Properties

Label 5220.2.a.t.1.2
Level $5220$
Weight $2$
Character 5220.1
Self dual yes
Analytic conductor $41.682$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5220,2,Mod(1,5220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5220.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5220 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.6819098551\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{33}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1740)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.37228\) of defining polynomial
Character \(\chi\) \(=\) 5220.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +3.37228 q^{7} +1.37228 q^{11} -5.37228 q^{13} -7.37228 q^{17} +2.00000 q^{19} +1.00000 q^{25} -1.00000 q^{29} +4.74456 q^{31} +3.37228 q^{35} +8.00000 q^{37} -11.4891 q^{41} +8.00000 q^{43} +10.1168 q^{47} +4.37228 q^{49} +11.4891 q^{53} +1.37228 q^{55} +2.74456 q^{59} -0.744563 q^{61} -5.37228 q^{65} +0.627719 q^{67} +12.0000 q^{71} +8.00000 q^{73} +4.62772 q^{77} +14.0000 q^{79} +2.74456 q^{83} -7.37228 q^{85} +4.11684 q^{89} -18.1168 q^{91} +2.00000 q^{95} +5.25544 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{5} + q^{7} - 3 q^{11} - 5 q^{13} - 9 q^{17} + 4 q^{19} + 2 q^{25} - 2 q^{29} - 2 q^{31} + q^{35} + 16 q^{37} + 16 q^{43} + 3 q^{47} + 3 q^{49} - 3 q^{55} - 6 q^{59} + 10 q^{61} - 5 q^{65} + 7 q^{67}+ \cdots + 22 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 3.37228 1.27460 0.637301 0.770615i \(-0.280051\pi\)
0.637301 + 0.770615i \(0.280051\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.37228 0.413758 0.206879 0.978366i \(-0.433669\pi\)
0.206879 + 0.978366i \(0.433669\pi\)
\(12\) 0 0
\(13\) −5.37228 −1.49000 −0.745001 0.667063i \(-0.767551\pi\)
−0.745001 + 0.667063i \(0.767551\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −7.37228 −1.78804 −0.894020 0.448026i \(-0.852127\pi\)
−0.894020 + 0.448026i \(0.852127\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 4.74456 0.852149 0.426074 0.904688i \(-0.359896\pi\)
0.426074 + 0.904688i \(0.359896\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.37228 0.570020
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −11.4891 −1.79430 −0.897150 0.441726i \(-0.854366\pi\)
−0.897150 + 0.441726i \(0.854366\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.1168 1.47569 0.737847 0.674968i \(-0.235843\pi\)
0.737847 + 0.674968i \(0.235843\pi\)
\(48\) 0 0
\(49\) 4.37228 0.624612
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 11.4891 1.57815 0.789076 0.614295i \(-0.210560\pi\)
0.789076 + 0.614295i \(0.210560\pi\)
\(54\) 0 0
\(55\) 1.37228 0.185038
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.74456 0.357312 0.178656 0.983912i \(-0.442825\pi\)
0.178656 + 0.983912i \(0.442825\pi\)
\(60\) 0 0
\(61\) −0.744563 −0.0953315 −0.0476657 0.998863i \(-0.515178\pi\)
−0.0476657 + 0.998863i \(0.515178\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.37228 −0.666349
\(66\) 0 0
\(67\) 0.627719 0.0766880 0.0383440 0.999265i \(-0.487792\pi\)
0.0383440 + 0.999265i \(0.487792\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(72\) 0 0
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.62772 0.527377
\(78\) 0 0
\(79\) 14.0000 1.57512 0.787562 0.616236i \(-0.211343\pi\)
0.787562 + 0.616236i \(0.211343\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.74456 0.301255 0.150627 0.988591i \(-0.451871\pi\)
0.150627 + 0.988591i \(0.451871\pi\)
\(84\) 0 0
\(85\) −7.37228 −0.799636
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.11684 0.436385 0.218192 0.975906i \(-0.429984\pi\)
0.218192 + 0.975906i \(0.429984\pi\)
\(90\) 0 0
\(91\) −18.1168 −1.89916
