Properties

Label 5202.2.a.bt
Level $5202$
Weight $2$
Character orbit 5202.a
Self dual yes
Analytic conductor $41.538$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5202,2,Mod(1,5202)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5202, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5202.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5202 = 2 \cdot 3^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5202.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5381791315\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} + q^{4} + (\beta_{3} - \beta_{2}) q^{5} + ( - \beta_{2} + 2) q^{7} - q^{8} + ( - \beta_{3} + \beta_{2}) q^{10} + ( - 2 \beta_{3} - 2) q^{11} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{13} + (\beta_{2} - 2) q^{14}+ \cdots + (4 \beta_{2} + 1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{4} + 8 q^{7} - 4 q^{8} - 8 q^{11} - 8 q^{14} + 4 q^{16} - 8 q^{19} + 8 q^{22} - 8 q^{23} - 4 q^{25} + 8 q^{28} - 8 q^{29} + 16 q^{31} - 4 q^{32} + 8 q^{35} + 8 q^{37} + 8 q^{38} - 8 q^{41}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of \(\nu = \zeta_{16} + \zeta_{16}^{-1}\):

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 3\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 3\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.84776
1.84776
0.765367
−0.765367
−1.00000 0 1.00000 −2.17958 0 0.585786 −1.00000 0 2.17958
1.2 −1.00000 0 1.00000 −0.648847 0 0.585786 −1.00000 0 0.648847
1.3 −1.00000 0 1.00000 −0.433546 0 3.41421 −1.00000 0 0.433546
1.4 −1.00000 0 1.00000 3.26197 0 3.41421 −1.00000 0 −3.26197
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5202.2.a.bt 4
3.b odd 2 1 1734.2.a.w 4
17.b even 2 1 5202.2.a.br 4
17.e odd 16 2 306.2.l.d 8
51.c odd 2 1 1734.2.a.v 4
51.f odd 4 2 1734.2.b.k 8
51.g odd 8 2 1734.2.f.j 8
51.g odd 8 2 1734.2.f.m 8
51.i even 16 2 102.2.h.a 8
204.t odd 16 2 816.2.bq.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.2.h.a 8 51.i even 16 2
306.2.l.d 8 17.e odd 16 2
816.2.bq.b 8 204.t odd 16 2
1734.2.a.v 4 51.c odd 2 1
1734.2.a.w 4 3.b odd 2 1
1734.2.b.k 8 51.f odd 4 2
1734.2.f.j 8 51.g odd 8 2
1734.2.f.m 8 51.g odd 8 2
5202.2.a.br 4 17.b even 2 1
5202.2.a.bt 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5202))\):

\( T_{5}^{4} - 8T_{5}^{2} - 8T_{5} - 2 \) Copy content Toggle raw display
\( T_{7}^{2} - 4T_{7} + 2 \) Copy content Toggle raw display
\( T_{23}^{4} + 8T_{23}^{3} + 4T_{23}^{2} - 80T_{23} - 124 \) Copy content Toggle raw display
\( T_{47}^{4} - 56T_{47}^{2} - 224T_{47} - 248 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 1)^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - 8 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$7$ \( (T^{2} - 4 T + 2)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 8 T^{3} + \cdots - 16 \) Copy content Toggle raw display
$13$ \( T^{4} - 12 T^{2} + \cdots - 4 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 8 T^{3} + \cdots + 248 \) Copy content Toggle raw display
$23$ \( T^{4} + 8 T^{3} + \cdots - 124 \) Copy content Toggle raw display
$29$ \( T^{4} + 8 T^{3} + \cdots - 866 \) Copy content Toggle raw display
$31$ \( (T^{2} - 8 T + 14)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 8 T^{3} + \cdots - 386 \) Copy content Toggle raw display
$41$ \( T^{4} + 8 T^{3} + \cdots + 514 \) Copy content Toggle raw display
$43$ \( T^{4} + 16 T^{3} + \cdots - 3616 \) Copy content Toggle raw display
$47$ \( T^{4} - 56 T^{2} + \cdots - 248 \) Copy content Toggle raw display
$53$ \( T^{4} - 140 T^{2} + \cdots + 124 \) Copy content Toggle raw display
$59$ \( T^{4} - 8 T^{3} + \cdots + 1912 \) Copy content Toggle raw display
$61$ \( T^{4} - 72 T^{2} + \cdots + 926 \) Copy content Toggle raw display
$67$ \( T^{4} + 24 T^{3} + \cdots - 2312 \) Copy content Toggle raw display
$71$ \( T^{4} + 24 T^{3} + \cdots + 68 \) Copy content Toggle raw display
$73$ \( T^{4} + 16 T^{3} + \cdots - 7934 \) Copy content Toggle raw display
$79$ \( T^{4} - 8 T^{3} + \cdots - 316 \) Copy content Toggle raw display
$83$ \( T^{4} + 8 T^{3} + \cdots + 376 \) Copy content Toggle raw display
$89$ \( T^{4} - 180 T^{2} + \cdots + 68 \) Copy content Toggle raw display
$97$ \( T^{4} - 16 T^{3} + \cdots + 14818 \) Copy content Toggle raw display
show more
show less