Properties

Label 5220.2.a.s.1.2
Level $5220$
Weight $2$
Character 5220.1
Self dual yes
Analytic conductor $41.682$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5220,2,Mod(1,5220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5220.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5220 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.6819098551\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1740)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.37228\) of defining polynomial
Character \(\chi\) \(=\) 5220.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +2.37228 q^{7} +0.372281 q^{11} -4.37228 q^{13} +6.37228 q^{17} +6.74456 q^{19} +1.00000 q^{25} -1.00000 q^{29} -6.74456 q^{31} +2.37228 q^{35} +2.00000 q^{41} +4.74456 q^{43} +10.3723 q^{47} -1.37228 q^{49} -6.74456 q^{53} +0.372281 q^{55} +12.0000 q^{59} +6.00000 q^{61} -4.37228 q^{65} -14.3723 q^{67} -8.74456 q^{71} +0.883156 q^{77} +2.74456 q^{79} +12.0000 q^{83} +6.37228 q^{85} +17.1168 q^{89} -10.3723 q^{91} +6.74456 q^{95} +13.4891 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} - q^{7} - 5 q^{11} - 3 q^{13} + 7 q^{17} + 2 q^{19} + 2 q^{25} - 2 q^{29} - 2 q^{31} - q^{35} + 4 q^{41} - 2 q^{43} + 15 q^{47} + 3 q^{49} - 2 q^{53} - 5 q^{55} + 24 q^{59} + 12 q^{61} - 3 q^{65}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 2.37228 0.896638 0.448319 0.893874i \(-0.352023\pi\)
0.448319 + 0.893874i \(0.352023\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.372281 0.112247 0.0561235 0.998424i \(-0.482126\pi\)
0.0561235 + 0.998424i \(0.482126\pi\)
\(12\) 0 0
\(13\) −4.37228 −1.21265 −0.606326 0.795216i \(-0.707357\pi\)
−0.606326 + 0.795216i \(0.707357\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.37228 1.54551 0.772753 0.634707i \(-0.218879\pi\)
0.772753 + 0.634707i \(0.218879\pi\)
\(18\) 0 0
\(19\) 6.74456 1.54731 0.773654 0.633608i \(-0.218427\pi\)
0.773654 + 0.633608i \(0.218427\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −6.74456 −1.21136 −0.605680 0.795709i \(-0.707099\pi\)
−0.605680 + 0.795709i \(0.707099\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.37228 0.400989
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) 4.74456 0.723539 0.361770 0.932268i \(-0.382173\pi\)
0.361770 + 0.932268i \(0.382173\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.3723 1.51295 0.756476 0.654021i \(-0.226919\pi\)
0.756476 + 0.654021i \(0.226919\pi\)
\(48\) 0 0
\(49\) −1.37228 −0.196040
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −6.74456 −0.926437 −0.463218 0.886244i \(-0.653305\pi\)
−0.463218 + 0.886244i \(0.653305\pi\)
\(54\) 0 0
\(55\) 0.372281 0.0501984
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 12.0000 1.56227 0.781133 0.624364i \(-0.214642\pi\)
0.781133 + 0.624364i \(0.214642\pi\)
\(60\) 0 0
\(61\) 6.00000 0.768221 0.384111 0.923287i \(-0.374508\pi\)
0.384111 + 0.923287i \(0.374508\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.37228 −0.542315
\(66\) 0 0
\(67\) −14.3723 −1.75585 −0.877927 0.478795i \(-0.841074\pi\)
−0.877927 + 0.478795i \(0.841074\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.74456 −1.03779 −0.518894 0.854838i \(-0.673656\pi\)
−0.518894 + 0.854838i \(0.673656\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.883156 0.100645
\(78\) 0 0
\(79\) 2.74456 0.308787 0.154394 0.988009i \(-0.450658\pi\)
0.154394 + 0.988009i \(0.450658\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 6.37228 0.691171
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 17.1168 1.81438 0.907191 0.420719i \(-0.138222\pi\)
0.907191 + 0.420719i \(0.138222\pi\)
\(90\) 0 0
\(91\) −10.3723 −1.08731
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.74456 0.691978
