Properties

Label 5220.2.a.s.1.1
Level $5220$
Weight $2$
Character 5220.1
Self dual yes
Analytic conductor $41.682$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5220,2,Mod(1,5220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5220.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5220 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.6819098551\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1740)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.37228\) of defining polynomial
Character \(\chi\) \(=\) 5220.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} -3.37228 q^{7} -5.37228 q^{11} +1.37228 q^{13} +0.627719 q^{17} -4.74456 q^{19} +1.00000 q^{25} -1.00000 q^{29} +4.74456 q^{31} -3.37228 q^{35} +2.00000 q^{41} -6.74456 q^{43} +4.62772 q^{47} +4.37228 q^{49} +4.74456 q^{53} -5.37228 q^{55} +12.0000 q^{59} +6.00000 q^{61} +1.37228 q^{65} -8.62772 q^{67} +2.74456 q^{71} +18.1168 q^{77} -8.74456 q^{79} +12.0000 q^{83} +0.627719 q^{85} -0.116844 q^{89} -4.62772 q^{91} -4.74456 q^{95} -9.48913 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - q^{7} - 5 q^{11} - 3 q^{13} + 7 q^{17} + 2 q^{19} + 2 q^{25} - 2 q^{29} - 2 q^{31} - q^{35} + 4 q^{41} - 2 q^{43} + 15 q^{47} + 3 q^{49} - 2 q^{53} - 5 q^{55} + 24 q^{59} + 12 q^{61} - 3 q^{65}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −3.37228 −1.27460 −0.637301 0.770615i \(-0.719949\pi\)
−0.637301 + 0.770615i \(0.719949\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −5.37228 −1.61980 −0.809902 0.586565i \(-0.800480\pi\)
−0.809902 + 0.586565i \(0.800480\pi\)
\(12\) 0 0
\(13\) 1.37228 0.380602 0.190301 0.981726i \(-0.439054\pi\)
0.190301 + 0.981726i \(0.439054\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.627719 0.152244 0.0761221 0.997099i \(-0.475746\pi\)
0.0761221 + 0.997099i \(0.475746\pi\)
\(18\) 0 0
\(19\) −4.74456 −1.08848 −0.544239 0.838930i \(-0.683181\pi\)
−0.544239 + 0.838930i \(0.683181\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 4.74456 0.852149 0.426074 0.904688i \(-0.359896\pi\)
0.426074 + 0.904688i \(0.359896\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.37228 −0.570020
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −6.74456 −1.02854 −0.514268 0.857629i \(-0.671936\pi\)
−0.514268 + 0.857629i \(0.671936\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.62772 0.675022 0.337511 0.941322i \(-0.390415\pi\)
0.337511 + 0.941322i \(0.390415\pi\)
\(48\) 0 0
\(49\) 4.37228 0.624612
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4.74456 0.651716 0.325858 0.945419i \(-0.394347\pi\)
0.325858 + 0.945419i \(0.394347\pi\)
\(54\) 0 0
\(55\) −5.37228 −0.724398
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.37228 0.170211
\(66\) 0 0
\(67\) −8.62772 −1.05404 −0.527022 0.849852i \(-0.676691\pi\)
−0.527022 + 0.849852i \(0.676691\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.74456 0.325720 0.162860 0.986649i \(-0.447928\pi\)
0.162860 + 0.986649i \(0.447928\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 18.1168 2.06461
\(78\) 0 0
\(79\) −8.74456 −0.983840 −0.491920 0.870640i \(-0.663705\pi\)
−0.491920 + 0.870640i \(0.663705\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 0.627719 0.0680856
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −0.116844 −0.0123854 −0.00619272 0.999981i \(-0.501971\pi\)
−0.00619272 + 0.999981i \(0.501971\pi\)
\(90\) 0 0
\(91\) −4.62772 −0.485117
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.74456 −0.486782
\(96\) 0 0
\(97\) −9.48913 −0.963475 −0.481737 0.876316i \(-0.659994\pi\)
