Properties

Label 5220.2.a.w.1.3
Level $5220$
Weight $2$
Character 5220.1
Self dual yes
Analytic conductor $41.682$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5220,2,Mod(1,5220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5220.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5220 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.6819098551\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 580)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.48119\) of defining polynomial
Character \(\chi\) \(=\) 5220.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +4.15633 q^{7} -4.15633 q^{11} -2.96239 q^{13} +0.156325 q^{17} +0.806063 q^{19} +0.806063 q^{23} +1.00000 q^{25} -1.00000 q^{29} -0.806063 q^{31} -4.15633 q^{35} +8.15633 q^{37} -3.73813 q^{41} -10.7308 q^{43} -1.58181 q^{47} +10.2750 q^{49} -12.0508 q^{53} +4.15633 q^{55} +1.73813 q^{59} -14.4993 q^{61} +2.96239 q^{65} -0.806063 q^{67} +11.6629 q^{71} +0.806063 q^{73} -17.2750 q^{77} +0.468976 q^{79} -6.08110 q^{83} -0.156325 q^{85} +13.0132 q^{89} -12.3127 q^{91} -0.806063 q^{95} -4.28233 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + 2 q^{7} - 2 q^{11} + 2 q^{13} - 10 q^{17} + 2 q^{19} + 2 q^{23} + 3 q^{25} - 3 q^{29} - 2 q^{31} - 2 q^{35} + 14 q^{37} - 2 q^{41} - 10 q^{43} - 6 q^{47} - q^{49} - 6 q^{53} + 2 q^{55}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 4.15633 1.57094 0.785472 0.618898i \(-0.212420\pi\)
0.785472 + 0.618898i \(0.212420\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.15633 −1.25318 −0.626590 0.779349i \(-0.715550\pi\)
−0.626590 + 0.779349i \(0.715550\pi\)
\(12\) 0 0
\(13\) −2.96239 −0.821619 −0.410809 0.911721i \(-0.634754\pi\)
−0.410809 + 0.911721i \(0.634754\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.156325 0.0379144 0.0189572 0.999820i \(-0.493965\pi\)
0.0189572 + 0.999820i \(0.493965\pi\)
\(18\) 0 0
\(19\) 0.806063 0.184924 0.0924618 0.995716i \(-0.470526\pi\)
0.0924618 + 0.995716i \(0.470526\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.806063 0.168076 0.0840379 0.996463i \(-0.473218\pi\)
0.0840379 + 0.996463i \(0.473218\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −0.806063 −0.144773 −0.0723866 0.997377i \(-0.523062\pi\)
−0.0723866 + 0.997377i \(0.523062\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.15633 −0.702547
\(36\) 0 0
\(37\) 8.15633 1.34089 0.670446 0.741959i \(-0.266103\pi\)
0.670446 + 0.741959i \(0.266103\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.73813 −0.583799 −0.291899 0.956449i \(-0.594287\pi\)
−0.291899 + 0.956449i \(0.594287\pi\)
\(42\) 0 0
\(43\) −10.7308 −1.63644 −0.818219 0.574907i \(-0.805038\pi\)
−0.818219 + 0.574907i \(0.805038\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.58181 −0.230731 −0.115365 0.993323i \(-0.536804\pi\)
−0.115365 + 0.993323i \(0.536804\pi\)
\(48\) 0 0
\(49\) 10.2750 1.46786
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −12.0508 −1.65530 −0.827651 0.561243i \(-0.810323\pi\)
−0.827651 + 0.561243i \(0.810323\pi\)
\(54\) 0 0
\(55\) 4.15633 0.560439
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.73813 0.226286 0.113143 0.993579i \(-0.463908\pi\)
0.113143 + 0.993579i \(0.463908\pi\)
\(60\) 0 0
\(61\) −14.4993 −1.85644 −0.928222 0.372027i \(-0.878663\pi\)
−0.928222 + 0.372027i \(0.878663\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2.96239 0.367439
\(66\) 0 0
\(67\) −0.806063 −0.0984763 −0.0492382 0.998787i \(-0.515679\pi\)
−0.0492382 + 0.998787i \(0.515679\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.6629 1.38413 0.692067 0.721834i \(-0.256700\pi\)
0.692067 + 0.721834i \(0.256700\pi\)
\(72\) 0 0
\(73\) 0.806063 0.0943426 0.0471713 0.998887i \(-0.484979\pi\)
0.0471713 + 0.998887i \(0.484979\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −17.2750 −1.96867
\(78\) 0 0
\(79\) 0.468976 0.0527639 0.0263819 0.999652i \(-0.491601\pi\)
