −0.309427
\(640\) 0 0
\(641\) −1.09269e7 −1.05039 −0.525196 0.850981i \(-0.676008\pi\)
−0.525196 + 0.850981i \(0.676008\pi\)
\(642\) 0 0
\(643\) −1.40738e7 −1.34241 −0.671203 0.741274i \(-0.734222\pi\)
−0.671203 + 0.741274i \(0.734222\pi\)
\(644\) 0 0
\(645\) −1.00507e6 −0.0951254
\(646\) 0 0
\(647\) 1.05543e7 0.991214 0.495607 0.868547i \(-0.334946\pi\)
0.495607 + 0.868547i \(0.334946\pi\)
\(648\) 0 0
\(649\) −145902. −0.0135972
\(650\) 0 0
\(651\) 21898.9 0.00202521
\(652\) 0 0
\(653\) −1.91597e7 −1.75835 −0.879174 0.476501i \(-0.841905\pi\)
−0.879174 + 0.476501i \(0.841905\pi\)
\(654\) 0 0
\(655\) 4.32163e6 0.393590
\(656\) 0 0
\(657\) 7.16714e6 0.647787
\(658\) 0 0
\(659\) −1.85170e7 −1.66095 −0.830475 0.557056i \(-0.811931\pi\)
−0.830475 + 0.557056i \(0.811931\pi\)
\(660\) 0 0
\(661\) −1.14698e7 −1.02106 −0.510530 0.859860i \(-0.670551\pi\)
−0.510530 + 0.859860i \(0.670551\pi\)
\(662\) 0 0
\(663\) −3.28625e6 −0.290346
\(664\) 0 0
\(665\) 6.40323e6 0.561493
\(666\) 0 0
\(667\) −6.99549e6 −0.608841
\(668\) 0 0
\(669\) −3.28787e6 −0.284020
\(670\) 0 0
\(671\) 1.02818e6 0.0881578
\(672\) 0 0
\(673\) −1.29759e7 −1.10433 −0.552167 0.833734i \(-0.686199\pi\)
−0.552167 + 0.833734i \(0.686199\pi\)
\(674\) 0 0
\(675\) 2.29619e6 0.193976
\(676\) 0 0
\(677\) −3.51672e6 −0.294894 −0.147447 0.989070i \(-0.547106\pi\)
−0.147447 + 0.989070i \(0.547106\pi\)
\(678\) 0 0
\(679\) −5.47765e6 −0.455953
\(680\) 0 0
\(681\) 8.59980e6 0.710592
\(682\) 0 0
\(683\) −6.51964e6 −0.534776 −0.267388 0.963589i \(-0.586161\pi\)
−0.267388 + 0.963589i \(0.586161\pi\)
\(684\) 0 0
\(685\) 3.74195e6 0.304700
\(686\) 0 0
\(687\) −1.07299e7 −0.867368
\(688\) 0 0
\(689\) 1.56258e6 0.125399
\(690\) 0 0
\(691\) 1.36775e7 1.08971 0.544855 0.838530i \(-0.316585\pi\)
0.544855 + 0.838530i \(0.316585\pi\)
\(692\) 0 0
\(693\) 546946. 0.0432625
\(694\) 0 0
\(695\) 8.29095e6 0.651092
\(696\) 0 0
\(697\) −3.42202e7 −2.66809
\(698\) 0 0
\(699\) 280321. 0.0217002
\(700\) 0 0
\(701\) −2.01729e7 −1.55051 −0.775253 0.631651i \(-0.782377\pi\)
−0.775253 + 0.631651i \(0.782377\pi\)
\(702\) 0 0
\(703\) −3.05844e6 −0.233406
\(704\) 0 0
\(705\) 354025. 0.0268263
\(706\) 0 0
\(707\) −8.17756e6 −0.615284
\(708\) 0 0
\(709\) 6.80504e6 0.508411 0.254206 0.967150i \(-0.418186\pi\)
