Properties

Label 5220.2.a.y.1.5
Level $5220$
Weight $2$
Character 5220.1
Self dual yes
Analytic conductor $41.682$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5220,2,Mod(1,5220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5220.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5220 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.6819098551\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 22x^{5} + 38x^{4} + 81x^{3} - 75x^{2} - 42x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-3.73648\) of defining polynomial
Character \(\chi\) \(=\) 5220.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{5} +2.23366 q^{7} -0.862773 q^{11} +6.19586 q^{13} +6.72420 q^{17} +3.79733 q^{19} -0.114019 q^{23} +1.00000 q^{25} -1.00000 q^{29} +1.48490 q^{31} -2.23366 q^{35} +5.84818 q^{37} -3.84818 q^{41} -2.66310 q^{43} -11.5650 q^{47} -2.01078 q^{49} +6.85596 q^{53} +0.862773 q^{55} +0.814916 q^{59} -0.312424 q^{61} -6.19586 q^{65} -6.15806 q^{67} +2.31242 q^{71} +10.9170 q^{73} -1.92714 q^{77} -6.57956 q^{79} -8.62530 q^{83} -6.72420 q^{85} -8.93763 q^{89} +13.8394 q^{91} -3.79733 q^{95} +6.87902 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 7 q^{5} - 3 q^{11} + 2 q^{13} - 8 q^{17} + 6 q^{19} - q^{23} + 7 q^{25} - 7 q^{29} - 2 q^{31} + 15 q^{37} - q^{41} + 9 q^{43} - 4 q^{47} + 29 q^{49} - 17 q^{53} + 3 q^{55} + 4 q^{59} + 6 q^{61}+ \cdots + 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) 2.23366 0.844243 0.422122 0.906539i \(-0.361286\pi\)
0.422122 + 0.906539i \(0.361286\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.862773 −0.260136 −0.130068 0.991505i \(-0.541520\pi\)
−0.130068 + 0.991505i \(0.541520\pi\)
\(12\) 0 0
\(13\) 6.19586 1.71842 0.859211 0.511621i \(-0.170955\pi\)
0.859211 + 0.511621i \(0.170955\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.72420 1.63086 0.815430 0.578856i \(-0.196501\pi\)
0.815430 + 0.578856i \(0.196501\pi\)
\(18\) 0 0
\(19\) 3.79733 0.871167 0.435583 0.900148i \(-0.356542\pi\)
0.435583 + 0.900148i \(0.356542\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.114019 −0.0237745 −0.0118873 0.999929i \(-0.503784\pi\)
−0.0118873 + 0.999929i \(0.503784\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) 1.48490 0.266696 0.133348 0.991069i \(-0.457427\pi\)
0.133348 + 0.991069i \(0.457427\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.23366 −0.377557
\(36\) 0 0
\(37\) 5.84818 0.961436 0.480718 0.876875i \(-0.340376\pi\)
0.480718 + 0.876875i \(0.340376\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.84818 −0.600985 −0.300493 0.953784i \(-0.597151\pi\)
−0.300493 + 0.953784i \(0.597151\pi\)
\(42\) 0 0
\(43\) −2.66310 −0.406119 −0.203059 0.979166i \(-0.565088\pi\)
−0.203059 + 0.979166i \(0.565088\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −11.5650 −1.68692 −0.843462 0.537188i \(-0.819486\pi\)
−0.843462 + 0.537188i \(0.819486\pi\)
\(48\) 0 0
\(49\) −2.01078 −0.287254
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.85596 0.941738 0.470869 0.882203i \(-0.343940\pi\)
0.470869 + 0.882203i \(0.343940\pi\)
\(54\) 0 0
\(55\) 0.862773 0.116336
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.814916 0.106093 0.0530465 0.998592i \(-0.483107\pi\)
0.0530465 + 0.998592i \(0.483107\pi\)
\(60\) 0 0
\(61\) −0.312424 −0.0400017 −0.0200009 0.999800i \(-0.506367\pi\)
−0.0200009 + 0.999800i \(0.506367\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −6.19586 −0.768502
\(66\) 0 0
\(67\) −6.15806 −0.752327 −0.376164 0.926553i \(-0.622757\pi\)