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.00000 0.205196
\(96\) 0 0
\(97\) 5.25544 0.533609 0.266804 0.963751i \(-0.414032\pi\)
0.266804 + 0.963751i \(0.414032\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.11684 −0.409641 −0.204821 0.978800i \(-0.565661\pi\)
−0.204821 + 0.978800i \(0.565661\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.74456 −0.265327 −0.132663 0.991161i \(-0.542353\pi\)
−0.132663 + 0.991161i \(0.542353\pi\)
\(108\) 0 0
\(109\) 14.8614 1.42346 0.711732 0.702451i \(-0.247911\pi\)
0.711732 + 0.702451i \(0.247911\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.62772 0.435339 0.217670 0.976023i \(-0.430154\pi\)
0.217670 + 0.976023i \(0.430154\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −24.8614 −2.27904
\(120\) 0 0
\(121\) −9.11684 −0.828804
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 16.2337 1.44051 0.720253 0.693711i \(-0.244026\pi\)
0.720253 + 0.693711i \(0.244026\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.37228 0.119897 0.0599484 0.998201i \(-0.480906\pi\)
0.0599484 + 0.998201i \(0.480906\pi\)
\(132\) 0 0
\(133\) 6.74456 0.584828
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.74456 −0.234484 −0.117242 0.993103i \(-0.537405\pi\)
−0.117242 + 0.993103i \(0.537405\pi\)
\(138\) 0 0
\(139\) −2.11684 −0.179548 −0.0897742 0.995962i \(-0.528615\pi\)
−0.0897742 + 0.995962i \(0.528615\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.37228 −0.616501
\(144\) 0 0
\(145\) −1.00000 −0.0830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −14.2337 −1.16607 −0.583035 0.812447i \(-0.698135\pi\)
−0.583035 + 0.812447i \(0.698135\pi\)
\(150\) 0 0
\(151\) −4.00000 −0.325515 −0.162758 0.986666i \(-0.552039\pi\)
−0.162758 + 0.986666i \(0.552039\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.74456 0.381092
\(156\) 0 0
\(157\) −18.7446 −1.49598 −0.747989 0.663711i \(-0.768981\pi\)
−0.747989 + 0.663711i \(0.768981\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.74456 −0.528275 −0.264137 0.964485i \(-0.585087\pi\)
−0.264137 + 0.964485i \(0.585087\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 15.8614 1.22011
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.25544 0.247506 0.123753 0.992313i \(-0.460507\pi\)
0.123753 + 0.992313i \(0.460507\pi\)
\(174\) 0 0
\(175\) 3.37228 0.254921
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 12.0000 0.896922 0.448461 0.893802i \(-0.351972\pi\)
0.448461 + 0.893802i \(0.351972\pi\)
\(180\) 0 0
\(181\) −17.3723 −1.29127 −0.645636 0.763646i \(-0.723408\pi\)
−0.645636 + 0.763646i \(0.723408\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 8.00000 0.588172
\(186\) 0 0
\(187\) −10.1168 −0.739817
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −14.2337 −1.02991 −0.514957 0.857216i \(-0.672192\pi\)
−0.514957 + 0.857216i \(0.672192\pi\)
\(192\) 0 0
\(193\) −12.2337 −0.880600 −0.440300 0.897851i \(-0.645128\pi\)
−0.440300 + 0.897851i \(0.645128\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 23.4891 1.67353 0.836765 0.547561i \(-0.184444\pi\)
0.836765 + 0.547561i \(0.184444\pi\)
\(198\) 0 0
\(199\) −11.3723 −0.806160 −0.403080 0.915165i \(-0.632060\pi\)
−0.403080 + 0.915165i \(0.632060\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −3.37228 −0.236688
\(204\) 0 0
\(205\) −11.4891 −0.802435
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 2.74456 0.189845
\(210\) 0 0
\(211\) −10.0000 −0.688428 −0.344214 0.938891i \(-0.611855\pi\)
−0.344214 + 0.938891i \(0.611855\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) 16.0000 1.08615
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 39.6060 2.66419