\(96\) 0 0
\(97\) 13.4891 1.36961 0.684807 0.728725i \(-0.259887\pi\)
0.684807 + 0.728725i \(0.259887\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.11684 −0.111130 −0.0555651 0.998455i \(-0.517696\pi\)
−0.0555651 + 0.998455i \(0.517696\pi\)
\(102\) 0 0
\(103\) −17.4891 −1.72325 −0.861627 0.507541i \(-0.830554\pi\)
−0.861627 + 0.507541i \(0.830554\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 8.74456 0.845369 0.422684 0.906277i \(-0.361088\pi\)
0.422684 + 0.906277i \(0.361088\pi\)
\(108\) 0 0
\(109\) −13.8614 −1.32768 −0.663841 0.747874i \(-0.731075\pi\)
−0.663841 + 0.747874i \(0.731075\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −7.11684 −0.669496 −0.334748 0.942308i \(-0.608651\pi\)
−0.334748 + 0.942308i \(0.608651\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 15.1168 1.38576
\(120\) 0 0
\(121\) −10.8614 −0.987401
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −16.7446 −1.48584 −0.742920 0.669380i \(-0.766560\pi\)
−0.742920 + 0.669380i \(0.766560\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 16.3723 1.43045 0.715226 0.698893i \(-0.246324\pi\)
0.715226 + 0.698893i \(0.246324\pi\)
\(132\) 0 0
\(133\) 16.0000 1.38738
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.7446 1.43058 0.715292 0.698825i \(-0.246294\pi\)
0.715292 + 0.698825i \(0.246294\pi\)
\(138\) 0 0
\(139\) 15.1168 1.28219 0.641097 0.767460i \(-0.278480\pi\)
0.641097 + 0.767460i \(0.278480\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.62772 −0.136117
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −10.0000 −0.819232 −0.409616 0.912258i \(-0.634337\pi\)
−0.409616 + 0.912258i \(0.634337\pi\)
\(150\) 0 0
\(151\) −13.4891 −1.09773 −0.548865 0.835911i \(-0.684940\pi\)
−0.548865 + 0.835911i \(0.684940\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −6.74456 −0.541736
\(156\) 0 0
\(157\) 12.0000 0.957704 0.478852 0.877896i \(-0.341053\pi\)
0.478852 + 0.877896i \(0.341053\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 17.4891 1.36985 0.684927 0.728612i \(-0.259834\pi\)
0.684927 + 0.728612i \(0.259834\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 16.0000 1.23812 0.619059 0.785345i \(-0.287514\pi\)
0.619059 + 0.785345i \(0.287514\pi\)
\(168\) 0 0
\(169\) 6.11684 0.470526
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 24.2337 1.84245 0.921227 0.389026i \(-0.127189\pi\)
0.921227 + 0.389026i \(0.127189\pi\)
\(174\) 0 0
\(175\) 2.37228 0.179328
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.74456 −0.653599 −0.326800 0.945094i \(-0.605970\pi\)
−0.326800 + 0.945094i \(0.605970\pi\)
\(180\) 0 0
\(181\) 20.3723 1.51426 0.757130 0.653264i \(-0.226601\pi\)
0.757130 + 0.653264i \(0.226601\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 2.37228 0.173478
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −14.7446 −1.06688 −0.533440 0.845838i \(-0.679101\pi\)
−0.533440 + 0.845838i \(0.679101\pi\)
\(192\) 0 0
\(193\) −4.74456 −0.341521 −0.170761 0.985313i \(-0.554622\pi\)
−0.170761 + 0.985313i \(0.554622\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −15.4891 −1.10355 −0.551777 0.833992i \(-0.686050\pi\)
−0.551777 + 0.833992i \(0.686050\pi\)
\(198\) 0 0
\(199\) 3.86141 0.273728 0.136864 0.990590i \(-0.456298\pi\)
0.136864 + 0.990590i \(0.456298\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.37228 −0.166502
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.51087 0.173681
\(210\) 0 0
\(211\) 15.4891 1.06632 0.533158 0.846016i \(-0.321005\pi\)
0.533158 + 0.846016i \(0.321005\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.74456 0.323576
\(216\) 0 0
\(217\) −16.0000 −1.08615
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −27.8614 −1.87416
\(222\) 0 0