0.0263819 + 0.999652i \(0.491601\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −6.08110 −0.667488 −0.333744 0.942664i \(-0.608312\pi\)
−0.333744 + 0.942664i \(0.608312\pi\)
\(84\) 0 0
\(85\) −0.156325 −0.0169558
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.0132 1.37939 0.689697 0.724098i \(-0.257744\pi\)
0.689697 + 0.724098i \(0.257744\pi\)
\(90\) 0 0
\(91\) −12.3127 −1.29072
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −0.806063 −0.0827004
\(96\) 0 0
\(97\) −4.28233 −0.434805 −0.217403 0.976082i \(-0.569758\pi\)
−0.217403 + 0.976082i \(0.569758\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.31265 0.628132 0.314066 0.949401i \(-0.398309\pi\)
0.314066 + 0.949401i \(0.398309\pi\)
\(102\) 0 0
\(103\) −12.2823 −1.21021 −0.605107 0.796144i \(-0.706870\pi\)
−0.605107 + 0.796144i \(0.706870\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −16.4690 −1.59212 −0.796058 0.605220i \(-0.793085\pi\)
−0.796058 + 0.605220i \(0.793085\pi\)
\(108\) 0 0
\(109\) −16.0508 −1.53739 −0.768693 0.639618i \(-0.779093\pi\)
−0.768693 + 0.639618i \(0.779093\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.89446 0.554504 0.277252 0.960797i \(-0.410576\pi\)
0.277252 + 0.960797i \(0.410576\pi\)
\(114\) 0 0
\(115\) −0.806063 −0.0751658
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.649738 0.0595614
\(120\) 0 0
\(121\) 6.27504 0.570458
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −4.03032 −0.357633 −0.178816 0.983882i \(-0.557227\pi\)
−0.178816 + 0.983882i \(0.557227\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.89446 −0.165520 −0.0827599 0.996570i \(-0.526373\pi\)
−0.0827599 + 0.996570i \(0.526373\pi\)
\(132\) 0 0
\(133\) 3.35026 0.290505
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.156325 0.0133558 0.00667788 0.999978i \(-0.497874\pi\)
0.00667788 + 0.999978i \(0.497874\pi\)
\(138\) 0 0
\(139\) −4.83638 −0.410216 −0.205108 0.978739i \(-0.565755\pi\)
−0.205108 + 0.978739i \(0.565755\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12.3127 1.02964
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.00000 −0.163846 −0.0819232 0.996639i \(-0.526106\pi\)
−0.0819232 + 0.996639i \(0.526106\pi\)
\(150\) 0 0
\(151\) −8.96239 −0.729349 −0.364674 0.931135i \(-0.618820\pi\)
−0.364674 + 0.931135i \(0.618820\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.806063 0.0647446
\(156\) 0 0
\(157\) 15.0435 1.20060 0.600301 0.799774i \(-0.295048\pi\)
0.600301 + 0.799774i \(0.295048\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.35026 0.264038
\(162\) 0 0
\(163\) −13.4314 −1.05203 −0.526013 0.850477i \(-0.676314\pi\)
−0.526013 + 0.850477i \(0.676314\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.89446 0.146598 0.0732989 0.997310i \(-0.476647\pi\)
0.0732989 + 0.997310i \(0.476647\pi\)
\(168\) 0 0
\(169\) −4.22425 −0.324943
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.66291 0.430543 0.215272 0.976554i \(-0.430936\pi\)
0.215272 + 0.976554i \(0.430936\pi\)
\(174\) 0 0
\(175\) 4.15633 0.314189
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 21.7743 1.62749 0.813745 0.581222i \(-0.197425\pi\)
0.813745 + 0.581222i \(0.197425\pi\)
\(180\) 0 0
\(181\) −11.7988 −0.876996 −0.438498 0.898732i \(-0.644489\pi\)
−0.438498 + 0.898732i \(0.644489\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −8.15633 −0.599665
\(186\) 0 0
\(187\) −0.649738 −0.0475136
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −23.1695 −1.67649 −0.838243 0.545297i \(-0.816417\pi\)
−0.838243 + 0.545297i \(0.816417\pi\)
\(192\) 0 0
\(193\) 18.0811 1.30151 0.650753 0.759289i \(-0.274453\pi\)
0.650753 + 0.759289i \(0.274453\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 14.1622 1.00902 0.504508 0.863407i \(-0.331674\pi\)
0.504508 + 0.863407i \(0.331674\pi\)
\(198\) 0 0
\(199\) −26.3634 −1.86885 −0.934427 0.356154i \(-0.884088\pi\)
−0.934427 + 0.356154i \(0.884088\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −4.15633 −0.291717
\(204\) 0 0
\(205\) 3.73813 0.261083
