Properties

Label 5200.2.a.cg
Level $5200$
Weight $2$
Character orbit 5200.a
Self dual yes
Analytic conductor $41.522$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5200,2,Mod(1,5200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5222090511\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 260)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{3} + (\beta_{2} + \beta_1 + 1) q^{7} + ( - \beta_{2} - \beta_1) q^{9} + ( - 3 \beta_1 + 1) q^{11} - q^{13} + (2 \beta_1 - 4) q^{17} + (2 \beta_{2} + \beta_1 - 1) q^{19} - 2 q^{21} + ( - \beta_{2} + 2) q^{23}+ \cdots + (2 \beta_{2} + 5 \beta_1 + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 4 q^{7} - q^{9} - 3 q^{13} - 10 q^{17} - 2 q^{19} - 6 q^{21} + 6 q^{23} + 6 q^{27} - 2 q^{29} - 6 q^{33} - 16 q^{37} + 8 q^{41} - 6 q^{43} + 20 q^{47} - 5 q^{49} + 4 q^{51} - 24 q^{53} - 14 q^{57}+ \cdots + 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48119
2.17009
0.311108
0 −1.67513 0 0 0 1.19394 0 −0.193937 0
1.2 0 −0.539189 0 0 0 3.70928 0 −2.70928 0
1.3 0 2.21432 0 0 0 −0.903212 0 1.90321 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5200.2.a.cg 3
4.b odd 2 1 1300.2.a.j 3
5.b even 2 1 5200.2.a.cd 3
5.c odd 4 2 1040.2.d.d 6
20.d odd 2 1 1300.2.a.k 3
20.e even 4 2 260.2.c.a 6
60.l odd 4 2 2340.2.h.e 6
260.l odd 4 2 3380.2.d.a 6
260.p even 4 2 3380.2.c.c 6
260.s odd 4 2 3380.2.d.b 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
260.2.c.a 6 20.e even 4 2
1040.2.d.d 6 5.c odd 4 2
1300.2.a.j 3 4.b odd 2 1
1300.2.a.k 3 20.d odd 2 1
2340.2.h.e 6 60.l odd 4 2
3380.2.c.c 6 260.p even 4 2
3380.2.d.a 6 260.l odd 4 2
3380.2.d.b 6 260.s odd 4 2
5200.2.a.cd 3 5.b even 2 1
5200.2.a.cg 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5200))\):

\( T_{3}^{3} - 4T_{3} - 2 \) Copy content Toggle raw display
\( T_{7}^{3} - 4T_{7}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{3} - 30T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 4T - 2 \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 4T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{3} - 30T + 2 \) Copy content Toggle raw display
$13$ \( (T + 1)^{3} \) Copy content Toggle raw display
$17$ \( T^{3} + 10 T^{2} + \cdots - 8 \) Copy content Toggle raw display
$19$ \( T^{3} + 2 T^{2} + \cdots + 10 \) Copy content Toggle raw display
$23$ \( T^{3} - 6 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$29$ \( T^{3} + 2 T^{2} + \cdots + 4 \) Copy content Toggle raw display
$31$ \( T^{3} - 34T - 62 \) Copy content Toggle raw display
$37$ \( T^{3} + 16 T^{2} + \cdots - 100 \) Copy content Toggle raw display
$41$ \( T^{3} - 8 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$43$ \( T^{3} + 6 T^{2} + \cdots - 734 \) Copy content Toggle raw display
$47$ \( T^{3} - 20 T^{2} + \cdots - 260 \) Copy content Toggle raw display
$53$ \( T^{3} + 24 T^{2} + \cdots + 368 \) Copy content Toggle raw display
$59$ \( T^{3} + 2 T^{2} + \cdots - 74 \) Copy content Toggle raw display
$61$ \( T^{3} + 14 T^{2} + \cdots - 1292 \) Copy content Toggle raw display
$67$ \( T^{3} - 40T + 76 \) Copy content Toggle raw display
$71$ \( T^{3} + 10 T^{2} + \cdots - 334 \) Copy content Toggle raw display
$73$ \( T^{3} + 12T^{2} - 108 \) Copy content Toggle raw display
$79$ \( T^{3} + 4 T^{2} + \cdots + 80 \) Copy content Toggle raw display
$83$ \( T^{3} + 4 T^{2} + \cdots + 500 \) Copy content Toggle raw display
$89$ \( T^{3} - 10 T^{2} + \cdots + 2056 \) Copy content Toggle raw display
$97$ \( T^{3} + 10 T^{2} + \cdots - 1432 \) Copy content Toggle raw display
show more
show less