0.254206 + 0.967150i \(0.418186\pi\)
\(710\) 0 0
\(711\) 1.31182e7 0.973194
\(712\) 0 0
\(713\) −27904.2 −0.00205564
\(714\) 0 0
\(715\) −100377. −0.00734290
\(716\) 0 0
\(717\) 337420. 0.0245117
\(718\) 0 0
\(719\) 2.66952e7 1.92580 0.962899 0.269861i \(-0.0869776\pi\)
0.962899 + 0.269861i \(0.0869776\pi\)
\(720\) 0 0
\(721\) −2.33968e7 −1.67617
\(722\) 0 0
\(723\) 1.13319e7 0.806229
\(724\) 0 0
\(725\) 2.61161e6 0.184529
\(726\) 0 0
\(727\) −1.89543e7 −1.33006 −0.665029 0.746818i \(-0.731581\pi\)
−0.665029 + 0.746818i \(0.731581\pi\)
\(728\) 0 0
\(729\) 7.29113e6 0.508131
\(730\) 0 0
\(731\) −9.39778e6 −0.650477
\(732\) 0 0
\(733\) −1.46646e7 −1.00811 −0.504056 0.863671i \(-0.668160\pi\)
−0.504056 + 0.863671i \(0.668160\pi\)
\(734\) 0 0
\(735\) 899297. 0.0614023
\(736\) 0 0
\(737\) −544250. −0.0369088
\(738\) 0 0
\(739\) 2.43251e7 1.63849 0.819244 0.573445i \(-0.194393\pi\)
0.819244 + 0.573445i \(0.194393\pi\)
\(740\) 0 0
\(741\) −2.74061e6 −0.183359
\(742\) 0 0
\(743\) 2.73841e7 1.81981 0.909907 0.414812i \(-0.136153\pi\)
0.909907 + 0.414812i \(0.136153\pi\)
\(744\) 0 0
\(745\) −2.42933e6 −0.160360
\(746\) 0 0
\(747\) −1.04005e6 −0.0681947
\(748\) 0 0
\(749\) 2.49537e7 1.62529
\(750\) 0 0
\(751\) −1.15493e7 −0.747235 −0.373617 0.927583i \(-0.621883\pi\)
−0.373617 + 0.927583i \(0.621883\pi\)
\(752\) 0 0
\(753\) −8.89003e6 −0.571368
\(754\) 0 0
\(755\) 1.12992e7 0.721407
\(756\) 0 0
\(757\) 2.30747e7 1.46351 0.731755 0.681568i \(-0.238702\pi\)
0.731755 + 0.681568i \(0.238702\pi\)
\(758\) 0 0
\(759\) 362759. 0.0228567
\(760\) 0 0
\(761\) −7.63715e6 −0.478046 −0.239023 0.971014i \(-0.576827\pi\)
−0.239023 + 0.971014i \(0.576827\pi\)
\(762\) 0 0
\(763\) 1.60961e7 1.00095
\(764\) 0 0
\(765\) 8.51824e6 0.526255
\(766\) 0 0
\(767\) −1.03787e6 −0.0637021
\(768\) 0 0
\(769\) 1.43630e7 0.875850 0.437925 0.899012i \(-0.355714\pi\)
0.437925 + 0.899012i \(0.355714\pi\)
\(770\) 0 0
\(771\) −3.97549e6 −0.240855
\(772\) 0 0
\(773\) 1.23053e7 0.740704 0.370352 0.928892i \(-0.379237\pi\)
0.370352 + 0.928892i \(0.379237\pi\)
\(774\) 0 0
\(775\) 10417.4 0.000623026 0
\(776\) 0 0
\(777\) −2.25997e6 −0.134292
\(778\) 0 0
\(779\) −2.85384e7 −1.68494
\(780\) 0 0
\(781\) 474786. 0.0278529
\(782\) 0 0
\(783\) 1.53517e7 0.894854
\(784\) 0 0