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.35026 −0.231742
\(210\) 0 0
\(211\) 25.6180 1.76362 0.881808 0.471608i \(-0.156326\pi\)
0.881808 + 0.471608i \(0.156326\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 10.7308 0.731837
\(216\) 0 0
\(217\) −3.35026 −0.227431
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −0.463096 −0.0311512
\(222\) 0 0
\(223\) −20.1319 −1.34813 −0.674065 0.738672i \(-0.735453\pi\)
−0.674065 + 0.738672i \(0.735453\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.43136 0.0950030 0.0475015 0.998871i \(-0.484874\pi\)
0.0475015 + 0.998871i \(0.484874\pi\)
\(228\) 0 0
\(229\) 26.4749 1.74951 0.874754 0.484568i \(-0.161023\pi\)
0.874754 + 0.484568i \(0.161023\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −29.0738 −1.90469 −0.952344 0.305025i \(-0.901335\pi\)
−0.952344 + 0.305025i \(0.901335\pi\)
\(234\) 0 0
\(235\) 1.58181 0.103186
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.1866 0.788288 0.394144 0.919049i \(-0.371041\pi\)
0.394144 + 0.919049i \(0.371041\pi\)
\(240\) 0 0
\(241\) −0.850969 −0.0548157 −0.0274079 0.999624i \(-0.508725\pi\)
−0.0274079 + 0.999624i \(0.508725\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −10.2750 −0.656448
\(246\) 0 0
\(247\) −2.38787 −0.151937
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −14.2315 −0.898287 −0.449144 0.893460i \(-0.648271\pi\)
−0.449144 + 0.893460i \(0.648271\pi\)
\(252\) 0 0
\(253\) −3.35026 −0.210629
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.41090 −0.337522 −0.168761 0.985657i \(-0.553977\pi\)
−0.168761 + 0.985657i \(0.553977\pi\)
\(258\) 0 0
\(259\) 33.9003 2.10646
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.41819 0.395763 0.197881 0.980226i \(-0.436594\pi\)
0.197881 + 0.980226i \(0.436594\pi\)
\(264\) 0 0
\(265\) 12.0508 0.740274
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −24.1114 −1.47010 −0.735050 0.678013i \(-0.762841\pi\)
−0.735050 + 0.678013i \(0.762841\pi\)
\(270\) 0 0
\(271\) 2.85685 0.173541 0.0867706 0.996228i \(-0.472345\pi\)
0.0867706 + 0.996228i \(0.472345\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.15633 −0.250636
\(276\) 0 0
\(277\) 3.79877 0.228246 0.114123 0.993467i \(-0.463594\pi\)
0.114123 + 0.993467i \(0.463594\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −20.5745 −1.22737 −0.613686 0.789550i \(-0.710314\pi\)
−0.613686 + 0.789550i \(0.710314\pi\)
\(282\) 0 0
\(283\) 29.2809 1.74057 0.870285 0.492549i \(-0.163935\pi\)
0.870285 + 0.492549i \(0.163935\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −15.5369 −0.917114
\(288\) 0 0
\(289\) −16.9756 −0.998562
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −32.0713 −1.87362 −0.936811 0.349835i \(-0.886238\pi\)
−0.936811 + 0.349835i \(0.886238\pi\)
\(294\) 0 0
\(295\) −1.73813 −0.101198
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.38787 −0.138094
\(300\) 0 0
\(301\) −44.6009 −2.57075
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 14.4993 0.830227
\(306\) 0 0
\(307\) 1.79289 0.102326 0.0511628 0.998690i \(-0.483707\pi\)
0.0511628 + 0.998690i \(0.483707\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 15.7586 0.893588 0.446794 0.894637i \(-0.352566\pi\)
0.446794 + 0.894637i \(0.352566\pi\)
\(312\) 0 0
\(313\) 16.3634 0.924916 0.462458 0.886641i \(-0.346968\pi\)
0.462458 + 0.886641i \(0.346968\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −16.5296 −0.928395 −0.464198 0.885732i \(-0.653657\pi\)
−0.464198 + 0.885732i \(0.653657\pi\)
\(318\) 0 0
\(319\) 4.15633 0.232710
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.126008 0.00701127
\(324\) 0 0
\(325\) −2.96239 −0.164324
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.57452 −0.362465
\(330\) 0 0
\(331\) −15.8799 −0.872837 −0.436418 0.899744i \(-0.643753\pi\)
−0.436418 + 0.899744i \(0.643753\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0.806063 0.0440399
\(336\) 0 0
\(337\) 9.37073 0.510456 0.255228 0.966881i \(-0.417849\pi\)