\(223\) −3.86141 −0.258579 −0.129289 0.991607i \(-0.541270\pi\)
−0.129289 + 0.991607i \(0.541270\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.4891 −0.895305 −0.447652 0.894208i \(-0.647740\pi\)
−0.447652 + 0.894208i \(0.647740\pi\)
\(228\) 0 0
\(229\) −19.4891 −1.28788 −0.643939 0.765077i \(-0.722701\pi\)
−0.643939 + 0.765077i \(0.722701\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.00000 −0.131024 −0.0655122 0.997852i \(-0.520868\pi\)
−0.0655122 + 0.997852i \(0.520868\pi\)
\(234\) 0 0
\(235\) 10.3723 0.676613
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −4.74456 −0.306900 −0.153450 0.988156i \(-0.549038\pi\)
−0.153450 + 0.988156i \(0.549038\pi\)
\(240\) 0 0
\(241\) −2.88316 −0.185720 −0.0928602 0.995679i \(-0.529601\pi\)
−0.0928602 + 0.995679i \(0.529601\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.37228 −0.0876718
\(246\) 0 0
\(247\) −29.4891 −1.87635
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −26.6060 −1.67935 −0.839677 0.543086i \(-0.817256\pi\)
−0.839677 + 0.543086i \(0.817256\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.510875 0.0318675 0.0159337 0.999873i \(-0.494928\pi\)
0.0159337 + 0.999873i \(0.494928\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 13.4891 0.831775 0.415888 0.909416i \(-0.363471\pi\)
0.415888 + 0.909416i \(0.363471\pi\)
\(264\) 0 0
\(265\) −6.74456 −0.414315
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −7.62772 −0.465070 −0.232535 0.972588i \(-0.574702\pi\)
−0.232535 + 0.972588i \(0.574702\pi\)
\(270\) 0 0
\(271\) 24.9783 1.51732 0.758660 0.651486i \(-0.225854\pi\)
0.758660 + 0.651486i \(0.225854\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0.372281 0.0224494
\(276\) 0 0
\(277\) 2.88316 0.173232 0.0866160 0.996242i \(-0.472395\pi\)
0.0866160 + 0.996242i \(0.472395\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4.23369 0.252561 0.126280 0.991995i \(-0.459696\pi\)
0.126280 + 0.991995i \(0.459696\pi\)
\(282\) 0 0
\(283\) 4.00000 0.237775 0.118888 0.992908i \(-0.462067\pi\)
0.118888 + 0.992908i \(0.462067\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.74456 0.280063
\(288\) 0 0
\(289\) 23.6060 1.38859
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 9.62772 0.562457 0.281229 0.959641i \(-0.409258\pi\)
0.281229 + 0.959641i \(0.409258\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 11.2554 0.648753
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 6.00000 0.343559
\(306\) 0 0
\(307\) −22.9783 −1.31144 −0.655719 0.755005i \(-0.727634\pi\)
−0.655719 + 0.755005i \(0.727634\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.6277 −0.659347 −0.329674 0.944095i \(-0.606939\pi\)
−0.329674 + 0.944095i \(0.606939\pi\)
\(312\) 0 0
\(313\) 19.6277 1.10942 0.554712 0.832042i \(-0.312828\pi\)
0.554712 + 0.832042i \(0.312828\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.37228 −0.133241 −0.0666203 0.997778i \(-0.521222\pi\)
−0.0666203 + 0.997778i \(0.521222\pi\)
\(318\) 0 0
\(319\) −0.372281 −0.0208438
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 42.9783 2.39137
\(324\) 0 0
\(325\) −4.37228 −0.242531
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 24.6060 1.35657
\(330\) 0 0
\(331\) −7.48913 −0.411640 −0.205820 0.978590i \(-0.565986\pi\)
−0.205820 + 0.978590i \(0.565986\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −14.3723 −0.785242
\(336\) 0 0
\(337\) 10.2337 0.557465 0.278732 0.960369i \(-0.410086\pi\)
0.278732 + 0.960369i \(0.410086\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −2.51087 −0.135971
\(342\) 0 0
\(343\) −19.8614 −1.07242
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 30.9783 1.66300 0.831500 0.555525i \(-0.187483\pi\)
0.831500 + 0.555525i \(0.187483\pi\)