−0.376164 + 0.926553i \(0.622757\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.31242 0.274434 0.137217 0.990541i \(-0.456184\pi\)
0.137217 + 0.990541i \(0.456184\pi\)
\(72\) 0 0
\(73\) 10.9170 1.27774 0.638868 0.769316i \(-0.279403\pi\)
0.638868 + 0.769316i \(0.279403\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.92714 −0.219618
\(78\) 0 0
\(79\) −6.57956 −0.740258 −0.370129 0.928980i \(-0.620687\pi\)
−0.370129 + 0.928980i \(0.620687\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.62530 −0.946750 −0.473375 0.880861i \(-0.656964\pi\)
−0.473375 + 0.880861i \(0.656964\pi\)
\(84\) 0 0
\(85\) −6.72420 −0.729342
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −8.93763 −0.947387 −0.473693 0.880690i \(-0.657080\pi\)
−0.473693 + 0.880690i \(0.657080\pi\)
\(90\) 0 0
\(91\) 13.8394 1.45077
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.79733 −0.389598
\(96\) 0 0
\(97\) 6.87902 0.698459 0.349229 0.937037i \(-0.386443\pi\)
0.349229 + 0.937037i \(0.386443\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −6.54654 −0.651405 −0.325702 0.945472i \(-0.605601\pi\)
−0.325702 + 0.945472i \(0.605601\pi\)
\(102\) 0 0
\(103\) 16.1111 1.58747 0.793735 0.608264i \(-0.208134\pi\)
0.793735 + 0.608264i \(0.208134\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 16.9837 1.64188 0.820939 0.571016i \(-0.193451\pi\)
0.820939 + 0.571016i \(0.193451\pi\)
\(108\) 0 0
\(109\) −13.8805 −1.32951 −0.664754 0.747062i \(-0.731464\pi\)
−0.664754 + 0.747062i \(0.731464\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 11.6770 1.09848 0.549238 0.835666i \(-0.314918\pi\)
0.549238 + 0.835666i \(0.314918\pi\)
\(114\) 0 0
\(115\) 0.114019 0.0106323
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 15.0196 1.37684
\(120\) 0 0
\(121\) −10.2556 −0.932329
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −9.09773 −0.807293 −0.403647 0.914915i \(-0.632257\pi\)
−0.403647 + 0.914915i \(0.632257\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 1.28904 0.112624 0.0563121 0.998413i \(-0.482066\pi\)
0.0563121 + 0.998413i \(0.482066\pi\)
\(132\) 0 0
\(133\) 8.48193 0.735476
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 16.3598 1.39771 0.698857 0.715261i \(-0.253692\pi\)
0.698857 + 0.715261i \(0.253692\pi\)
\(138\) 0 0
\(139\) −3.73162 −0.316512 −0.158256 0.987398i \(-0.550587\pi\)
−0.158256 + 0.987398i \(0.550587\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.34562 −0.447023
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.28223 −0.105044 −0.0525222 0.998620i \(-0.516726\pi\)
−0.0525222 + 0.998620i \(0.516726\pi\)
\(150\) 0 0
\(151\) 20.7941 1.69220 0.846100 0.533024i \(-0.178945\pi\)
0.846100 + 0.533024i \(0.178945\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1.48490 −0.119270
\(156\) 0 0
\(157\) 23.7487 1.89535 0.947677 0.319231i \(-0.103425\pi\)
0.947677 + 0.319231i \(0.103425\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.254678 −0.0200715
\(162\) 0 0
\(163\) −13.5073 −1.05797 −0.528987 0.848630i \(-0.677428\pi\)
−0.528987 + 0.848630i \(0.677428\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.6135 1.44036 0.720180 0.693788i \(-0.244059\pi\)
0.720180 + 0.693788i \(0.244059\pi\)
\(168\) 0 0
\(169\) 25.3887 1.95298
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.88336 −0.143189 −0.0715947 0.997434i \(-0.522809\pi\)
−0.0715947 + 0.997434i \(0.522809\pi\)
\(174\) 0 0
\(175\) 2.23366 0.168849
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.11447 0.307530 0.153765 0.988107i \(-0.450860\pi\)