0.255228 + 0.966881i \(0.417849\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.35026 0.181427
\(342\) 0 0
\(343\) 13.6121 0.734986
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −26.6458 −1.43042 −0.715210 0.698910i \(-0.753669\pi\)
−0.715210 + 0.698910i \(0.753669\pi\)
\(348\) 0 0
\(349\) −24.0263 −1.28610 −0.643050 0.765824i \(-0.722331\pi\)
−0.643050 + 0.765824i \(0.722331\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −20.5745 −1.09507 −0.547535 0.836782i \(-0.684434\pi\)
−0.547535 + 0.836782i \(0.684434\pi\)
\(354\) 0 0
\(355\) −11.6629 −0.619003
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 9.43136 0.497768 0.248884 0.968533i \(-0.419936\pi\)
0.248884 + 0.968533i \(0.419936\pi\)
\(360\) 0 0
\(361\) −18.3503 −0.965803
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.806063 −0.0421913
\(366\) 0 0
\(367\) 3.50659 0.183042 0.0915212 0.995803i \(-0.470827\pi\)
0.0915212 + 0.995803i \(0.470827\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −50.0870 −2.60039
\(372\) 0 0
\(373\) −16.2374 −0.840742 −0.420371 0.907352i \(-0.638100\pi\)
−0.420371 + 0.907352i \(0.638100\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.96239 0.152571
\(378\) 0 0
\(379\) 30.8568 1.58501 0.792505 0.609866i \(-0.208777\pi\)
0.792505 + 0.609866i \(0.208777\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 20.9321 1.06958 0.534789 0.844985i \(-0.320391\pi\)
0.534789 + 0.844985i \(0.320391\pi\)
\(384\) 0 0
\(385\) 17.2750 0.880418
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −19.3357 −0.980358 −0.490179 0.871622i \(-0.663069\pi\)
−0.490179 + 0.871622i \(0.663069\pi\)
\(390\) 0 0
\(391\) 0.126008 0.00637250
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −0.468976 −0.0235967
\(396\) 0 0
\(397\) −3.86414 −0.193936 −0.0969679 0.995288i \(-0.530914\pi\)
−0.0969679 + 0.995288i \(0.530914\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 8.42407 0.420678 0.210339 0.977629i \(-0.432543\pi\)
0.210339 + 0.977629i \(0.432543\pi\)
\(402\) 0 0
\(403\) 2.38787 0.118948
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −33.9003 −1.68038
\(408\) 0 0
\(409\) 24.0508 1.18923 0.594617 0.804009i \(-0.297304\pi\)
0.594617 + 0.804009i \(0.297304\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 7.22425 0.355482
\(414\) 0 0
\(415\) 6.08110 0.298510
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −36.6009 −1.78807 −0.894035 0.447998i \(-0.852137\pi\)
−0.894035 + 0.447998i \(0.852137\pi\)
\(420\) 0 0
\(421\) −22.6497 −1.10388 −0.551940 0.833884i \(-0.686112\pi\)
−0.551940 + 0.833884i \(0.686112\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0.156325 0.00758288
\(426\) 0 0
\(427\) −60.2638 −2.91637
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 14.4485 0.695960 0.347980 0.937502i \(-0.386868\pi\)
0.347980 + 0.937502i \(0.386868\pi\)
\(432\) 0 0
\(433\) −1.55737 −0.0748425 −0.0374213 0.999300i \(-0.511914\pi\)
−0.0374213 + 0.999300i \(0.511914\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.649738 0.0310812
\(438\) 0 0
\(439\) −32.2276 −1.53814 −0.769069 0.639166i \(-0.779280\pi\)
−0.769069 + 0.639166i \(0.779280\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.66879 0.364355 0.182178 0.983266i \(-0.441685\pi\)
0.182178 + 0.983266i \(0.441685\pi\)
\(444\) 0 0
\(445\) −13.0132 −0.616884
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −34.6009 −1.63292 −0.816458 0.577405i \(-0.804065\pi\)
−0.816458 + 0.577405i \(0.804065\pi\)
\(450\) 0 0
\(451\) 15.5369 0.731604
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 12.3127 0.577226
\(456\) 0 0
\(457\) −7.94921 −0.371849 −0.185924 0.982564i \(-0.559528\pi\)
−0.185924 + 0.982564i \(0.559528\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 30.6859 1.42919 0.714593 0.699540i \(-0.246612\pi\)
0.714593 + 0.699540i \(0.246612\pi\)
\(462\) 0 0
\(463\) 4.74543 0.220539 0.110269 0.993902i \(-0.464829\pi\)