−0.481737 + 0.876316i \(0.659994\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.1168 1.60369 0.801843 0.597535i \(-0.203853\pi\)
0.801843 + 0.597535i \(0.203853\pi\)
\(102\) 0 0
\(103\) 5.48913 0.540860 0.270430 0.962740i \(-0.412834\pi\)
0.270430 + 0.962740i \(0.412834\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.74456 −0.265327 −0.132663 0.991161i \(-0.542353\pi\)
−0.132663 + 0.991161i \(0.542353\pi\)
\(108\) 0 0
\(109\) 14.8614 1.42346 0.711732 0.702451i \(-0.247911\pi\)
0.711732 + 0.702451i \(0.247911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.1168 0.951713 0.475856 0.879523i \(-0.342138\pi\)
0.475856 + 0.879523i \(0.342138\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −2.11684 −0.194051
\(120\) 0 0
\(121\) 17.8614 1.62376
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −5.25544 −0.466345 −0.233172 0.972435i \(-0.574911\pi\)
−0.233172 + 0.972435i \(0.574911\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 10.6277 0.928548 0.464274 0.885692i \(-0.346315\pi\)
0.464274 + 0.885692i \(0.346315\pi\)
\(132\) 0 0
\(133\) 16.0000 1.38738
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.25544 0.449002 0.224501 0.974474i \(-0.427925\pi\)
0.224501 + 0.974474i \(0.427925\pi\)
\(138\) 0 0
\(139\) −2.11684 −0.179548 −0.0897742 0.995962i \(-0.528615\pi\)
−0.0897742 + 0.995962i \(0.528615\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.37228 −0.616501
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) 9.48913 0.772214 0.386107 0.922454i \(-0.373820\pi\)
0.386107 + 0.922454i \(0.373820\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.74456 0.381092
\(156\) 0 0
\(157\) 12.0000 0.957704 0.478852 0.877896i \(-0.341053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −5.48913 −0.429941 −0.214971 0.976620i \(-0.568966\pi\)
−0.214971 + 0.976620i \(0.568966\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) −11.1168 −0.855142
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −10.2337 −0.778053 −0.389026 0.921227i \(-0.627189\pi\)
−0.389026 + 0.921227i \(0.627189\pi\)
\(174\) 0 0
\(175\) −3.37228 −0.254921
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2.74456 0.205138 0.102569 0.994726i \(-0.467294\pi\)
0.102569 + 0.994726i \(0.467294\pi\)
\(180\) 0 0
\(181\) 14.6277 1.08727 0.543635 0.839322i \(-0.317048\pi\)
0.543635 + 0.839322i \(0.317048\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −3.37228 −0.246606
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −3.25544 −0.235555 −0.117778 0.993040i \(-0.537577\pi\)
−0.117778 + 0.993040i \(0.537577\pi\)
\(192\) 0 0
\(193\) 6.74456 0.485484 0.242742 0.970091i \(-0.421953\pi\)
0.242742 + 0.970091i \(0.421953\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 7.48913 0.533578 0.266789 0.963755i \(-0.414037\pi\)
0.266789 + 0.963755i \(0.414037\pi\)
\(198\) 0 0
\(199\) −24.8614 −1.76238 −0.881189 0.472764i \(-0.843256\pi\)
−0.881189 + 0.472764i \(0.843256\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.37228 0.236688
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 25.4891 1.76312
\(210\) 0 0
\(211\) −7.48913 −0.515573 −0.257786 0.966202i \(-0.582993\pi\)
−0.257786 + 0.966202i \(0.582993\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −6.74456 −0.459975
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.861407 0.0579445
\(222\) 0 0
\(223\) 24.8614 1.66484 0.832421 0.554143i \(-0.186954\pi\)
0.832421 + 0.554143i \(0.186954\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.48913 0.629815 0.314908 0.949122i \(-0.398026\pi\)
0.314908 + 0.949122i \(0.398026\pi\)
