Properties

Label 5202.2.a.bt
Level 52025202
Weight 22
Character orbit 5202.a
Self dual yes
Analytic conductor 41.53841.538
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5202,2,Mod(1,5202)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5202, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5202.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5202=232172 5202 = 2 \cdot 3^{2} \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5202.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 41.538179131541.5381791315
Analytic rank: 11
Dimension: 44
Coefficient field: Q(ζ16)+\Q(\zeta_{16})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x44x2+2 x^{4} - 4x^{2} + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 102)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qq2+q4+(β3β2)q5+(β2+2)q7q8+(β3+β2)q10+(2β32)q11+(β3+β2β1)q13+(β22)q14++(4β2+1)q98+O(q100) q - q^{2} + q^{4} + (\beta_{3} - \beta_{2}) q^{5} + ( - \beta_{2} + 2) q^{7} - q^{8} + ( - \beta_{3} + \beta_{2}) q^{10} + ( - 2 \beta_{3} - 2) q^{11} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{13} + (\beta_{2} - 2) q^{14}+ \cdots + (4 \beta_{2} + 1) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q2+4q4+8q74q88q118q14+4q168q19+8q228q234q25+8q288q29+16q314q32+8q35+8q37+8q388q41++4q98+O(q100) 4 q - 4 q^{2} + 4 q^{4} + 8 q^{7} - 4 q^{8} - 8 q^{11} - 8 q^{14} + 4 q^{16} - 8 q^{19} + 8 q^{22} - 8 q^{23} - 4 q^{25} + 8 q^{28} - 8 q^{29} + 16 q^{31} - 4 q^{32} + 8 q^{35} + 8 q^{37} + 8 q^{38} - 8 q^{41}+ \cdots + 4 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of ν=ζ16+ζ161\nu = \zeta_{16} + \zeta_{16}^{-1}:

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν22 \nu^{2} - 2 Copy content Toggle raw display
β3\beta_{3}== ν33ν \nu^{3} - 3\nu Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2+2 \beta_{2} + 2 Copy content Toggle raw display
ν3\nu^{3}== β3+3β1 \beta_{3} + 3\beta_1 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
−1.84776
1.84776
0.765367
−0.765367
−1.00000 0 1.00000 −2.17958 0 0.585786 −1.00000 0 2.17958
1.2 −1.00000 0 1.00000 −0.648847 0 0.585786 −1.00000 0 0.648847
1.3 −1.00000 0 1.00000 −0.433546 0 3.41421 −1.00000 0 0.433546
1.4 −1.00000 0 1.00000 3.26197 0 3.41421 −1.00000 0 −3.26197
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 1 -1
1717 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5202.2.a.bt 4
3.b odd 2 1 1734.2.a.w 4
17.b even 2 1 5202.2.a.br 4
17.e odd 16 2 306.2.l.d 8
51.c odd 2 1 1734.2.a.v 4
51.f odd 4 2 1734.2.b.k 8
51.g odd 8 2 1734.2.f.j 8
51.g odd 8 2 1734.2.f.m 8
51.i even 16 2 102.2.h.a 8
204.t odd 16 2 816.2.bq.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.2.h.a 8 51.i even 16 2
306.2.l.d 8 17.e odd 16 2
816.2.bq.b 8 204.t odd 16 2
1734.2.a.v 4 51.c odd 2 1
1734.2.a.w 4 3.b odd 2 1
1734.2.b.k 8 51.f odd 4 2
1734.2.f.j 8 51.g odd 8 2
1734.2.f.m 8 51.g odd 8 2
5202.2.a.br 4 17.b even 2 1
5202.2.a.bt 4 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(5202))S_{2}^{\mathrm{new}}(\Gamma_0(5202)):

T548T528T52 T_{5}^{4} - 8T_{5}^{2} - 8T_{5} - 2 Copy content Toggle raw display
T724T7+2 T_{7}^{2} - 4T_{7} + 2 Copy content Toggle raw display
T234+8T233+4T23280T23124 T_{23}^{4} + 8T_{23}^{3} + 4T_{23}^{2} - 80T_{23} - 124 Copy content Toggle raw display
T47456T472224T47248 T_{47}^{4} - 56T_{47}^{2} - 224T_{47} - 248 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T+1)4 (T + 1)^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T48T2+2 T^{4} - 8 T^{2} + \cdots - 2 Copy content Toggle raw display
77 (T24T+2)2 (T^{2} - 4 T + 2)^{2} Copy content Toggle raw display
1111 T4+8T3+16 T^{4} + 8 T^{3} + \cdots - 16 Copy content Toggle raw display
1313 T412T2+4 T^{4} - 12 T^{2} + \cdots - 4 Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 T4+8T3++248 T^{4} + 8 T^{3} + \cdots + 248 Copy content Toggle raw display
2323 T4+8T3+124 T^{4} + 8 T^{3} + \cdots - 124 Copy content Toggle raw display
2929 T4+8T3+866 T^{4} + 8 T^{3} + \cdots - 866 Copy content Toggle raw display
3131 (T28T+14)2 (T^{2} - 8 T + 14)^{2} Copy content Toggle raw display
3737 T48T3+386 T^{4} - 8 T^{3} + \cdots - 386 Copy content Toggle raw display
4141 T4+8T3++514 T^{4} + 8 T^{3} + \cdots + 514 Copy content Toggle raw display
4343 T4+16T3+3616 T^{4} + 16 T^{3} + \cdots - 3616 Copy content Toggle raw display
4747 T456T2+248 T^{4} - 56 T^{2} + \cdots - 248 Copy content Toggle raw display
5353 T4140T2++124 T^{4} - 140 T^{2} + \cdots + 124 Copy content Toggle raw display
5959 T48T3++1912 T^{4} - 8 T^{3} + \cdots + 1912 Copy content Toggle raw display
6161 T472T2++926 T^{4} - 72 T^{2} + \cdots + 926 Copy content Toggle raw display
6767 T4+24T3+2312 T^{4} + 24 T^{3} + \cdots - 2312 Copy content Toggle raw display
7171 T4+24T3++68 T^{4} + 24 T^{3} + \cdots + 68 Copy content Toggle raw display
7373 T4+16T3+7934 T^{4} + 16 T^{3} + \cdots - 7934 Copy content Toggle raw display
7979 T48T3+316 T^{4} - 8 T^{3} + \cdots - 316 Copy content Toggle raw display
8383 T4+8T3++376 T^{4} + 8 T^{3} + \cdots + 376 Copy content Toggle raw display
8989 T4180T2++68 T^{4} - 180 T^{2} + \cdots + 68 Copy content Toggle raw display
9797 T416T3++14818 T^{4} - 16 T^{3} + \cdots + 14818 Copy content Toggle raw display
show more
show less