\(222\) 0 0
\(223\) 18.1168 1.21319 0.606597 0.795010i \(-0.292534\pi\)
0.606597 + 0.795010i \(0.292534\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −26.7446 −1.77510 −0.887549 0.460712i \(-0.847594\pi\)
−0.887549 + 0.460712i \(0.847594\pi\)
\(228\) 0 0
\(229\) −20.9783 −1.38628 −0.693141 0.720802i \(-0.743774\pi\)
−0.693141 + 0.720802i \(0.743774\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0.510875 0.0334685 0.0167343 0.999860i \(-0.494673\pi\)
0.0167343 + 0.999860i \(0.494673\pi\)
\(234\) 0 0
\(235\) 10.1168 0.659950
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.2337 1.30881 0.654404 0.756145i \(-0.272919\pi\)
0.654404 + 0.756145i \(0.272919\pi\)
\(240\) 0 0
\(241\) −20.1168 −1.29584 −0.647920 0.761708i \(-0.724361\pi\)
−0.647920 + 0.761708i \(0.724361\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 4.37228 0.279335
\(246\) 0 0
\(247\) −10.7446 −0.683660
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.86141 0.433088 0.216544 0.976273i \(-0.430521\pi\)
0.216544 + 0.976273i \(0.430521\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.25544 0.203069 0.101534 0.994832i \(-0.467625\pi\)
0.101534 + 0.994832i \(0.467625\pi\)
\(258\) 0 0
\(259\) 26.9783 1.67635
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −17.4891 −1.07843 −0.539213 0.842170i \(-0.681278\pi\)
−0.539213 + 0.842170i \(0.681278\pi\)
\(264\) 0 0
\(265\) 11.4891 0.705771
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.86141 0.418347 0.209174 0.977879i \(-0.432923\pi\)
0.209174 + 0.977879i \(0.432923\pi\)
\(270\) 0 0
\(271\) −10.0000 −0.607457 −0.303728 0.952759i \(-0.598232\pi\)
−0.303728 + 0.952759i \(0.598232\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.37228 0.0827517
\(276\) 0 0
\(277\) −2.62772 −0.157884 −0.0789422 0.996879i \(-0.525154\pi\)
−0.0789422 + 0.996879i \(0.525154\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −9.48913 −0.564070 −0.282035 0.959404i \(-0.591009\pi\)
−0.282035 + 0.959404i \(0.591009\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −38.7446 −2.28702
\(288\) 0 0
\(289\) 37.3505 2.19709
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 7.37228 0.430693 0.215347 0.976538i \(-0.430912\pi\)
0.215347 + 0.976538i \(0.430912\pi\)
\(294\) 0 0
\(295\) 2.74456 0.159795
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 26.9783 1.55500
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −0.744563 −0.0426335
\(306\) 0 0
\(307\) 30.9783 1.76802 0.884011 0.467466i \(-0.154833\pi\)
0.884011 + 0.467466i \(0.154833\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 18.8614 1.06953 0.534766 0.845000i \(-0.320400\pi\)
0.534766 + 0.845000i \(0.320400\pi\)
\(312\) 0 0
\(313\) 29.6060 1.67343 0.836714 0.547640i \(-0.184474\pi\)
0.836714 + 0.547640i \(0.184474\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.8614 1.39636 0.698178 0.715924i \(-0.253994\pi\)
0.698178 + 0.715924i \(0.253994\pi\)
\(318\) 0 0
\(319\) −1.37228 −0.0768330
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −14.7446 −0.820409
\(324\) 0 0
\(325\) −5.37228 −0.298001
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 34.1168 1.88092
\(330\) 0 0
\(331\) 2.00000 0.109930 0.0549650 0.998488i \(-0.482495\pi\)
0.0549650 + 0.998488i \(0.482495\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.627719 0.0342959
\(336\) 0 0
\(337\) −18.7446 −1.02108 −0.510541 0.859854i \(-0.670555\pi\)
−0.510541 + 0.859854i \(0.670555\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 6.51087 0.352584
\(342\) 0 0
\(343\) −8.86141 −0.478471
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −17.4891 −0.938865 −0.469433 0.882968i \(-0.655542\pi\)