\(348\) 0 0
\(349\) 32.9783 1.76529 0.882643 0.470045i \(-0.155762\pi\)
0.882643 + 0.470045i \(0.155762\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −11.4891 −0.611504 −0.305752 0.952111i \(-0.598908\pi\)
−0.305752 + 0.952111i \(0.598908\pi\)
\(354\) 0 0
\(355\) −8.74456 −0.464113
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −14.7446 −0.778188 −0.389094 0.921198i \(-0.627212\pi\)
−0.389094 + 0.921198i \(0.627212\pi\)
\(360\) 0 0
\(361\) 26.4891 1.39416
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −34.9783 −1.82585 −0.912925 0.408128i \(-0.866182\pi\)
−0.912925 + 0.408128i \(0.866182\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −16.0000 −0.830679
\(372\) 0 0
\(373\) 22.0000 1.13912 0.569558 0.821951i \(-0.307114\pi\)
0.569558 + 0.821951i \(0.307114\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 4.37228 0.225184
\(378\) 0 0
\(379\) −10.0000 −0.513665 −0.256833 0.966456i \(-0.582679\pi\)
−0.256833 + 0.966456i \(0.582679\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −10.9783 −0.560962 −0.280481 0.959860i \(-0.590494\pi\)
−0.280481 + 0.959860i \(0.590494\pi\)
\(384\) 0 0
\(385\) 0.883156 0.0450098
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 6.60597 0.334936 0.167468 0.985878i \(-0.446441\pi\)
0.167468 + 0.985878i \(0.446441\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.74456 0.138094
\(396\) 0 0
\(397\) 24.9783 1.25362 0.626811 0.779171i \(-0.284360\pi\)
0.626811 + 0.779171i \(0.284360\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 33.7228 1.68404 0.842018 0.539449i \(-0.181367\pi\)
0.842018 + 0.539449i \(0.181367\pi\)
\(402\) 0 0
\(403\) 29.4891 1.46896
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 14.7446 0.729072 0.364536 0.931189i \(-0.381228\pi\)
0.364536 + 0.931189i \(0.381228\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 28.4674 1.40079
\(414\) 0 0
\(415\) 12.0000 0.589057
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 20.7446 1.01344 0.506719 0.862111i \(-0.330858\pi\)
0.506719 + 0.862111i \(0.330858\pi\)
\(420\) 0 0
\(421\) 36.2337 1.76592 0.882961 0.469446i \(-0.155546\pi\)
0.882961 + 0.469446i \(0.155546\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.37228 0.309101
\(426\) 0 0
\(427\) 14.2337 0.688816
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 21.4891 1.03509 0.517547 0.855655i \(-0.326845\pi\)
0.517547 + 0.855655i \(0.326845\pi\)
\(432\) 0 0
\(433\) 13.4891 0.648246 0.324123 0.946015i \(-0.394931\pi\)
0.324123 + 0.946015i \(0.394931\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 4.88316 0.233060 0.116530 0.993187i \(-0.462823\pi\)
0.116530 + 0.993187i \(0.462823\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −33.3505 −1.58453 −0.792266 0.610176i \(-0.791099\pi\)
−0.792266 + 0.610176i \(0.791099\pi\)
\(444\) 0 0
\(445\) 17.1168 0.811416
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.8832 0.702380 0.351190 0.936304i \(-0.385777\pi\)
0.351190 + 0.936304i \(0.385777\pi\)
\(450\) 0 0
\(451\) 0.744563 0.0350601
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −10.3723 −0.486260
\(456\) 0 0
\(457\) −36.8397 −1.72329 −0.861643 0.507514i \(-0.830564\pi\)
−0.861643 + 0.507514i \(0.830564\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −0.510875 −0.0237938 −0.0118969 0.999929i \(-0.503787\pi\)
−0.0118969 + 0.999929i \(0.503787\pi\)
\(462\) 0 0
\(463\) 13.6277 0.633334 0.316667 0.948537i \(-0.397436\pi\)
0.316667 + 0.948537i \(0.397436\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −4.00000 −0.185098 −0.0925490 0.995708i \(-0.529501\pi\)
−0.0925490 + 0.995708i \(0.529501\pi\)
\(468\) 0 0
\(469\) −34.0951 −1.57437
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.76631 0.0812151