0.110269 + 0.993902i \(0.464829\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −14.7915 −0.684468 −0.342234 0.939615i \(-0.611184\pi\)
−0.342234 + 0.939615i \(0.611184\pi\)
\(468\) 0 0
\(469\) −3.35026 −0.154701
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 44.6009 2.05075
\(474\) 0 0
\(475\) 0.806063 0.0369847
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 31.9452 1.45962 0.729808 0.683652i \(-0.239610\pi\)
0.729808 + 0.683652i \(0.239610\pi\)
\(480\) 0 0
\(481\) −24.1622 −1.10170
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.28233 0.194451
\(486\) 0 0
\(487\) −14.9175 −0.675976 −0.337988 0.941150i \(-0.609746\pi\)
−0.337988 + 0.941150i \(0.609746\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.25457 0.146877 0.0734384 0.997300i \(-0.476603\pi\)
0.0734384 + 0.997300i \(0.476603\pi\)
\(492\) 0 0
\(493\) −0.156325 −0.00704053
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 48.4749 2.17439
\(498\) 0 0
\(499\) 20.3733 0.912033 0.456017 0.889971i \(-0.349276\pi\)
0.456017 + 0.889971i \(0.349276\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −17.2809 −0.770518 −0.385259 0.922808i \(-0.625888\pi\)
−0.385259 + 0.922808i \(0.625888\pi\)
\(504\) 0 0
\(505\) −6.31265 −0.280909
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −22.3488 −0.990595 −0.495298 0.868723i \(-0.664941\pi\)
−0.495298 + 0.868723i \(0.664941\pi\)
\(510\) 0 0
\(511\) 3.35026 0.148207
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 12.2823 0.541224
\(516\) 0 0
\(517\) 6.57452 0.289147
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −28.5256 −1.24973 −0.624865 0.780732i \(-0.714846\pi\)
−0.624865 + 0.780732i \(0.714846\pi\)
\(522\) 0 0
\(523\) 12.8061 0.559970 0.279985 0.960004i \(-0.409670\pi\)
0.279985 + 0.960004i \(0.409670\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.126008 −0.00548899
\(528\) 0 0
\(529\) −22.3503 −0.971751
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 11.0738 0.479660
\(534\) 0 0
\(535\) 16.4690 0.712016
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −42.7064 −1.83950
\(540\) 0 0
\(541\) 20.0870 0.863607 0.431803 0.901968i \(-0.357877\pi\)
0.431803 + 0.901968i \(0.357877\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 16.0508 0.687540
\(546\) 0 0
\(547\) −32.9321 −1.40807 −0.704037 0.710163i \(-0.748621\pi\)
−0.704037 + 0.710163i \(0.748621\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.806063 −0.0343395
\(552\) 0 0
\(553\) 1.94921 0.0828890
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 16.8510 0.713998 0.356999 0.934105i \(-0.383800\pi\)
0.356999 + 0.934105i \(0.383800\pi\)
\(558\) 0 0
\(559\) 31.7889 1.34453
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 30.2071 1.27308 0.636539 0.771245i \(-0.280365\pi\)
0.636539 + 0.771245i \(0.280365\pi\)
\(564\) 0 0
\(565\) −5.89446 −0.247982
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.97556 0.0828199 0.0414099 0.999142i \(-0.486815\pi\)
0.0414099 + 0.999142i \(0.486815\pi\)
\(570\) 0 0
\(571\) 2.32724 0.0973919 0.0486960 0.998814i \(-0.484493\pi\)
0.0486960 + 0.998814i \(0.484493\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.806063 0.0336152
\(576\) 0 0
\(577\) −21.2447 −0.884429 −0.442215 0.896909i \(-0.645807\pi\)
−0.442215 + 0.896909i \(0.645807\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −25.2750 −1.04859
\(582\) 0 0
\(583\) 50.0870 2.07439
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.6834 0.564774 0.282387 0.959301i \(-0.408874\pi\)
0.282387 + 0.959301i \(0.408874\pi\)
\(588\) 0 0
\(589\) −0.649738 −0.0267720
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 42.3488 1.73906 0.869529 0.493881i \(-0.164422\pi\)
0.869529 + 0.493881i \(0.164422\pi\)
\(594\) 0 0
\(595\) −0.649738 −0.0266367
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.85685 0.116728 0.0583638 0.998295i \(-0.481412\pi\)
0.0583638 + 0.998295i \(0.481412\pi\)
\(600\) 0 0
\(601\) 12.7367 0.519542 0.259771 0.965670i \(-0.416353\pi\)