−0.469433 + 0.882968i \(0.655542\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 30.0000 1.59674 0.798369 0.602168i \(-0.205696\pi\)
0.798369 + 0.602168i \(0.205696\pi\)
\(354\) 0 0
\(355\) 12.0000 0.636894
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 26.2337 1.38456 0.692281 0.721628i \(-0.256606\pi\)
0.692281 + 0.721628i \(0.256606\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 8.00000 0.418739
\(366\) 0 0
\(367\) −32.4674 −1.69478 −0.847392 0.530968i \(-0.821828\pi\)
−0.847392 + 0.530968i \(0.821828\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 38.7446 2.01152
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 5.37228 0.276687
\(378\) 0 0
\(379\) 8.51087 0.437174 0.218587 0.975817i \(-0.429855\pi\)
0.218587 + 0.975817i \(0.429855\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −25.7228 −1.31437 −0.657187 0.753727i \(-0.728254\pi\)
−0.657187 + 0.753727i \(0.728254\pi\)
\(384\) 0 0
\(385\) 4.62772 0.235850
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.13859 0.260537 0.130269 0.991479i \(-0.458416\pi\)
0.130269 + 0.991479i \(0.458416\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 14.0000 0.704416
\(396\) 0 0
\(397\) 19.4891 0.978131 0.489066 0.872247i \(-0.337338\pi\)
0.489066 + 0.872247i \(0.337338\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.00000 −0.299626 −0.149813 0.988714i \(-0.547867\pi\)
−0.149813 + 0.988714i \(0.547867\pi\)
\(402\) 0 0
\(403\) −25.4891 −1.26970
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 10.9783 0.544172
\(408\) 0 0
\(409\) −32.9783 −1.63067 −0.815335 0.578990i \(-0.803447\pi\)
−0.815335 + 0.578990i \(0.803447\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 9.25544 0.455430
\(414\) 0 0
\(415\) 2.74456 0.134725
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 9.25544 0.452158 0.226079 0.974109i \(-0.427409\pi\)
0.226079 + 0.974109i \(0.427409\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −7.37228 −0.357608
\(426\) 0 0
\(427\) −2.51087 −0.121510
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) −13.2554 −0.637016 −0.318508 0.947920i \(-0.603182\pi\)
−0.318508 + 0.947920i \(0.603182\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −23.3723 −1.11550 −0.557749 0.830010i \(-0.688335\pi\)
−0.557749 + 0.830010i \(0.688335\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.8614 0.611064 0.305532 0.952182i \(-0.401166\pi\)
0.305532 + 0.952182i \(0.401166\pi\)
\(444\) 0 0
\(445\) 4.11684 0.195157
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.86141 0.323810 0.161905 0.986806i \(-0.448236\pi\)
0.161905 + 0.986806i \(0.448236\pi\)
\(450\) 0 0
\(451\) −15.7663 −0.742407
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −18.1168 −0.849331
\(456\) 0 0
\(457\) 36.1168 1.68947 0.844737 0.535181i \(-0.179757\pi\)
0.844737 + 0.535181i \(0.179757\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.00000 0.279448 0.139724 0.990190i \(-0.455378\pi\)
0.139724 + 0.990190i \(0.455378\pi\)
\(462\) 0 0
\(463\) 42.1168 1.95734 0.978668 0.205449i \(-0.0658654\pi\)
0.978668 + 0.205449i \(0.0658654\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −12.0000 −0.555294 −0.277647 0.960683i \(-0.589555\pi\)
−0.277647 + 0.960683i \(0.589555\pi\)
\(468\) 0 0
\(469\) 2.11684 0.0977468
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.9783 0.504780
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −32.7446 −1.49614 −0.748069 0.663621i \(-0.769019\pi\)
−0.748069 + 0.663621i \(0.769019\pi\)
\(480\) 0 0
\(481\) −42.9783 −1.95964
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.25544 0.238637
\(486\) 0 0
\(487\) −26.9783 −1.22250 −0.611251 0.791437i \(-0.709333\pi\)