0.153765 + 0.988107i \(0.450860\pi\)
\(180\) 0 0
\(181\) 15.1334 1.12486 0.562429 0.826846i \(-0.309867\pi\)
0.562429 + 0.826846i \(0.309867\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.84818 −0.429967
\(186\) 0 0
\(187\) −5.80146 −0.424245
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.2790 −1.32262 −0.661311 0.750112i \(-0.730000\pi\)
−0.661311 + 0.750112i \(0.730000\pi\)
\(192\) 0 0
\(193\) −8.34771 −0.600881 −0.300441 0.953801i \(-0.597134\pi\)
−0.300441 + 0.953801i \(0.597134\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −20.8912 −1.48844 −0.744220 0.667935i \(-0.767179\pi\)
−0.744220 + 0.667935i \(0.767179\pi\)
\(198\) 0 0
\(199\) 1.29348 0.0916926 0.0458463 0.998949i \(-0.485402\pi\)
0.0458463 + 0.998949i \(0.485402\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −2.23366 −0.156772
\(204\) 0 0
\(205\) 3.84818 0.268769
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.27623 −0.226622
\(210\) 0 0
\(211\) −17.2837 −1.18986 −0.594930 0.803778i \(-0.702820\pi\)
−0.594930 + 0.803778i \(0.702820\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 2.66310 0.181622
\(216\) 0 0
\(217\) 3.31676 0.225157
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 41.6622 2.80250
\(222\) 0 0
\(223\) 19.9516 1.33606 0.668028 0.744136i \(-0.267139\pi\)
0.668028 + 0.744136i \(0.267139\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.9351 1.12402 0.562011 0.827130i \(-0.310028\pi\)
0.562011 + 0.827130i \(0.310028\pi\)
\(228\) 0 0
\(229\) 26.4182 1.74576 0.872882 0.487931i \(-0.162248\pi\)
0.872882 + 0.487931i \(0.162248\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.481568 −0.0315485 −0.0157743 0.999876i \(-0.505021\pi\)
−0.0157743 + 0.999876i \(0.505021\pi\)
\(234\) 0 0
\(235\) 11.5650 0.754416
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.4889 −0.678468 −0.339234 0.940702i \(-0.610168\pi\)
−0.339234 + 0.940702i \(0.610168\pi\)
\(240\) 0 0
\(241\) −6.18410 −0.398353 −0.199177 0.979964i \(-0.563827\pi\)
−0.199177 + 0.979964i \(0.563827\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.01078 0.128464
\(246\) 0 0
\(247\) 23.5277 1.49703
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 25.1896 1.58995 0.794975 0.606642i \(-0.207484\pi\)
0.794975 + 0.606642i \(0.207484\pi\)
\(252\) 0 0
\(253\) 0.0983720 0.00618460
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.2072 −1.13574 −0.567868 0.823120i \(-0.692231\pi\)
−0.567868 + 0.823120i \(0.692231\pi\)
\(258\) 0 0
\(259\) 13.0628 0.811685
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −25.7119 −1.58546 −0.792732 0.609570i \(-0.791342\pi\)
−0.792732 + 0.609570i \(0.791342\pi\)
\(264\) 0 0
\(265\) −6.85596 −0.421158
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −13.7347 −0.837419 −0.418710 0.908120i \(-0.637517\pi\)
−0.418710 + 0.908120i \(0.637517\pi\)
\(270\) 0 0
\(271\) 8.26714 0.502193 0.251096 0.967962i \(-0.419209\pi\)
0.251096 + 0.967962i \(0.419209\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −0.862773 −0.0520271
\(276\) 0 0
\(277\) −19.5738 −1.17607 −0.588037 0.808834i \(-0.700099\pi\)
−0.588037 + 0.808834i \(0.700099\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.15135 −0.486269 −0.243134 0.969993i \(-0.578176\pi\)
−0.243134 + 0.969993i \(0.578176\pi\)
\(282\) 0 0
\(283\) −4.92175 −0.292567 −0.146284 0.989243i \(-0.546731\pi\)
−0.146284 + 0.989243i \(0.546731\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.59552 −0.507378
\(288\) 0 0
\(289\) 28.2149 1.65970