0.259771 + 0.965670i \(0.416353\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.27504 −0.255117
\(606\) 0 0
\(607\) −38.6213 −1.56759 −0.783796 0.621019i \(-0.786719\pi\)
−0.783796 + 0.621019i \(0.786719\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.68594 0.189573
\(612\) 0 0
\(613\) 37.3258 1.50758 0.753788 0.657118i \(-0.228225\pi\)
0.753788 + 0.657118i \(0.228225\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −7.19394 −0.289617 −0.144808 0.989460i \(-0.546257\pi\)
−0.144808 + 0.989460i \(0.546257\pi\)
\(618\) 0 0
\(619\) −20.0059 −0.804104 −0.402052 0.915617i \(-0.631703\pi\)
−0.402052 + 0.915617i \(0.631703\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 54.0870 2.16695
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 1.27504 0.0508391
\(630\) 0 0
\(631\) 42.7123 1.70035 0.850175 0.526501i \(-0.176496\pi\)
0.850175 + 0.526501i \(0.176496\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 4.03032 0.159938
\(636\) 0 0
\(637\) −30.4387 −1.20602
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.15888 0.0457730 0.0228865 0.999738i \(-0.492714\pi\)
0.0228865 + 0.999738i \(0.492714\pi\)
\(642\) 0 0
\(643\) 40.3839 1.59259 0.796293 0.604911i \(-0.206791\pi\)
0.796293 + 0.604911i \(0.206791\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 32.2170 1.26658 0.633290 0.773915i \(-0.281704\pi\)
0.633290 + 0.773915i \(0.281704\pi\)
\(648\) 0 0
\(649\) −7.22425 −0.283577
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −43.7294 −1.71126 −0.855632 0.517584i \(-0.826831\pi\)
−0.855632 + 0.517584i \(0.826831\pi\)
\(654\) 0 0
\(655\) 1.89446 0.0740227
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 27.6688 1.07782 0.538912 0.842362i \(-0.318836\pi\)
0.538912 + 0.842362i \(0.318836\pi\)
\(660\) 0 0
\(661\) −1.22899 −0.0478023 −0.0239011 0.999714i \(-0.507609\pi\)
−0.0239011 + 0.999714i \(0.507609\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −3.35026 −0.129918
\(666\) 0 0
\(667\) −0.806063 −0.0312109
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 60.2638 2.32646
\(672\) 0 0
\(673\) 18.9380 0.730004 0.365002 0.931007i \(-0.381068\pi\)
0.365002 + 0.931007i \(0.381068\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.4591 0.863174 0.431587 0.902071i \(-0.357954\pi\)
0.431587 + 0.902071i \(0.357954\pi\)
\(678\) 0 0
\(679\) −17.7988 −0.683054
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 14.6702 0.561340 0.280670 0.959804i \(-0.409443\pi\)
0.280670 + 0.959804i \(0.409443\pi\)
\(684\) 0 0
\(685\) −0.156325 −0.00597288
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 35.6991 1.36003
\(690\) 0 0
\(691\) 39.3014 1.49510 0.747548 0.664208i \(-0.231231\pi\)
0.747548 + 0.664208i \(0.231231\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 4.83638 0.183454
\(696\) 0 0
\(697\) −0.584365 −0.0221344
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −48.0216 −1.81375 −0.906876 0.421399i \(-0.861539\pi\)
−0.906876 + 0.421399i \(0.861539\pi\)
\(702\) 0 0
\(703\) 6.57452 0.247963
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 26.2374 0.986760
\(708\) 0 0
\(709\) 8.57452 0.322023 0.161011 0.986953i \(-0.448524\pi\)
0.161011 + 0.986953i \(0.448524\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.649738 −0.0243329
\(714\) 0 0
\(715\) −12.3127 −0.460467
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 10.1114 0.377092 0.188546 0.982064i \(-0.439622\pi\)
0.188546 + 0.982064i \(0.439622\pi\)
\(720\) 0 0
\(721\) −51.0494 −1.90118
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) 47.2057 1.75076 0.875381 0.483433i \(-0.160610\pi\)
0.875381 + 0.483433i \(0.160610\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.67750 −0.0620446
\(732\) 0 0
\(733\) 48.7210 1.79955 0.899775 0.436353i \(-0.143730\pi\)
0.899775 + 0.436353i \(0.143730\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.35026 0.123408
\(738\) 0 0
\(739\) 0.432779 0.0159200 0.00796001 0.999968i \(-0.497466\pi\)