\(228\) 0 0
\(229\) 3.48913 0.230568 0.115284 0.993333i \(-0.463222\pi\)
0.115284 + 0.993333i \(0.463222\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.00000 −0.131024 −0.0655122 0.997852i \(-0.520868\pi\)
−0.0655122 + 0.997852i \(0.520868\pi\)
\(234\) 0 0
\(235\) 4.62772 0.301879
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 6.74456 0.436269 0.218135 0.975919i \(-0.430003\pi\)
0.218135 + 0.975919i \(0.430003\pi\)
\(240\) 0 0
\(241\) −20.1168 −1.29584 −0.647920 0.761708i \(-0.724361\pi\)
−0.647920 + 0.761708i \(0.724361\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.37228 0.279335
\(246\) 0 0
\(247\) −6.51087 −0.414277
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.6060 0.858801 0.429401 0.903114i \(-0.358725\pi\)
0.429401 + 0.903114i \(0.358725\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 23.4891 1.46521 0.732606 0.680653i \(-0.238304\pi\)
0.732606 + 0.680653i \(0.238304\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −9.48913 −0.585125 −0.292562 0.956246i \(-0.594508\pi\)
−0.292562 + 0.956246i \(0.594508\pi\)
\(264\) 0 0
\(265\) 4.74456 0.291456
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.3723 −0.815322 −0.407661 0.913133i \(-0.633656\pi\)
−0.407661 + 0.913133i \(0.633656\pi\)
\(270\) 0 0
\(271\) −20.9783 −1.27434 −0.637169 0.770724i \(-0.719895\pi\)
−0.637169 + 0.770724i \(0.719895\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.37228 −0.323961
\(276\) 0 0
\(277\) 20.1168 1.20870 0.604352 0.796717i \(-0.293432\pi\)
0.604352 + 0.796717i \(0.293432\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −30.2337 −1.80359 −0.901795 0.432163i \(-0.857750\pi\)
−0.901795 + 0.432163i \(0.857750\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −6.74456 −0.398119
\(288\) 0 0
\(289\) −16.6060 −0.976822
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 15.3723 0.898058 0.449029 0.893517i \(-0.351770\pi\)
0.449029 + 0.893517i \(0.351770\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 22.7446 1.31097
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.00000 0.343559
\(306\) 0 0
\(307\) 22.9783 1.31144 0.655719 0.755005i \(-0.272366\pi\)
0.655719 + 0.755005i \(0.272366\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −17.3723 −0.985092 −0.492546 0.870286i \(-0.663934\pi\)
−0.492546 + 0.870286i \(0.663934\pi\)
\(312\) 0 0
\(313\) 25.3723 1.43413 0.717063 0.697008i \(-0.245486\pi\)
0.717063 + 0.697008i \(0.245486\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.37228 0.189406 0.0947031 0.995506i \(-0.469810\pi\)
0.0947031 + 0.995506i \(0.469810\pi\)
\(318\) 0 0
\(319\) 5.37228 0.300790
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.97825 −0.165714
\(324\) 0 0
\(325\) 1.37228 0.0761205
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −15.6060 −0.860385
\(330\) 0 0
\(331\) 15.4891 0.851359 0.425680 0.904874i \(-0.360035\pi\)
0.425680 + 0.904874i \(0.360035\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −8.62772 −0.471383
\(336\) 0 0
\(337\) −24.2337 −1.32009 −0.660047 0.751225i \(-0.729463\pi\)
−0.660047 + 0.751225i \(0.729463\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −25.4891 −1.38031
\(342\) 0 0
\(343\) 8.86141 0.478471
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −14.9783 −0.804075 −0.402037 0.915623i \(-0.631698\pi\)
−0.402037 + 0.915623i \(0.631698\pi\)
\(348\) 0 0
\(349\) −12.9783 −0.694710 −0.347355 0.937734i \(-0.612920\pi\)
−0.347355 + 0.937734i \(0.612920\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 11.4891 0.611504 0.305752 0.952111i \(-0.401092\pi\)