\(474\) 0 0
\(475\) 6.74456 0.309462
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −17.7228 −0.809776 −0.404888 0.914366i \(-0.632689\pi\)
−0.404888 + 0.914366i \(0.632689\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 13.4891 0.612510
\(486\) 0 0
\(487\) 2.97825 0.134957 0.0674787 0.997721i \(-0.478505\pi\)
0.0674787 + 0.997721i \(0.478505\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 21.7228 0.980337 0.490168 0.871628i \(-0.336935\pi\)
0.490168 + 0.871628i \(0.336935\pi\)
\(492\) 0 0
\(493\) −6.37228 −0.286993
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −20.7446 −0.930521
\(498\) 0 0
\(499\) −17.3505 −0.776716 −0.388358 0.921508i \(-0.626958\pi\)
−0.388358 + 0.921508i \(0.626958\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 4.88316 0.217729 0.108865 0.994057i \(-0.465279\pi\)
0.108865 + 0.994057i \(0.465279\pi\)
\(504\) 0 0
\(505\) −1.11684 −0.0496989
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −0.233688 −0.0103580 −0.00517902 0.999987i \(-0.501649\pi\)
−0.00517902 + 0.999987i \(0.501649\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −17.4891 −0.770663
\(516\) 0 0
\(517\) 3.86141 0.169824
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −32.9783 −1.44480 −0.722402 0.691474i \(-0.756962\pi\)
−0.722402 + 0.691474i \(0.756962\pi\)
\(522\) 0 0
\(523\) 15.8614 0.693571 0.346785 0.937944i \(-0.387273\pi\)
0.346785 + 0.937944i \(0.387273\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −42.9783 −1.87216
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −8.74456 −0.378769
\(534\) 0 0
\(535\) 8.74456 0.378060
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −0.510875 −0.0220049
\(540\) 0 0
\(541\) 34.0000 1.46177 0.730887 0.682498i \(-0.239107\pi\)
0.730887 + 0.682498i \(0.239107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −13.8614 −0.593757
\(546\) 0 0
\(547\) 31.8614 1.36230 0.681148 0.732146i \(-0.261481\pi\)
0.681148 + 0.732146i \(0.261481\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.74456 −0.287328
\(552\) 0 0
\(553\) 6.51087 0.276871
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 34.7446 1.47217 0.736087 0.676887i \(-0.236671\pi\)
0.736087 + 0.676887i \(0.236671\pi\)
\(558\) 0 0
\(559\) −20.7446 −0.877402
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.3505 −0.899818 −0.449909 0.893074i \(-0.648544\pi\)
−0.449909 + 0.893074i \(0.648544\pi\)
\(564\) 0 0
\(565\) −7.11684 −0.299408
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −28.3723 −1.18943 −0.594714 0.803937i \(-0.702735\pi\)
−0.594714 + 0.803937i \(0.702735\pi\)
\(570\) 0 0
\(571\) −16.0000 −0.669579 −0.334790 0.942293i \(-0.608665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −25.4891 −1.06113 −0.530563 0.847645i \(-0.678019\pi\)
−0.530563 + 0.847645i \(0.678019\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 28.4674 1.18103
\(582\) 0 0
\(583\) −2.51087 −0.103990
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.9783 0.948414 0.474207 0.880413i \(-0.342735\pi\)
0.474207 + 0.880413i \(0.342735\pi\)
\(588\) 0 0
\(589\) −45.4891 −1.87435
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 17.2554 0.708596 0.354298 0.935133i \(-0.384720\pi\)
0.354298 + 0.935133i \(0.384720\pi\)
\(594\) 0 0
\(595\) 15.1168 0.619730
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −30.6060 −1.25053 −0.625263 0.780414i \(-0.715008\pi\)
−0.625263 + 0.780414i \(0.715008\pi\)
\(600\) 0 0
\(601\) −19.4891 −0.794978 −0.397489 0.917607i \(-0.630118\pi\)
−0.397489 + 0.917607i \(0.630118\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −10.8614 −0.441579
\(606\) 0 0
\(607\) −8.00000 −0.324710 −0.162355 0.986732i \(-0.551909\pi\)