0.00796001 + 0.999968i \(0.497466\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.2692 0.780290 0.390145 0.920753i \(-0.372425\pi\)
0.390145 + 0.920753i \(0.372425\pi\)
\(744\) 0 0
\(745\) 2.00000 0.0732743
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −68.4504 −2.50112
\(750\) 0 0
\(751\) 12.4328 0.453679 0.226839 0.973932i \(-0.427161\pi\)
0.226839 + 0.973932i \(0.427161\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.96239 0.326175
\(756\) 0 0
\(757\) 28.8061 1.04697 0.523487 0.852034i \(-0.324631\pi\)
0.523487 + 0.852034i \(0.324631\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 8.17679 0.296409 0.148204 0.988957i \(-0.452651\pi\)
0.148204 + 0.988957i \(0.452651\pi\)
\(762\) 0 0
\(763\) −66.7123 −2.41515
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.14903 −0.185921
\(768\) 0 0
\(769\) −29.5369 −1.06513 −0.532564 0.846390i \(-0.678771\pi\)
−0.532564 + 0.846390i \(0.678771\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −30.3331 −1.09101 −0.545503 0.838109i \(-0.683661\pi\)
−0.545503 + 0.838109i \(0.683661\pi\)
\(774\) 0 0
\(775\) −0.806063 −0.0289547
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.01317 −0.107958
\(780\) 0 0
\(781\) −48.4749 −1.73457
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −15.0435 −0.536925
\(786\) 0 0
\(787\) 20.1681 0.718915 0.359457 0.933162i \(-0.382962\pi\)
0.359457 + 0.933162i \(0.382962\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 24.4993 0.871095
\(792\) 0 0
\(793\) 42.9525 1.52529
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 18.2677 0.647077 0.323538 0.946215i \(-0.395128\pi\)
0.323538 + 0.946215i \(0.395128\pi\)
\(798\) 0 0
\(799\) −0.247277 −0.00874802
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −3.35026 −0.118228
\(804\) 0 0
\(805\) −3.35026 −0.118081
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 18.5355 0.651673 0.325837 0.945426i \(-0.394354\pi\)
0.325837 + 0.945426i \(0.394354\pi\)
\(810\) 0 0
\(811\) −41.1608 −1.44535 −0.722675 0.691188i \(-0.757088\pi\)
−0.722675 + 0.691188i \(0.757088\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 13.4314 0.470480
\(816\) 0 0
\(817\) −8.64974 −0.302616
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −44.5501 −1.55481 −0.777404 0.629001i \(-0.783464\pi\)
−0.777404 + 0.629001i \(0.783464\pi\)
\(822\) 0 0
\(823\) 21.3298 0.743510 0.371755 0.928331i \(-0.378756\pi\)
0.371755 + 0.928331i \(0.378756\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 13.2692 0.461414 0.230707 0.973023i \(-0.425896\pi\)
0.230707 + 0.973023i \(0.425896\pi\)
\(828\) 0 0
\(829\) −5.91493 −0.205434 −0.102717 0.994711i \(-0.532754\pi\)
−0.102717 + 0.994711i \(0.532754\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.60625 0.0556532
\(834\) 0 0
\(835\) −1.89446 −0.0655605
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −27.3317 −0.943595 −0.471798 0.881707i \(-0.656395\pi\)
−0.471798 + 0.881707i \(0.656395\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 4.22425 0.145319
\(846\) 0 0
\(847\) 26.0811 0.896157
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.57452 0.225371
\(852\) 0 0
\(853\) 32.8423 1.12450 0.562249 0.826968i \(-0.309936\pi\)
0.562249 + 0.826968i \(0.309936\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 35.9610 1.22840 0.614202 0.789149i \(-0.289478\pi\)
0.614202 + 0.789149i \(0.289478\pi\)
\(858\) 0 0
\(859\) 34.1417 1.16490 0.582451 0.812866i \(-0.302094\pi\)
0.582451 + 0.812866i \(0.302094\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 52.6312 1.79159 0.895793 0.444471i \(-0.146608\pi\)
0.895793 + 0.444471i \(0.146608\pi\)
\(864\) 0 0
\(865\) −5.66291 −0.192545
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.94921 −0.0661226
\(870\) 0 0
\(871\) 2.38787 0.0809100
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −4.15633 −0.140509
\(876\) 0 0
\(877\) 30.9741 1.04592 0.522961 0.852356i \(-0.324827\pi\)
0.522961 + 0.852356i \(0.324827\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −46.5111 −1.56700 −0.783499 0.621394i \(-0.786567\pi\)