−0.611251 + 0.791437i \(0.709333\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −8.74456 −0.394637 −0.197318 0.980339i \(-0.563223\pi\)
−0.197318 + 0.980339i \(0.563223\pi\)
\(492\) 0 0
\(493\) 7.37228 0.332031
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 40.4674 1.81521
\(498\) 0 0
\(499\) −19.6060 −0.877684 −0.438842 0.898564i \(-0.644611\pi\)
−0.438842 + 0.898564i \(0.644611\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.88316 −0.0839658 −0.0419829 0.999118i \(-0.513367\pi\)
−0.0419829 + 0.999118i \(0.513367\pi\)
\(504\) 0 0
\(505\) −4.11684 −0.183197
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 30.0000 1.32973 0.664863 0.746965i \(-0.268490\pi\)
0.664863 + 0.746965i \(0.268490\pi\)
\(510\) 0 0
\(511\) 26.9783 1.19345
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 8.00000 0.352522
\(516\) 0 0
\(517\) 13.8832 0.610581
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.74456 0.383106 0.191553 0.981482i \(-0.438648\pi\)
0.191553 + 0.981482i \(0.438648\pi\)
\(522\) 0 0
\(523\) 39.3723 1.72163 0.860815 0.508918i \(-0.169954\pi\)
0.860815 + 0.508918i \(0.169954\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −34.9783 −1.52368
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 61.7228 2.67351
\(534\) 0 0
\(535\) −2.74456 −0.118658
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) −16.5109 −0.709858 −0.354929 0.934893i \(-0.615495\pi\)
−0.354929 + 0.934893i \(0.615495\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 14.8614 0.636593
\(546\) 0 0
\(547\) 9.88316 0.422573 0.211287 0.977424i \(-0.432235\pi\)
0.211287 + 0.977424i \(0.432235\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −2.00000 −0.0852029
\(552\) 0 0
\(553\) 47.2119 2.00766
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 0.510875 0.0216465 0.0108232 0.999941i \(-0.496555\pi\)
0.0108232 + 0.999941i \(0.496555\pi\)
\(558\) 0 0
\(559\) −42.9783 −1.81779
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.62772 −0.195035 −0.0975175 0.995234i \(-0.531090\pi\)
−0.0975175 + 0.995234i \(0.531090\pi\)
\(564\) 0 0
\(565\) 4.62772 0.194690
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −42.8614 −1.79684 −0.898422 0.439134i \(-0.855286\pi\)
−0.898422 + 0.439134i \(0.855286\pi\)
\(570\) 0 0
\(571\) −16.0000 −0.669579 −0.334790 0.942293i \(-0.608665\pi\)
−0.334790 + 0.942293i \(0.608665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −40.0000 −1.66522 −0.832611 0.553858i \(-0.813155\pi\)
−0.832611 + 0.553858i \(0.813155\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 9.25544 0.383980
\(582\) 0 0
\(583\) 15.7663 0.652974
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −32.2337 −1.33043 −0.665213 0.746653i \(-0.731659\pi\)
−0.665213 + 0.746653i \(0.731659\pi\)
\(588\) 0 0
\(589\) 9.48913 0.390993
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −34.4674 −1.41541 −0.707703 0.706510i \(-0.750268\pi\)
−0.707703 + 0.706510i \(0.750268\pi\)
\(594\) 0 0
\(595\) −24.8614 −1.01922
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.6060 −0.882796 −0.441398 0.897311i \(-0.645517\pi\)
−0.441398 + 0.897311i \(0.645517\pi\)
\(600\) 0 0
\(601\) −39.4891 −1.61080 −0.805398 0.592735i \(-0.798048\pi\)
−0.805398 + 0.592735i \(0.798048\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9.11684 −0.370652
\(606\) 0 0
\(607\) −36.2337 −1.47068 −0.735340 0.677698i \(-0.762978\pi\)
−0.735340 + 0.677698i \(0.762978\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −54.3505 −2.19879
\(612\) 0 0
\(613\) 12.1168 0.489395 0.244697 0.969600i \(-0.421311\pi\)
0.244697 + 0.969600i \(0.421311\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −43.2119 −1.73965 −0.869824 0.493363i \(-0.835767\pi\)