0.305752 + 0.952111i \(0.401092\pi\)
\(354\) 0 0
\(355\) 2.74456 0.145666
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.25544 −0.171815 −0.0859077 0.996303i \(-0.527379\pi\)
−0.0859077 + 0.996303i \(0.527379\pi\)
\(360\) 0 0
\(361\) 3.51087 0.184783
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 10.9783 0.573060 0.286530 0.958071i \(-0.407498\pi\)
0.286530 + 0.958071i \(0.407498\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −16.0000 −0.830679
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −1.37228 −0.0706761
\(378\) 0 0
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 34.9783 1.78731 0.893653 0.448760i \(-0.148134\pi\)
0.893653 + 0.448760i \(0.148134\pi\)
\(384\) 0 0
\(385\) 18.1168 0.923320
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −33.6060 −1.70389 −0.851945 0.523631i \(-0.824577\pi\)
−0.851945 + 0.523631i \(0.824577\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −8.74456 −0.439987
\(396\) 0 0
\(397\) −20.9783 −1.05287 −0.526434 0.850216i \(-0.676471\pi\)
−0.526434 + 0.850216i \(0.676471\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −23.7228 −1.18466 −0.592330 0.805695i \(-0.701792\pi\)
−0.592330 + 0.805695i \(0.701792\pi\)
\(402\) 0 0
\(403\) 6.51087 0.324330
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 3.25544 0.160971 0.0804855 0.996756i \(-0.474353\pi\)
0.0804855 + 0.996756i \(0.474353\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −40.4674 −1.99127
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.25544 0.452158 0.226079 0.974109i \(-0.427409\pi\)
0.226079 + 0.974109i \(0.427409\pi\)
\(420\) 0 0
\(421\) 1.76631 0.0860848 0.0430424 0.999073i \(-0.486295\pi\)
0.0430424 + 0.999073i \(0.486295\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.627719 0.0304488
\(426\) 0 0
\(427\) −20.2337 −0.979177
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.48913 −0.0717286 −0.0358643 0.999357i \(-0.511418\pi\)
−0.0358643 + 0.999357i \(0.511418\pi\)
\(432\) 0 0
\(433\) −9.48913 −0.456018 −0.228009 0.973659i \(-0.573222\pi\)
−0.228009 + 0.973659i \(0.573222\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 22.1168 1.05558 0.527790 0.849375i \(-0.323021\pi\)
0.527790 + 0.849375i \(0.323021\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 18.3505 0.871860 0.435930 0.899981i \(-0.356420\pi\)
0.435930 + 0.899981i \(0.356420\pi\)
\(444\) 0 0
\(445\) −0.116844 −0.00553894
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.1168 1.51569 0.757844 0.652436i \(-0.226253\pi\)
0.757844 + 0.652436i \(0.226253\pi\)
\(450\) 0 0
\(451\) −10.7446 −0.505942
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −4.62772 −0.216951
\(456\) 0 0
\(457\) 37.8397 1.77006 0.885032 0.465530i \(-0.154136\pi\)
0.885032 + 0.465530i \(0.154136\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −23.4891 −1.09400 −0.546999 0.837133i \(-0.684230\pi\)
−0.546999 + 0.837133i \(0.684230\pi\)
\(462\) 0 0
\(463\) 19.3723 0.900306 0.450153 0.892951i \(-0.351369\pi\)
0.450153 + 0.892951i \(0.351369\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.00000 −0.185098 −0.0925490 0.995708i \(-0.529501\pi\)
−0.0925490 + 0.995708i \(0.529501\pi\)
\(468\) 0 0
\(469\) 29.0951 1.34349
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 36.2337 1.66603
\(474\) 0 0
\(475\) −4.74456 −0.217695
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 39.7228 1.81498 0.907491 0.420072i \(-0.137995\pi\)
0.907491 + 0.420072i \(0.137995\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.48913 −0.430879
\(486\) 0 0