−0.162355 + 0.986732i \(0.551909\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −45.3505 −1.83469
\(612\) 0 0
\(613\) 18.6060 0.751488 0.375744 0.926723i \(-0.377387\pi\)
0.375744 + 0.926723i \(0.377387\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.2554 −0.614161 −0.307080 0.951684i \(-0.599352\pi\)
−0.307080 + 0.951684i \(0.599352\pi\)
\(618\) 0 0
\(619\) −26.4674 −1.06381 −0.531907 0.846803i \(-0.678524\pi\)
−0.531907 + 0.846803i \(0.678524\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 40.6060 1.62684
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −20.1386 −0.801705 −0.400852 0.916143i \(-0.631286\pi\)
−0.400852 + 0.916143i \(0.631286\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −16.7446 −0.664488
\(636\) 0 0
\(637\) 6.00000 0.237729
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −19.3505 −0.764300 −0.382150 0.924100i \(-0.624816\pi\)
−0.382150 + 0.924100i \(0.624816\pi\)
\(642\) 0 0
\(643\) 0.138593 0.00546559 0.00273279 0.999996i \(-0.499130\pi\)
0.00273279 + 0.999996i \(0.499130\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.76631 0.383953 0.191977 0.981399i \(-0.438510\pi\)
0.191977 + 0.981399i \(0.438510\pi\)
\(648\) 0 0
\(649\) 4.46738 0.175360
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 31.1168 1.21770 0.608848 0.793287i \(-0.291632\pi\)
0.608848 + 0.793287i \(0.291632\pi\)
\(654\) 0 0
\(655\) 16.3723 0.639718
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −4.37228 −0.170320 −0.0851599 0.996367i \(-0.527140\pi\)
−0.0851599 + 0.996367i \(0.527140\pi\)
\(660\) 0 0
\(661\) −34.6060 −1.34602 −0.673008 0.739635i \(-0.734998\pi\)
−0.673008 + 0.739635i \(0.734998\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.0000 0.620453
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.23369 0.0862306
\(672\) 0 0
\(673\) 2.13859 0.0824367 0.0412184 0.999150i \(-0.486876\pi\)
0.0412184 + 0.999150i \(0.486876\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 9.35053 0.359370 0.179685 0.983724i \(-0.442492\pi\)
0.179685 + 0.983724i \(0.442492\pi\)
\(678\) 0 0
\(679\) 32.0000 1.22805
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −21.4891 −0.822259 −0.411129 0.911577i \(-0.634866\pi\)
−0.411129 + 0.911577i \(0.634866\pi\)
\(684\) 0 0
\(685\) 16.7446 0.639777
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 29.4891 1.12345
\(690\) 0 0
\(691\) −28.6060 −1.08822 −0.544111 0.839013i \(-0.683133\pi\)
−0.544111 + 0.839013i \(0.683133\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 15.1168 0.573415
\(696\) 0 0
\(697\) 12.7446 0.482735
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −39.4891 −1.49148 −0.745742 0.666235i \(-0.767905\pi\)
−0.745742 + 0.666235i \(0.767905\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.64947 −0.0996435
\(708\) 0 0
\(709\) −39.4891 −1.48305 −0.741523 0.670928i \(-0.765896\pi\)
−0.741523 + 0.670928i \(0.765896\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −1.62772 −0.0608732
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12.7446 0.475292 0.237646 0.971352i \(-0.423624\pi\)
0.237646 + 0.971352i \(0.423624\pi\)
\(720\) 0 0
\(721\) −41.4891 −1.54514
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) −9.48913 −0.351932 −0.175966 0.984396i \(-0.556305\pi\)
−0.175966 + 0.984396i \(0.556305\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 30.2337 1.11823
\(732\) 0 0
\(733\) 24.7446 0.913961 0.456981 0.889477i \(-0.348931\pi\)
0.456981 + 0.889477i \(0.348931\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.35053 −0.197089
\(738\) 0 0
\(739\) −40.9783 −1.50741 −0.753705 0.657213i \(-0.771735\pi\)
−0.753705 + 0.657213i \(0.771735\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −8.13859 −0.298576 −0.149288 0.988794i \(-0.547698\pi\)