−0.869824 + 0.493363i \(0.835767\pi\)
\(618\) 0 0
\(619\) 42.4674 1.70691 0.853454 0.521168i \(-0.174504\pi\)
0.853454 + 0.521168i \(0.174504\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 13.8832 0.556217
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −58.9783 −2.35162
\(630\) 0 0
\(631\) −16.8614 −0.671242 −0.335621 0.941997i \(-0.608946\pi\)
−0.335621 + 0.941997i \(0.608946\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 16.2337 0.644214
\(636\) 0 0
\(637\) −23.4891 −0.930673
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.60597 0.379413 0.189706 0.981841i \(-0.439246\pi\)
0.189706 + 0.981841i \(0.439246\pi\)
\(642\) 0 0
\(643\) −34.3505 −1.35465 −0.677326 0.735683i \(-0.736861\pi\)
−0.677326 + 0.735683i \(0.736861\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 5.48913 0.215800 0.107900 0.994162i \(-0.465587\pi\)
0.107900 + 0.994162i \(0.465587\pi\)
\(648\) 0 0
\(649\) 3.76631 0.147841
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 48.8614 1.91209 0.956047 0.293212i \(-0.0947243\pi\)
0.956047 + 0.293212i \(0.0947243\pi\)
\(654\) 0 0
\(655\) 1.37228 0.0536195
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.1168 1.56273 0.781365 0.624074i \(-0.214524\pi\)
0.781365 + 0.624074i \(0.214524\pi\)
\(660\) 0 0
\(661\) 24.1168 0.938037 0.469018 0.883188i \(-0.344608\pi\)
0.469018 + 0.883188i \(0.344608\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 6.74456 0.261543
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.02175 −0.0394442
\(672\) 0 0
\(673\) −16.3505 −0.630267 −0.315133 0.949047i \(-0.602049\pi\)
−0.315133 + 0.949047i \(0.602049\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.60597 0.138589 0.0692943 0.997596i \(-0.477925\pi\)
0.0692943 + 0.997596i \(0.477925\pi\)
\(678\) 0 0
\(679\) 17.7228 0.680139
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 46.9783 1.79757 0.898786 0.438387i \(-0.144450\pi\)
0.898786 + 0.438387i \(0.144450\pi\)
\(684\) 0 0
\(685\) −2.74456 −0.104864
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −61.7228 −2.35145
\(690\) 0 0
\(691\) 30.1168 1.14570 0.572849 0.819661i \(-0.305838\pi\)
0.572849 + 0.819661i \(0.305838\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.11684 −0.0802965
\(696\) 0 0
\(697\) 84.7011 3.20828
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −2.23369 −0.0843652 −0.0421826 0.999110i \(-0.513431\pi\)
−0.0421826 + 0.999110i \(0.513431\pi\)
\(702\) 0 0
\(703\) 16.0000 0.603451
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −13.8832 −0.522130
\(708\) 0 0
\(709\) −38.4674 −1.44467 −0.722336 0.691542i \(-0.756932\pi\)
−0.722336 + 0.691542i \(0.756932\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −7.37228 −0.275708
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −34.9783 −1.30447 −0.652234 0.758017i \(-0.726168\pi\)
−0.652234 + 0.758017i \(0.726168\pi\)
\(720\) 0 0
\(721\) 26.9783 1.00472
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) 37.4891 1.39039 0.695197 0.718819i \(-0.255317\pi\)
0.695197 + 0.718819i \(0.255317\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −58.9783 −2.18139
\(732\) 0 0
\(733\) −4.00000 −0.147743 −0.0738717 0.997268i \(-0.523536\pi\)
−0.0738717 + 0.997268i \(0.523536\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.861407 0.0317303
\(738\) 0 0
\(739\) −1.76631 −0.0649748 −0.0324874 0.999472i \(-0.510343\pi\)
−0.0324874 + 0.999472i \(0.510343\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −1.88316 −0.0690863 −0.0345431 0.999403i \(-0.510998\pi\)
−0.0345431 + 0.999403i \(0.510998\pi\)
\(744\) 0 0
\(745\) −14.2337 −0.521482