−0.783499 + 0.621394i \(0.786567\pi\)
\(882\) 0 0
\(883\) 37.8291 1.27305 0.636525 0.771256i \(-0.280371\pi\)
0.636525 + 0.771256i \(0.280371\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −19.5672 −0.657003 −0.328501 0.944503i \(-0.606544\pi\)
−0.328501 + 0.944503i \(0.606544\pi\)
\(888\) 0 0
\(889\) −16.7513 −0.561821
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −1.27504 −0.0426676
\(894\) 0 0
\(895\) −21.7743 −0.727836
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.806063 0.0268837
\(900\) 0 0
\(901\) −1.88384 −0.0627598
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 11.7988 0.392204
\(906\) 0 0
\(907\) 44.2335 1.46875 0.734374 0.678745i \(-0.237476\pi\)
0.734374 + 0.678745i \(0.237476\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −1.95509 −0.0647752 −0.0323876 0.999475i \(-0.510311\pi\)
−0.0323876 + 0.999475i \(0.510311\pi\)
\(912\) 0 0
\(913\) 25.2750 0.836482
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.87399 −0.260022
\(918\) 0 0
\(919\) 46.3634 1.52939 0.764694 0.644393i \(-0.222890\pi\)
0.764694 + 0.644393i \(0.222890\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −34.5501 −1.13723
\(924\) 0 0
\(925\) 8.15633 0.268178
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12.0460 0.395218 0.197609 0.980281i \(-0.436682\pi\)
0.197609 + 0.980281i \(0.436682\pi\)
\(930\) 0 0
\(931\) 8.28233 0.271443
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0.649738 0.0212487
\(936\) 0 0
\(937\) 6.27645 0.205043 0.102521 0.994731i \(-0.467309\pi\)
0.102521 + 0.994731i \(0.467309\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 52.1768 1.70091 0.850457 0.526044i \(-0.176325\pi\)
0.850457 + 0.526044i \(0.176325\pi\)
\(942\) 0 0
\(943\) −3.01317 −0.0981224
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −21.3707 −0.694455 −0.347228 0.937781i \(-0.612877\pi\)
−0.347228 + 0.937781i \(0.612877\pi\)
\(948\) 0 0
\(949\) −2.38787 −0.0775136
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −22.1016 −0.715940 −0.357970 0.933733i \(-0.616531\pi\)
−0.357970 + 0.933733i \(0.616531\pi\)
\(954\) 0 0
\(955\) 23.1695 0.749747
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0.649738 0.0209811
\(960\) 0 0
\(961\) −30.3503 −0.979041
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −18.0811 −0.582051
\(966\) 0 0
\(967\) −31.0844 −0.999608 −0.499804 0.866139i \(-0.666595\pi\)
−0.499804 + 0.866139i \(0.666595\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −7.87987 −0.252877 −0.126439 0.991974i \(-0.540355\pi\)
−0.126439 + 0.991974i \(0.540355\pi\)
\(972\) 0 0
\(973\) −20.1016 −0.644427
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −39.5877 −1.26652 −0.633261 0.773938i \(-0.718284\pi\)
−0.633261 + 0.773938i \(0.718284\pi\)
\(978\) 0 0
\(979\) −54.0870 −1.72863
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 11.3444 0.361830 0.180915 0.983499i \(-0.442094\pi\)
0.180915 + 0.983499i \(0.442094\pi\)
\(984\) 0 0
\(985\) −14.1622 −0.451245
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.64974 −0.275046
\(990\) 0 0
\(991\) −17.4664 −0.554839 −0.277420 0.960749i \(-0.589479\pi\)
−0.277420 + 0.960749i \(0.589479\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 26.3634 0.835777
\(996\) 0 0
\(997\) −51.7901 −1.64021 −0.820104 0.572215i \(-0.806084\pi\)
−0.820104 + 0.572215i \(0.806084\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5220.2.a.w.1.3 3
3.2 odd 2 580.2.a.d.1.2 3
12.11 even 2 2320.2.a.o.1.2 3
15.2 even 4 2900.2.c.g.349.3 6
15.8 even 4 2900.2.c.g.349.4 6
15.14 odd 2 2900.2.a.f.1.2 3
24.5 odd 2 9280.2.a.bh.1.2 3
24.11 even 2 9280.2.a.bt.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
580.2.a.d.1.2 3 3.2 odd 2
2320.2.a.o.1.2 3 12.11 even 2
2900.2.a.f.1.2 3 15.14 odd 2
2900.2.c.g.349.3 6 15.2 even 4
2900.2.c.g.349.4 6 15.8 even 4
5220.2.a.w.1.3 3 1.1 even 1 trivial
9280.2.a.bh.1.2 3 24.5 odd 2
9280.2.a.bt.1.2 3 24.11 even 2