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.04097 −0.352917 −0.176459 0.984308i \(-0.556464\pi\)
−0.176459 + 0.984308i \(0.556464\pi\)
\(294\) 0 0
\(295\) −0.814916 −0.0474462
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.706443 −0.0408546
\(300\) 0 0
\(301\) −5.94845 −0.342863
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.312424 0.0178893
\(306\) 0 0
\(307\) −0.589954 −0.0336704 −0.0168352 0.999858i \(-0.505359\pi\)
−0.0168352 + 0.999858i \(0.505359\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.08054 0.344796 0.172398 0.985027i \(-0.444849\pi\)
0.172398 + 0.985027i \(0.444849\pi\)
\(312\) 0 0
\(313\) −16.2276 −0.917241 −0.458620 0.888632i \(-0.651656\pi\)
−0.458620 + 0.888632i \(0.651656\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6.96348 0.391108 0.195554 0.980693i \(-0.437349\pi\)
0.195554 + 0.980693i \(0.437349\pi\)
\(318\) 0 0
\(319\) 0.862773 0.0483060
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 25.5340 1.42075
\(324\) 0 0
\(325\) 6.19586 0.343684
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −25.8322 −1.42417
\(330\) 0 0
\(331\) −3.21645 −0.176792 −0.0883960 0.996085i \(-0.528174\pi\)
−0.0883960 + 0.996085i \(0.528174\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.15806 0.336451
\(336\) 0 0
\(337\) 13.2124 0.719724 0.359862 0.933006i \(-0.382824\pi\)
0.359862 + 0.933006i \(0.382824\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1.28113 −0.0693773
\(342\) 0 0
\(343\) −20.1270 −1.08675
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.9781 0.911434 0.455717 0.890125i \(-0.349383\pi\)
0.455717 + 0.890125i \(0.349383\pi\)
\(348\) 0 0
\(349\) −0.578713 −0.0309778 −0.0154889 0.999880i \(-0.504930\pi\)
−0.0154889 + 0.999880i \(0.504930\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −8.09715 −0.430968 −0.215484 0.976507i \(-0.569133\pi\)
−0.215484 + 0.976507i \(0.569133\pi\)
\(354\) 0 0
\(355\) −2.31242 −0.122731
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −13.9175 −0.734538 −0.367269 0.930115i \(-0.619707\pi\)
−0.367269 + 0.930115i \(0.619707\pi\)
\(360\) 0 0
\(361\) −4.58031 −0.241069
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.9170 −0.571421
\(366\) 0 0
\(367\) 1.84218 0.0961612 0.0480806 0.998843i \(-0.484690\pi\)
0.0480806 + 0.998843i \(0.484690\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 15.3139 0.795056
\(372\) 0 0
\(373\) 30.9107 1.60050 0.800249 0.599668i \(-0.204701\pi\)
0.800249 + 0.599668i \(0.204701\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.19586 −0.319103
\(378\) 0 0
\(379\) 14.1422 0.726438 0.363219 0.931704i \(-0.381678\pi\)
0.363219 + 0.931704i \(0.381678\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −35.4290 −1.81034 −0.905170 0.425050i \(-0.860256\pi\)
−0.905170 + 0.425050i \(0.860256\pi\)
\(384\) 0 0
\(385\) 1.92714 0.0982160
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6.78581 −0.344054 −0.172027 0.985092i \(-0.555032\pi\)
−0.172027 + 0.985092i \(0.555032\pi\)
\(390\) 0 0
\(391\) −0.766684 −0.0387729
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 6.57956 0.331054
\(396\) 0 0
\(397\) 6.07559 0.304925 0.152463 0.988309i \(-0.451280\pi\)
0.152463 + 0.988309i \(0.451280\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 34.6086 1.72827 0.864135 0.503260i \(-0.167866\pi\)
0.864135 + 0.503260i \(0.167866\pi\)
\(402\) 0 0
\(403\) 9.20025 0.458297
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.04565 −0.250104
\(408\) 0 0
\(409\) 20.1817 0.997922 0.498961 0.866624i \(-0.333715\pi\)