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9.25544 −0.338186
\(750\) 0 0
\(751\) 22.2337 0.811319 0.405659 0.914024i \(-0.367042\pi\)
0.405659 + 0.914024i \(0.367042\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −4.00000 −0.145575
\(756\) 0 0
\(757\) 48.4674 1.76158 0.880788 0.473510i \(-0.157013\pi\)
0.880788 + 0.473510i \(0.157013\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 35.4891 1.28648 0.643240 0.765665i \(-0.277590\pi\)
0.643240 + 0.765665i \(0.277590\pi\)
\(762\) 0 0
\(763\) 50.1168 1.81435
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −14.7446 −0.532395
\(768\) 0 0
\(769\) −11.7228 −0.422735 −0.211368 0.977407i \(-0.567792\pi\)
−0.211368 + 0.977407i \(0.567792\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −49.7228 −1.78841 −0.894203 0.447662i \(-0.852257\pi\)
−0.894203 + 0.447662i \(0.852257\pi\)
\(774\) 0 0
\(775\) 4.74456 0.170430
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −22.9783 −0.823281
\(780\) 0 0
\(781\) 16.4674 0.589249
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −18.7446 −0.669022
\(786\) 0 0
\(787\) 41.9565 1.49559 0.747794 0.663931i \(-0.231113\pi\)
0.747794 + 0.663931i \(0.231113\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 15.6060 0.554884
\(792\) 0 0
\(793\) 4.00000 0.142044
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −33.2554 −1.17797 −0.588984 0.808145i \(-0.700472\pi\)
−0.588984 + 0.808145i \(0.700472\pi\)
\(798\) 0 0
\(799\) −74.5842 −2.63860
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.9783 0.387414
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.13859 −0.180663 −0.0903317 0.995912i \(-0.528793\pi\)
−0.0903317 + 0.995912i \(0.528793\pi\)
\(810\) 0 0
\(811\) 0.627719 0.0220422 0.0110211 0.999939i \(-0.496492\pi\)
0.0110211 + 0.999939i \(0.496492\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −6.74456 −0.236252
\(816\) 0 0
\(817\) 16.0000 0.559769
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.02175 −0.245061 −0.122530 0.992465i \(-0.539101\pi\)
−0.122530 + 0.992465i \(0.539101\pi\)
\(822\) 0 0
\(823\) 1.48913 0.0519076 0.0259538 0.999663i \(-0.491738\pi\)
0.0259538 + 0.999663i \(0.491738\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −40.4674 −1.40719 −0.703594 0.710602i \(-0.748423\pi\)
−0.703594 + 0.710602i \(0.748423\pi\)
\(828\) 0 0
\(829\) −18.2337 −0.633282 −0.316641 0.948545i \(-0.602555\pi\)
−0.316641 + 0.948545i \(0.602555\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −32.2337 −1.11683
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −17.1386 −0.591690 −0.295845 0.955236i \(-0.595601\pi\)
−0.295845 + 0.955236i \(0.595601\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 15.8614 0.545649
\(846\) 0 0
\(847\) −30.7446 −1.05640
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −14.9783 −0.512846 −0.256423 0.966565i \(-0.582544\pi\)
−0.256423 + 0.966565i \(0.582544\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −22.4674 −0.767471 −0.383735 0.923443i \(-0.625363\pi\)
−0.383735 + 0.923443i \(0.625363\pi\)
\(858\) 0 0
\(859\) 18.4674 0.630099 0.315049 0.949075i \(-0.397979\pi\)
0.315049 + 0.949075i \(0.397979\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 34.9783 1.19067 0.595337 0.803476i \(-0.297019\pi\)
0.595337 + 0.803476i \(0.297019\pi\)
\(864\) 0 0
\(865\) 3.25544 0.110688
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 19.2119 0.651720
\(870\) 0 0
\(871\) −3.37228 −0.114265
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 3.37228 0.114004
\(876\) 0 0
\(877\) −32.9783 −1.11360 −0.556798 0.830648i \(-0.687970\pi\)