\(785\) −6.86652e6 −0.397706
\(786\) 0 0
\(787\) −1.03667e6 −0.0596629 −0.0298315 0.999555i \(-0.509497\pi\)
−0.0298315 + 0.999555i \(0.509497\pi\)
\(788\) 0 0
\(789\) 733792. 0.0419644
\(790\) 0 0
\(791\) −8.57066e6 −0.487050
\(792\) 0 0
\(793\) 7.31388e6 0.413014
\(794\) 0 0
\(795\) 2.10823e6 0.118304
\(796\) 0 0
\(797\) −1.78851e7 −0.997347 −0.498673 0.866790i \(-0.666179\pi\)
−0.498673 + 0.866790i \(0.666179\pi\)
\(798\) 0 0
\(799\) 3.31027e6 0.183441
\(800\) 0 0
\(801\) −6.81908e6 −0.375530
\(802\) 0 0
\(803\) −1.06545e6 −0.0583103
\(804\) 0 0
\(805\) −6.02906e6 −0.327914
\(806\) 0 0
\(807\) 2.14843e6 0.116128
\(808\) 0 0
\(809\) 7.95290e6 0.427222 0.213611 0.976919i \(-0.431477\pi\)
0.213611 + 0.976919i \(0.431477\pi\)
\(810\) 0 0
\(811\) −2.30520e6 −0.123071 −0.0615357 0.998105i \(-0.519600\pi\)
−0.0615357 + 0.998105i \(0.519600\pi\)
\(812\) 0 0
\(813\) 2.83869e6 0.150623
\(814\) 0 0
\(815\) −679432. −0.0358304
\(816\) 0 0
\(817\) −7.83741e6 −0.410788
\(818\) 0 0
\(819\) 3.89067e6 0.202682
\(820\) 0 0
\(821\) 8.72052e6 0.451528 0.225764 0.974182i \(-0.427512\pi\)
0.225764 + 0.974182i \(0.427512\pi\)
\(822\) 0 0
\(823\) 2.09138e7 1.07630 0.538149 0.842850i \(-0.319124\pi\)
0.538149 + 0.842850i \(0.319124\pi\)
\(824\) 0 0
\(825\) −135428. −0.00692745
\(826\) 0 0
\(827\) −2.94201e7 −1.49582 −0.747912 0.663798i \(-0.768944\pi\)
−0.747912 + 0.663798i \(0.768944\pi\)
\(828\) 0 0
\(829\) −2.20194e7 −1.11281 −0.556403 0.830913i \(-0.687819\pi\)
−0.556403 + 0.830913i \(0.687819\pi\)
\(830\) 0 0
\(831\) 2.61275e6 0.131249
\(832\) 0 0
\(833\) 8.40878e6 0.419875
\(834\) 0 0
\(835\) 30210.4 0.00149948
\(836\) 0 0
\(837\) 61236.2 0.00302131
\(838\) 0 0
\(839\) 3.18362e7 1.56141 0.780703 0.624903i \(-0.214861\pi\)
0.780703 + 0.624903i \(0.214861\pi\)
\(840\) 0 0
\(841\) −3.05063e6 −0.148730
\(842\) 0 0
\(843\) 1.15324e7 0.558920
\(844\) 0 0
\(845\) −714025. −0.0344010
\(846\) 0 0
\(847\) 2.31184e7 1.10726
\(848\) 0 0
\(849\) 1.48622e6 0.0707645
\(850\) 0 0
\(851\) 2.87973e6 0.136310
\(852\) 0 0
\(853\) −1.61744e7 −0.761124 −0.380562 0.924756i \(-0.624269\pi\)
−0.380562 + 0.924756i \(0.624269\pi\)
\(854\) 0 0
\(855\) 7.10390e6 0.332339
\(856\) 0 0
\(857\) −1.71014e6 −0.0795390 −0.0397695 0.999209i \(-0.512662\pi\)
−0.0397695 + 0.999209i \(0.512662\pi\)