0.498961 + 0.866624i \(0.333715\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.82024 0.0895683
\(414\) 0 0
\(415\) 8.62530 0.423399
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 19.9108 0.972705 0.486353 0.873763i \(-0.338327\pi\)
0.486353 + 0.873763i \(0.338327\pi\)
\(420\) 0 0
\(421\) −3.38394 −0.164923 −0.0824617 0.996594i \(-0.526278\pi\)
−0.0824617 + 0.996594i \(0.526278\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.72420 0.326172
\(426\) 0 0
\(427\) −0.697847 −0.0337712
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 40.3943 1.94573 0.972863 0.231382i \(-0.0743246\pi\)
0.972863 + 0.231382i \(0.0743246\pi\)
\(432\) 0 0
\(433\) 3.44005 0.165318 0.0826590 0.996578i \(-0.473659\pi\)
0.0826590 + 0.996578i \(0.473659\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.432966 −0.0207115
\(438\) 0 0
\(439\) −25.2149 −1.20344 −0.601721 0.798706i \(-0.705518\pi\)
−0.601721 + 0.798706i \(0.705518\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −25.0925 −1.19218 −0.596091 0.802917i \(-0.703280\pi\)
−0.596091 + 0.802917i \(0.703280\pi\)
\(444\) 0 0
\(445\) 8.93763 0.423684
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −23.9624 −1.13086 −0.565429 0.824797i \(-0.691289\pi\)
−0.565429 + 0.824797i \(0.691289\pi\)
\(450\) 0 0
\(451\) 3.32011 0.156338
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −13.8394 −0.648802
\(456\) 0 0
\(457\) 11.0245 0.515705 0.257852 0.966184i \(-0.416985\pi\)
0.257852 + 0.966184i \(0.416985\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 39.9276 1.85962 0.929808 0.368046i \(-0.119973\pi\)
0.929808 + 0.368046i \(0.119973\pi\)
\(462\) 0 0
\(463\) −17.9300 −0.833279 −0.416639 0.909072i \(-0.636792\pi\)
−0.416639 + 0.909072i \(0.636792\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.15485 −0.0997146 −0.0498573 0.998756i \(-0.515877\pi\)
−0.0498573 + 0.998756i \(0.515877\pi\)
\(468\) 0 0
\(469\) −13.7550 −0.635147
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.29765 0.105646
\(474\) 0 0
\(475\) 3.79733 0.174233
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.1212 1.23920 0.619600 0.784918i \(-0.287295\pi\)
0.619600 + 0.784918i \(0.287295\pi\)
\(480\) 0 0
\(481\) 36.2345 1.65215
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6.87902 −0.312360
\(486\) 0 0
\(487\) −29.9751 −1.35830 −0.679150 0.733999i \(-0.737651\pi\)
−0.679150 + 0.733999i \(0.737651\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.62107 0.118287 0.0591437 0.998249i \(-0.481163\pi\)
0.0591437 + 0.998249i \(0.481163\pi\)
\(492\) 0 0
\(493\) −6.72420 −0.302843
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.16516 0.231689
\(498\) 0 0
\(499\) 5.69586 0.254982 0.127491 0.991840i \(-0.459308\pi\)
0.127491 + 0.991840i \(0.459308\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −14.9136 −0.664966 −0.332483 0.943109i \(-0.607886\pi\)
−0.332483 + 0.943109i \(0.607886\pi\)
\(504\) 0 0
\(505\) 6.54654 0.291317
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 28.6905 1.27168 0.635842 0.771819i \(-0.280653\pi\)
0.635842 + 0.771819i \(0.280653\pi\)
\(510\) 0 0
\(511\) 24.3848 1.07872
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.1111 −0.709938
\(516\) 0 0
\(517\) 9.97794 0.438829
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.5920 0.683098 0.341549 0.939864i \(-0.389048\pi\)
0.341549 + 0.939864i \(0.389048\pi\)
\(522\) 0 0
\(523\) 8.48834 0.371169 0.185584 0.982628i \(-0.440582\pi\)
0.185584 + 0.982628i \(0.440582\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.98479 0.434944
\(528\) 0 0