\(487\) −42.9783 −1.94753 −0.973765 0.227555i \(-0.926927\pi\)
−0.973765 + 0.227555i \(0.926927\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −35.7228 −1.61215 −0.806074 0.591815i \(-0.798412\pi\)
−0.806074 + 0.591815i \(0.798412\pi\)
\(492\) 0 0
\(493\) −0.627719 −0.0282710
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −9.25544 −0.415163
\(498\) 0 0
\(499\) 34.3505 1.53774 0.768870 0.639405i \(-0.220819\pi\)
0.768870 + 0.639405i \(0.220819\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.1168 0.986141 0.493071 0.869989i \(-0.335874\pi\)
0.493071 + 0.869989i \(0.335874\pi\)
\(504\) 0 0
\(505\) 16.1168 0.717190
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 34.2337 1.51738 0.758691 0.651451i \(-0.225839\pi\)
0.758691 + 0.651451i \(0.225839\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 5.48913 0.241880
\(516\) 0 0
\(517\) −24.8614 −1.09340
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 12.9783 0.568587 0.284294 0.958737i \(-0.408241\pi\)
0.284294 + 0.958737i \(0.408241\pi\)
\(522\) 0 0
\(523\) −12.8614 −0.562390 −0.281195 0.959651i \(-0.590731\pi\)
−0.281195 + 0.959651i \(0.590731\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.97825 0.129735
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 2.74456 0.118880
\(534\) 0 0
\(535\) −2.74456 −0.118658
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −23.4891 −1.01175
\(540\) 0 0
\(541\) 34.0000 1.46177 0.730887 0.682498i \(-0.239107\pi\)
0.730887 + 0.682498i \(0.239107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.8614 0.636593
\(546\) 0 0
\(547\) 3.13859 0.134197 0.0670983 0.997746i \(-0.478626\pi\)
0.0670983 + 0.997746i \(0.478626\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.74456 0.202125
\(552\) 0 0
\(553\) 29.4891 1.25401
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.2554 0.985365 0.492682 0.870209i \(-0.336016\pi\)
0.492682 + 0.870209i \(0.336016\pi\)
\(558\) 0 0
\(559\) −9.25544 −0.391463
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 30.3505 1.27912 0.639561 0.768740i \(-0.279116\pi\)
0.639561 + 0.768740i \(0.279116\pi\)
\(564\) 0 0
\(565\) 10.1168 0.425619
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −22.6277 −0.948603 −0.474302 0.880362i \(-0.657299\pi\)
−0.474302 + 0.880362i \(0.657299\pi\)
\(570\) 0 0
\(571\) −16.0000 −0.669579 −0.334790 0.942293i \(-0.608665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −2.51087 −0.104529 −0.0522645 0.998633i \(-0.516644\pi\)
−0.0522645 + 0.998633i \(0.516644\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −40.4674 −1.67887
\(582\) 0 0
\(583\) −25.4891 −1.05565
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −22.9783 −0.948414 −0.474207 0.880413i \(-0.657265\pi\)
−0.474207 + 0.880413i \(0.657265\pi\)
\(588\) 0 0
\(589\) −22.5109 −0.927544
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 28.7446 1.18040 0.590199 0.807258i \(-0.299049\pi\)
0.590199 + 0.807258i \(0.299049\pi\)
\(594\) 0 0
\(595\) −2.11684 −0.0867821
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 9.60597 0.392489 0.196245 0.980555i \(-0.437125\pi\)
0.196245 + 0.980555i \(0.437125\pi\)
\(600\) 0 0
\(601\) 3.48913 0.142324 0.0711622 0.997465i \(-0.477329\pi\)
0.0711622 + 0.997465i \(0.477329\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 17.8614 0.726169
\(606\) 0 0
\(607\) −8.00000 −0.324710 −0.162355 0.986732i \(-0.551909\pi\)
−0.162355 + 0.986732i \(0.551909\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.35053 0.256915
\(612\) 0 0
\(613\) −21.6060 −0.872657 −0.436328 0.899787i \(-0.643721\pi\)