−0.149288 + 0.988794i \(0.547698\pi\)
\(744\) 0 0
\(745\) −10.0000 −0.366372
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 20.7446 0.757990
\(750\) 0 0
\(751\) −34.7446 −1.26785 −0.633924 0.773396i \(-0.718557\pi\)
−0.633924 + 0.773396i \(0.718557\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −13.4891 −0.490920
\(756\) 0 0
\(757\) 9.48913 0.344888 0.172444 0.985019i \(-0.444834\pi\)
0.172444 + 0.985019i \(0.444834\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −49.7228 −1.80245 −0.901225 0.433351i \(-0.857331\pi\)
−0.901225 + 0.433351i \(0.857331\pi\)
\(762\) 0 0
\(763\) −32.8832 −1.19045
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −52.4674 −1.89449
\(768\) 0 0
\(769\) −0.510875 −0.0184226 −0.00921131 0.999958i \(-0.502932\pi\)
−0.00921131 + 0.999958i \(0.502932\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −28.7446 −1.03387 −0.516935 0.856025i \(-0.672927\pi\)
−0.516935 + 0.856025i \(0.672927\pi\)
\(774\) 0 0
\(775\) −6.74456 −0.242272
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 13.4891 0.483298
\(780\) 0 0
\(781\) −3.25544 −0.116489
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 12.0000 0.428298
\(786\) 0 0
\(787\) −44.0000 −1.56843 −0.784215 0.620489i \(-0.786934\pi\)
−0.784215 + 0.620489i \(0.786934\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −16.8832 −0.600296
\(792\) 0 0
\(793\) −26.2337 −0.931586
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 11.2554 0.398688 0.199344 0.979930i \(-0.436119\pi\)
0.199344 + 0.979930i \(0.436119\pi\)
\(798\) 0 0
\(799\) 66.0951 2.33828
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 28.3723 0.997516 0.498758 0.866741i \(-0.333790\pi\)
0.498758 + 0.866741i \(0.333790\pi\)
\(810\) 0 0
\(811\) −16.1386 −0.566703 −0.283351 0.959016i \(-0.591446\pi\)
−0.283351 + 0.959016i \(0.591446\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 17.4891 0.612617
\(816\) 0 0
\(817\) 32.0000 1.11954
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −11.4891 −0.400973 −0.200487 0.979696i \(-0.564252\pi\)
−0.200487 + 0.979696i \(0.564252\pi\)
\(822\) 0 0
\(823\) 29.2119 1.01826 0.509132 0.860688i \(-0.329966\pi\)
0.509132 + 0.860688i \(0.329966\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 26.9783 0.938126 0.469063 0.883165i \(-0.344592\pi\)
0.469063 + 0.883165i \(0.344592\pi\)
\(828\) 0 0
\(829\) 16.2337 0.563819 0.281910 0.959441i \(-0.409032\pi\)
0.281910 + 0.959441i \(0.409032\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −8.74456 −0.302981
\(834\) 0 0
\(835\) 16.0000 0.553703
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −6.13859 −0.211928 −0.105964 0.994370i \(-0.533793\pi\)
−0.105964 + 0.994370i \(0.533793\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 6.11684 0.210426
\(846\) 0 0
\(847\) −25.7663 −0.885341
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 18.2337 0.624310 0.312155 0.950031i \(-0.398949\pi\)
0.312155 + 0.950031i \(0.398949\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 30.4674 1.04075 0.520373 0.853939i \(-0.325793\pi\)
0.520373 + 0.853939i \(0.325793\pi\)
\(858\) 0 0
\(859\) 11.7663 0.401461 0.200731 0.979646i \(-0.435668\pi\)
0.200731 + 0.979646i \(0.435668\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −25.2119 −0.858224 −0.429112 0.903251i \(-0.641174\pi\)
−0.429112 + 0.903251i \(0.641174\pi\)
\(864\) 0 0
\(865\) 24.2337 0.823970
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.02175 0.0346605
\(870\) 0 0
\(871\) 62.8397 2.12924
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.37228 0.0801977
\(876\) 0 0
\(877\) 26.0000 0.877958 0.438979 0.898497i \(-0.355340\pi\)