\(858\) 0 0
\(859\) −3.10226e7 −1.43448 −0.717242 0.696825i \(-0.754596\pi\)
−0.717242 + 0.696825i \(0.754596\pi\)
\(860\) 0 0
\(861\) −2.10878e7 −0.969447
\(862\) 0 0
\(863\) 3.39307e7 1.55084 0.775418 0.631449i \(-0.217539\pi\)
0.775418 + 0.631449i \(0.217539\pi\)
\(864\) 0 0
\(865\) −1.11909e7 −0.508540
\(866\) 0 0
\(867\) −2.85078e7 −1.28800
\(868\) 0 0
\(869\) −1.95012e6 −0.0876016
\(870\) 0 0
\(871\) −3.87150e6 −0.172915
\(872\) 0 0
\(873\) −6.07705e6 −0.269872
\(874\) 0 0
\(875\) 2.25082e6 0.0993848
\(876\) 0 0
\(877\) 2.23180e7 0.979844 0.489922 0.871766i \(-0.337025\pi\)
0.489922 + 0.871766i \(0.337025\pi\)
\(878\) 0 0
\(879\) −4.07570e6 −0.177922
\(880\) 0 0
\(881\) −2.25314e6 −0.0978021 −0.0489011 0.998804i \(-0.515572\pi\)
−0.0489011 + 0.998804i \(0.515572\pi\)
\(882\) 0 0
\(883\) 1.27130e7 0.548713 0.274357 0.961628i \(-0.411535\pi\)
0.274357 + 0.961628i \(0.411535\pi\)
\(884\) 0 0
\(885\) −1.40029e6 −0.0600979
\(886\) 0 0
\(887\) −2.09571e7 −0.894382 −0.447191 0.894439i \(-0.647576\pi\)
−0.447191 + 0.894439i \(0.647576\pi\)
\(888\) 0 0
\(889\) −7.31489e6 −0.310422
\(890\) 0 0
\(891\) 126558. 0.00534067
\(892\) 0 0
\(893\) 2.76064e6 0.115846
\(894\) 0 0
\(895\) −9.96498e6 −0.415833
\(896\) 0 0
\(897\) 2.58047e6 0.107082
\(898\) 0 0
\(899\) 69648.1 0.00287415
\(900\) 0 0
\(901\) 1.97128e7 0.808976
\(902\) 0 0
\(903\) −5.79129e6 −0.236350
\(904\) 0 0
\(905\) 4.49203e6 0.182314
\(906\) 0 0
\(907\) 1.30726e7 0.527648 0.263824 0.964571i \(-0.415016\pi\)
0.263824 + 0.964571i \(0.415016\pi\)
\(908\) 0 0
\(909\) −9.07240e6 −0.364177
\(910\) 0 0
\(911\) −7.01062e6 −0.279873 −0.139936 0.990161i \(-0.544690\pi\)
−0.139936 + 0.990161i \(0.544690\pi\)
\(912\) 0 0
\(913\) 154611. 0.00613852
\(914\) 0 0
\(915\) 9.86786e6 0.389646
\(916\) 0 0
\(917\) 2.49016e7 0.977921
\(918\) 0 0
\(919\) 6.65846e6 0.260067 0.130033 0.991510i \(-0.458492\pi\)
0.130033 + 0.991510i \(0.458492\pi\)
\(920\) 0 0
\(921\) 1.43448e7 0.557245
\(922\) 0 0
\(923\) 3.37737e6 0.130489
\(924\) 0 0
\(925\) −1.07508e6 −0.0413130
\(926\) 0 0
\(927\) −2.59571e7 −0.992102
\(928\) 0 0
\(929\) −4.66408e7 −1.77307 −0.886537 0.462659i \(-0.846896\pi\)
−0.886537 + 0.462659i \(0.846896\pi\)
\(930\) 0 0
\(931\) 7.01262e6 0.265159
\(932\) 0 0
\(933\) 2.97579e6 0.111918