−0.556798 + 0.830648i \(0.687970\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −54.8614 −1.84833 −0.924164 0.381996i \(-0.875237\pi\)
−0.924164 + 0.381996i \(0.875237\pi\)
\(882\) 0 0
\(883\) 41.9565 1.41195 0.705974 0.708237i \(-0.250509\pi\)
0.705974 + 0.708237i \(0.250509\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.3505 1.42199 0.710996 0.703196i \(-0.248244\pi\)
0.710996 + 0.703196i \(0.248244\pi\)
\(888\) 0 0
\(889\) 54.7446 1.83607
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 20.2337 0.677095
\(894\) 0 0
\(895\) 12.0000 0.401116
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −4.74456 −0.158240
\(900\) 0 0
\(901\) −84.7011 −2.82180
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −17.3723 −0.577474
\(906\) 0 0
\(907\) −52.7011 −1.74991 −0.874955 0.484204i \(-0.839109\pi\)
−0.874955 + 0.484204i \(0.839109\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 6.86141 0.227329 0.113664 0.993519i \(-0.463741\pi\)
0.113664 + 0.993519i \(0.463741\pi\)
\(912\) 0 0
\(913\) 3.76631 0.124647
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 4.62772 0.152821
\(918\) 0 0
\(919\) −29.8832 −0.985754 −0.492877 0.870099i \(-0.664055\pi\)
−0.492877 + 0.870099i \(0.664055\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −64.4674 −2.12197
\(924\) 0 0
\(925\) 8.00000 0.263038
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) 8.74456 0.286591
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −10.1168 −0.330856
\(936\) 0 0
\(937\) 10.3940 0.339558 0.169779 0.985482i \(-0.445695\pi\)
0.169779 + 0.985482i \(0.445695\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 3.25544 0.106124 0.0530621 0.998591i \(-0.483102\pi\)
0.0530621 + 0.998591i \(0.483102\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 22.1168 0.718701 0.359350 0.933203i \(-0.382998\pi\)
0.359350 + 0.933203i \(0.382998\pi\)
\(948\) 0 0
\(949\) −42.9783 −1.39513
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 15.2554 0.494172 0.247086 0.968994i \(-0.420527\pi\)
0.247086 + 0.968994i \(0.420527\pi\)
\(954\) 0 0
\(955\) −14.2337 −0.460591
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.25544 −0.298874
\(960\) 0 0
\(961\) −8.48913 −0.273843
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −12.2337 −0.393816
\(966\) 0 0
\(967\) −7.76631 −0.249748 −0.124874 0.992173i \(-0.539853\pi\)
−0.124874 + 0.992173i \(0.539853\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −15.2554 −0.489570 −0.244785 0.969577i \(-0.578717\pi\)
−0.244785 + 0.969577i \(0.578717\pi\)
\(972\) 0 0
\(973\) −7.13859 −0.228853
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9.76631 −0.312452 −0.156226 0.987721i \(-0.549933\pi\)
−0.156226 + 0.987721i \(0.549933\pi\)
\(978\) 0 0
\(979\) 5.64947 0.180558
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −46.9783 −1.49837 −0.749187 0.662359i \(-0.769555\pi\)
−0.749187 + 0.662359i \(0.769555\pi\)
\(984\) 0 0
\(985\) 23.4891 0.748426
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −38.1168 −1.21082 −0.605411 0.795913i \(-0.706991\pi\)
−0.605411 + 0.795913i \(0.706991\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −11.3723 −0.360526
\(996\) 0 0
\(997\) 48.4674 1.53498 0.767489 0.641063i \(-0.221506\pi\)
0.767489 + 0.641063i \(0.221506\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5220.2.a.t.1.2 2
3.2 odd 2 1740.2.a.l.1.2 2
12.11 even 2 6960.2.a.bs.1.1 2
15.2 even 4 8700.2.g.s.349.2 4
15.8 even 4 8700.2.g.s.349.3 4
15.14 odd 2 8700.2.a.w.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1740.2.a.l.1.2 2 3.2 odd 2
5220.2.a.t.1.2 2 1.1 even 1 trivial
6960.2.a.bs.1.1 2 12.11 even 2
8700.2.a.w.1.1 2 15.14 odd 2
8700.2.g.s.349.2 4 15.2 even 4
8700.2.g.s.349.3 4 15.8 even 4