−0.436328 + 0.899787i \(0.643721\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −26.7446 −1.07670 −0.538348 0.842723i \(-0.680951\pi\)
−0.538348 + 0.842723i \(0.680951\pi\)
\(618\) 0 0
\(619\) 42.4674 1.70691 0.853454 0.521168i \(-0.174504\pi\)
0.853454 + 0.521168i \(0.174504\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.394031 0.0157865
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −48.8614 −1.94514 −0.972571 0.232606i \(-0.925275\pi\)
−0.972571 + 0.232606i \(0.925275\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.25544 −0.208556
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 32.3505 1.27777 0.638885 0.769303i \(-0.279396\pi\)
0.638885 + 0.769303i \(0.279396\pi\)
\(642\) 0 0
\(643\) 28.8614 1.13818 0.569091 0.822274i \(-0.307295\pi\)
0.569091 + 0.822274i \(0.307295\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 44.2337 1.73901 0.869503 0.493928i \(-0.164439\pi\)
0.869503 + 0.493928i \(0.164439\pi\)
\(648\) 0 0
\(649\) −64.4674 −2.53057
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 13.8832 0.543290 0.271645 0.962398i \(-0.412432\pi\)
0.271645 + 0.962398i \(0.412432\pi\)
\(654\) 0 0
\(655\) 10.6277 0.415259
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.37228 0.0534565 0.0267282 0.999643i \(-0.491491\pi\)
0.0267282 + 0.999643i \(0.491491\pi\)
\(660\) 0 0
\(661\) 5.60597 0.218047 0.109023 0.994039i \(-0.465228\pi\)
0.109023 + 0.994039i \(0.465228\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.0000 0.620453
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −32.2337 −1.24437
\(672\) 0 0
\(673\) 30.8614 1.18962 0.594810 0.803866i \(-0.297227\pi\)
0.594810 + 0.803866i \(0.297227\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −42.3505 −1.62766 −0.813832 0.581101i \(-0.802622\pi\)
−0.813832 + 0.581101i \(0.802622\pi\)
\(678\) 0 0
\(679\) 32.0000 1.22805
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.48913 0.0569798 0.0284899 0.999594i \(-0.490930\pi\)
0.0284899 + 0.999594i \(0.490930\pi\)
\(684\) 0 0
\(685\) 5.25544 0.200800
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.51087 0.248045
\(690\) 0 0
\(691\) 11.6060 0.441512 0.220756 0.975329i \(-0.429148\pi\)
0.220756 + 0.975329i \(0.429148\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.11684 −0.0802965
\(696\) 0 0
\(697\) 1.25544 0.0475531
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −16.5109 −0.623607 −0.311804 0.950147i \(-0.600933\pi\)
−0.311804 + 0.950147i \(0.600933\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −54.3505 −2.04406
\(708\) 0 0
\(709\) −16.5109 −0.620079 −0.310039 0.950724i \(-0.600342\pi\)
−0.310039 + 0.950724i \(0.600342\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −7.37228 −0.275708
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.25544 0.0468199 0.0234100 0.999726i \(-0.492548\pi\)
0.0234100 + 0.999726i \(0.492548\pi\)
\(720\) 0 0
\(721\) −18.5109 −0.689381
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) 13.4891 0.500284 0.250142 0.968209i \(-0.419523\pi\)
0.250142 + 0.968209i \(0.419523\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −4.23369 −0.156589
\(732\) 0 0
\(733\) 13.2554 0.489601 0.244800 0.969574i \(-0.421278\pi\)
0.244800 + 0.969574i \(0.421278\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 46.3505 1.70734
\(738\) 0 0
\(739\) 4.97825 0.183128 0.0915640 0.995799i \(-0.470813\pi\)
0.0915640 + 0.995799i \(0.470813\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −36.8614 −1.35231 −0.676157 0.736758i \(-0.736356\pi\)
−0.676157 + 0.736758i \(0.736356\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.25544 0.338186