\(934\) 0 0
\(935\) −1.26630e6 −0.0473706
\(936\) 0 0
\(937\) −2.64464e7 −0.984049 −0.492025 0.870581i \(-0.663743\pi\)
−0.492025 + 0.870581i \(0.663743\pi\)
\(938\) 0 0
\(939\) −1.51366e7 −0.560227
\(940\) 0 0
\(941\) −3.76271e7 −1.38525 −0.692623 0.721299i \(-0.743545\pi\)
−0.692623 + 0.721299i \(0.743545\pi\)
\(942\) 0 0
\(943\) 2.68708e7 0.984013
\(944\) 0 0
\(945\) 1.32308e7 0.481957
\(946\) 0 0
\(947\) 4.11437e7 1.49083 0.745415 0.666600i \(-0.232251\pi\)
0.745415 + 0.666600i \(0.232251\pi\)
\(948\) 0 0
\(949\) −7.57904e6 −0.273180
\(950\) 0 0
\(951\) 2.10589e7 0.755065
\(952\) 0 0
\(953\) 3.51213e7 1.25268 0.626338 0.779552i \(-0.284553\pi\)
0.626338 + 0.779552i \(0.284553\pi\)
\(954\) 0 0
\(955\) 1.79335e7 0.636292
\(956\) 0 0
\(957\) −905434. −0.0319578
\(958\) 0 0
\(959\) 2.15615e7 0.757062
\(960\) 0 0
\(961\) −2.86289e7 −0.999990
\(962\) 0 0
\(963\) 2.76842e7 0.961982
\(964\) 0 0
\(965\) −316773. −0.0109504
\(966\) 0 0
\(967\) 3.36172e7 1.15610 0.578049 0.816002i \(-0.303814\pi\)
0.578049 + 0.816002i \(0.303814\pi\)
\(968\) 0 0
\(969\) −3.45742e7 −1.18289
\(970\) 0 0
\(971\) −1.80332e7 −0.613796 −0.306898 0.951742i \(-0.599291\pi\)
−0.306898 + 0.951742i \(0.599291\pi\)
\(972\) 0 0
\(973\) 4.77732e7 1.61772
\(974\) 0 0
\(975\) −963360. −0.0324547
\(976\) 0 0
\(977\) −3.45101e7 −1.15667 −0.578336 0.815798i \(-0.696298\pi\)
−0.578336 + 0.815798i \(0.696298\pi\)
\(978\) 0 0
\(979\) 1.01371e6 0.0338031
\(980\) 0 0
\(981\) 1.78575e7 0.592444
\(982\) 0 0
\(983\) 1.98276e7 0.654466 0.327233 0.944944i \(-0.393884\pi\)
0.327233 + 0.944944i \(0.393884\pi\)
\(984\) 0 0
\(985\) 556774. 0.0182847
\(986\) 0 0
\(987\) 2.03992e6 0.0666531
\(988\) 0 0
\(989\) 7.37944e6 0.239901
\(990\) 0 0
\(991\) −2.34575e7 −0.758747 −0.379373 0.925244i \(-0.623860\pi\)
−0.379373 + 0.925244i \(0.623860\pi\)
\(992\) 0 0
\(993\) 3.27605e7 1.05433
\(994\) 0 0
\(995\) 1.46385e7 0.468746
\(996\) 0 0
\(997\) 3.22271e7 1.02680 0.513398 0.858151i \(-0.328387\pi\)
0.513398 + 0.858151i \(0.328387\pi\)
\(998\) 0 0
\(999\) −6.31960e6 −0.200344
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 520.6.a.f.1.4 8
4.3 odd 2 1040.6.a.y.1.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.6.a.f.1.4 8 1.1 even 1 trivial
1040.6.a.y.1.5 8 4.3 odd 2