0.438979 + 0.898497i \(0.355340\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 7.62772 0.256984 0.128492 0.991711i \(-0.458986\pi\)
0.128492 + 0.991711i \(0.458986\pi\)
\(882\) 0 0
\(883\) −49.9565 −1.68117 −0.840585 0.541680i \(-0.817789\pi\)
−0.840585 + 0.541680i \(0.817789\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −4.88316 −0.163960 −0.0819802 0.996634i \(-0.526124\pi\)
−0.0819802 + 0.996634i \(0.526124\pi\)
\(888\) 0 0
\(889\) −39.7228 −1.33226
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 69.9565 2.34101
\(894\) 0 0
\(895\) −8.74456 −0.292298
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.74456 0.224944
\(900\) 0 0
\(901\) −42.9783 −1.43181
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 20.3723 0.677198
\(906\) 0 0
\(907\) −12.4674 −0.413972 −0.206986 0.978344i \(-0.566366\pi\)
−0.206986 + 0.978344i \(0.566366\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.11684 −0.0370027 −0.0185013 0.999829i \(-0.505889\pi\)
−0.0185013 + 0.999829i \(0.505889\pi\)
\(912\) 0 0
\(913\) 4.46738 0.147849
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 38.8397 1.28260
\(918\) 0 0
\(919\) −34.0951 −1.12469 −0.562347 0.826902i \(-0.690101\pi\)
−0.562347 + 0.826902i \(0.690101\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 38.2337 1.25848
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −32.9783 −1.08198 −0.540991 0.841029i \(-0.681951\pi\)
−0.540991 + 0.841029i \(0.681951\pi\)
\(930\) 0 0
\(931\) −9.25544 −0.303335
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.37228 0.0775819
\(936\) 0 0
\(937\) −46.6060 −1.52255 −0.761275 0.648429i \(-0.775426\pi\)
−0.761275 + 0.648429i \(0.775426\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6.00000 −0.195594 −0.0977972 0.995206i \(-0.531180\pi\)
−0.0977972 + 0.995206i \(0.531180\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −60.6060 −1.96943 −0.984715 0.174175i \(-0.944274\pi\)
−0.984715 + 0.174175i \(0.944274\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.510875 −0.0165489 −0.00827443 0.999966i \(-0.502634\pi\)
−0.00827443 + 0.999966i \(0.502634\pi\)
\(954\) 0 0
\(955\) −14.7446 −0.477123
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 39.7228 1.28272
\(960\) 0 0
\(961\) 14.4891 0.467391
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −4.74456 −0.152733
\(966\) 0 0
\(967\) 24.4674 0.786818 0.393409 0.919364i \(-0.371296\pi\)
0.393409 + 0.919364i \(0.371296\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.25544 0.168655 0.0843275 0.996438i \(-0.473126\pi\)
0.0843275 + 0.996438i \(0.473126\pi\)
\(972\) 0 0
\(973\) 35.8614 1.14966
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −37.7228 −1.20686 −0.603430 0.797416i \(-0.706200\pi\)
−0.603430 + 0.797416i \(0.706200\pi\)
\(978\) 0 0
\(979\) 6.37228 0.203659
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −18.5109 −0.590405 −0.295203 0.955435i \(-0.595387\pi\)
−0.295203 + 0.955435i \(0.595387\pi\)
\(984\) 0 0
\(985\) −15.4891 −0.493525
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −7.86141 −0.249726 −0.124863 0.992174i \(-0.539849\pi\)
−0.124863 + 0.992174i \(0.539849\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.86141 0.122415
\(996\) 0 0
\(997\) 37.9565 1.20209 0.601047 0.799214i \(-0.294750\pi\)
0.601047 + 0.799214i \(0.294750\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5220.2.a.s.1.2 2
3.2 odd 2 1740.2.a.i.1.2 2
12.11 even 2 6960.2.a.cd.1.1 2
15.2 even 4 8700.2.g.t.349.4 4
15.8 even 4 8700.2.g.t.349.1 4
15.14 odd 2 8700.2.a.y.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.2.a.i.1.2 2 3.2 odd 2
5220.2.a.s.1.2 2 1.1 even 1 trivial
6960.2.a.cd.1.1 2 12.11 even 2
8700.2.a.y.1.1 2 15.14 odd 2
8700.2.g.t.349.1 4 15.8 even 4
8700.2.g.t.349.4 4 15.2 even 4