\(750\) 0 0
\(751\) −23.2554 −0.848603 −0.424301 0.905521i \(-0.639480\pi\)
−0.424301 + 0.905521i \(0.639480\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 9.48913 0.345345
\(756\) 0 0
\(757\) −13.4891 −0.490271 −0.245135 0.969489i \(-0.578832\pi\)
−0.245135 + 0.969489i \(0.578832\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 7.72281 0.279952 0.139976 0.990155i \(-0.455297\pi\)
0.139976 + 0.990155i \(0.455297\pi\)
\(762\) 0 0
\(763\) −50.1168 −1.81435
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 16.4674 0.594602
\(768\) 0 0
\(769\) −23.4891 −0.847040 −0.423520 0.905887i \(-0.639206\pi\)
−0.423520 + 0.905887i \(0.639206\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17.2554 −0.620635 −0.310317 0.950633i \(-0.600435\pi\)
−0.310317 + 0.950633i \(0.600435\pi\)
\(774\) 0 0
\(775\) 4.74456 0.170430
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.48913 −0.339983
\(780\) 0 0
\(781\) −14.7446 −0.527602
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 12.0000 0.428298
\(786\) 0 0
\(787\) −44.0000 −1.56843 −0.784215 0.620489i \(-0.786934\pi\)
−0.784215 + 0.620489i \(0.786934\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −34.1168 −1.21306
\(792\) 0 0
\(793\) 8.23369 0.292387
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 22.7446 0.805654 0.402827 0.915276i \(-0.368028\pi\)
0.402827 + 0.915276i \(0.368028\pi\)
\(798\) 0 0
\(799\) 2.90491 0.102768
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 22.6277 0.795548 0.397774 0.917483i \(-0.369783\pi\)
0.397774 + 0.917483i \(0.369783\pi\)
\(810\) 0 0
\(811\) −44.8614 −1.57530 −0.787649 0.616125i \(-0.788702\pi\)
−0.787649 + 0.616125i \(0.788702\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −5.48913 −0.192276
\(816\) 0 0
\(817\) 32.0000 1.11954
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11.4891 0.400973 0.200487 0.979696i \(-0.435748\pi\)
0.200487 + 0.979696i \(0.435748\pi\)
\(822\) 0 0
\(823\) −51.2119 −1.78514 −0.892568 0.450913i \(-0.851099\pi\)
−0.892568 + 0.450913i \(0.851099\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −18.9783 −0.659938 −0.329969 0.943992i \(-0.607038\pi\)
−0.329969 + 0.943992i \(0.607038\pi\)
\(828\) 0 0
\(829\) −18.2337 −0.633282 −0.316641 0.948545i \(-0.602555\pi\)
−0.316641 + 0.948545i \(0.602555\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 2.74456 0.0950935
\(834\) 0 0
\(835\) 16.0000 0.553703
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −34.8614 −1.20355 −0.601775 0.798666i \(-0.705539\pi\)
−0.601775 + 0.798666i \(0.705539\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.1168 −0.382431
\(846\) 0 0
\(847\) −60.2337 −2.06965
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −16.2337 −0.555831 −0.277915 0.960606i \(-0.589644\pi\)
−0.277915 + 0.960606i \(0.589644\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −38.4674 −1.31402 −0.657010 0.753882i \(-0.728179\pi\)
−0.657010 + 0.753882i \(0.728179\pi\)
\(858\) 0 0
\(859\) 46.2337 1.57747 0.788737 0.614731i \(-0.210736\pi\)
0.788737 + 0.614731i \(0.210736\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 55.2119 1.87944 0.939718 0.341950i \(-0.111087\pi\)
0.939718 + 0.341950i \(0.111087\pi\)
\(864\) 0 0
\(865\) −10.2337 −0.347956
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 46.9783 1.59363
\(870\) 0 0
\(871\) −11.8397 −0.401171
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.37228 −0.114004
\(876\) 0 0
\(877\) 26.0000 0.877958 0.438979 0.898497i \(-0.355340\pi\)
0.438979 + 0.898497i \(0.355340\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 13.3723 0.450524 0.225262 0.974298i \(-0.427676\pi\)
0.225262 + 0.974298i \(0.427676\pi\)
\(882\) 0 0
\(883\) 41.9565 1.41195 0.705974 0.708237i \(-0.250509\pi\)
0.705974 + 0.708237i \(0.250509\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −22.1168 −0.742611 −0.371305 0.928511i \(-0.621090\pi\)
−0.371305 + 0.928511i \(0.621090\pi\)
\(888\) 0 0
\(889\) 17.7228 0.594404
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −21.9565 −0.734746
\(894\) 0 0
\(895\) 2.74456 0.0917406
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.74456 −0.158240
\(900\) 0 0
\(901\) 2.97825 0.0992199
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 14.6277 0.486242
\(906\) 0 0
\(907\) 56.4674 1.87497 0.937484 0.348028i \(-0.113149\pi\)
0.937484 + 0.348028i \(0.113149\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 16.1168 0.533975 0.266987 0.963700i \(-0.413972\pi\)
0.266987 + 0.963700i \(0.413972\pi\)
\(912\) 0 0
\(913\) −64.4674 −2.13356
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −35.8397 −1.18353
\(918\) 0 0
\(919\) 29.0951 0.959759 0.479879 0.877335i \(-0.340680\pi\)
0.479879 + 0.877335i \(0.340680\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.76631 0.123970
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.9783 0.425803 0.212901 0.977074i \(-0.431709\pi\)
0.212901 + 0.977074i \(0.431709\pi\)
\(930\) 0 0
\(931\) −20.7446 −0.679876
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.37228 −0.110285
\(936\) 0 0
\(937\) −6.39403 −0.208884 −0.104442 0.994531i \(-0.533306\pi\)
−0.104442 + 0.994531i \(0.533306\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −20.3940 −0.662717 −0.331358 0.943505i \(-0.607507\pi\)
−0.331358 + 0.943505i \(0.607507\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −23.4891 −0.760887 −0.380444 0.924804i \(-0.624229\pi\)
−0.380444 + 0.924804i \(0.624229\pi\)
\(954\) 0 0
\(955\) −3.25544 −0.105343
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −17.7228 −0.572299
\(960\) 0 0
\(961\) −8.48913 −0.273843
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.74456 0.217115
\(966\) 0 0
\(967\) −44.4674 −1.42997 −0.714987 0.699138i \(-0.753568\pi\)
−0.714987 + 0.699138i \(0.753568\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 16.7446 0.537359 0.268679 0.963230i \(-0.413413\pi\)
0.268679 + 0.963230i \(0.413413\pi\)
\(972\) 0 0
\(973\) 7.13859 0.228853
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.7228 0.630989 0.315494 0.948927i \(-0.397830\pi\)
0.315494 + 0.948927i \(0.397830\pi\)
\(978\) 0 0
\(979\) 0.627719 0.0200620
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −41.4891 −1.32330 −0.661649 0.749814i \(-0.730143\pi\)
−0.661649 + 0.749814i \(0.730143\pi\)
\(984\) 0 0
\(985\) 7.48913 0.238623
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 20.8614 0.662684 0.331342 0.943511i \(-0.392499\pi\)
0.331342 + 0.943511i \(0.392499\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −24.8614 −0.788160
\(996\) 0 0
\(997\) −53.9565 −1.70882 −0.854410 0.519600i \(-0.826081\pi\)
−0.854410 + 0.519600i \(0.826081\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5220.2.a.s.1.1 2
3.2 odd 2 1740.2.a.i.1.1 2
12.11 even 2 6960.2.a.cd.1.2 2
15.2 even 4 8700.2.g.t.349.3 4
15.8 even 4 8700.2.g.t.349.2 4
15.14 odd 2 8700.2.a.y.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.2.a.i.1.1 2 3.2 odd 2
5220.2.a.s.1.1 2 1.1 even 1 trivial
6960.2.a.cd.1.2 2 12.11 even 2
8700.2.a.y.1.2 2 15.14 odd 2
8700.2.g.t.349.2 4 15.8 even 4
8700.2.g.t.349.3 4 15.2 even 4