\(529\) −22.9870 −0.999435
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −23.8428 −1.03275
\(534\) 0 0
\(535\) −16.9837 −0.734270
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.73484 0.0747249
\(540\) 0 0
\(541\) 23.9357 1.02908 0.514538 0.857468i \(-0.327963\pi\)
0.514538 + 0.857468i \(0.327963\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13.8805 0.594574
\(546\) 0 0
\(547\) 24.2718 1.03779 0.518893 0.854839i \(-0.326344\pi\)
0.518893 + 0.854839i \(0.326344\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.79733 −0.161772
\(552\) 0 0
\(553\) −14.6965 −0.624958
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −24.0359 −1.01843 −0.509216 0.860639i \(-0.670065\pi\)
−0.509216 + 0.860639i \(0.670065\pi\)
\(558\) 0 0
\(559\) −16.5002 −0.697884
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −12.7209 −0.536123 −0.268061 0.963402i \(-0.586383\pi\)
−0.268061 + 0.963402i \(0.586383\pi\)
\(564\) 0 0
\(565\) −11.6770 −0.491253
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −9.11139 −0.381970 −0.190985 0.981593i \(-0.561168\pi\)
−0.190985 + 0.981593i \(0.561168\pi\)
\(570\) 0 0
\(571\) 10.7613 0.450347 0.225173 0.974319i \(-0.427705\pi\)
0.225173 + 0.974319i \(0.427705\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.114019 −0.00475490
\(576\) 0 0
\(577\) −1.34669 −0.0560636 −0.0280318 0.999607i \(-0.508924\pi\)
−0.0280318 + 0.999607i \(0.508924\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −19.2660 −0.799287
\(582\) 0 0
\(583\) −5.91513 −0.244980
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −11.3469 −0.468335 −0.234168 0.972196i \(-0.575236\pi\)
−0.234168 + 0.972196i \(0.575236\pi\)
\(588\) 0 0
\(589\) 5.63866 0.232337
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −22.5818 −0.927323 −0.463661 0.886012i \(-0.653465\pi\)
−0.463661 + 0.886012i \(0.653465\pi\)
\(594\) 0 0
\(595\) −15.0196 −0.615742
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.9871 −0.489782 −0.244891 0.969551i \(-0.578752\pi\)
−0.244891 + 0.969551i \(0.578752\pi\)
\(600\) 0 0
\(601\) −21.3867 −0.872383 −0.436192 0.899854i \(-0.643673\pi\)
−0.436192 + 0.899854i \(0.643673\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 10.2556 0.416950
\(606\) 0 0
\(607\) 3.91836 0.159042 0.0795208 0.996833i \(-0.474661\pi\)
0.0795208 + 0.996833i \(0.474661\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −71.6549 −2.89885
\(612\) 0 0
\(613\) 31.5282 1.27341 0.636706 0.771106i \(-0.280296\pi\)
0.636706 + 0.771106i \(0.280296\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −21.5381 −0.867092 −0.433546 0.901131i \(-0.642738\pi\)
−0.433546 + 0.901131i \(0.642738\pi\)
\(618\) 0 0
\(619\) −1.44852 −0.0582209 −0.0291105 0.999576i \(-0.509267\pi\)
−0.0291105 + 0.999576i \(0.509267\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −19.9636 −0.799825
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 39.3244 1.56797
\(630\) 0 0
\(631\) −39.9229 −1.58931 −0.794654 0.607063i \(-0.792348\pi\)
−0.794654 + 0.607063i \(0.792348\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 9.09773 0.361032
\(636\) 0 0
\(637\) −12.4585 −0.493623
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 27.5532 1.08829 0.544143 0.838992i \(-0.316855\pi\)
0.544143 + 0.838992i \(0.316855\pi\)
\(642\) 0 0
\(643\) −28.8043 −1.13593 −0.567965 0.823053i \(-0.692269\pi\)
−0.567965 + 0.823053i \(0.692269\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 21.6477 0.851058 0.425529 0.904945i \(-0.360088\pi\)
0.425529 + 0.904945i \(0.360088\pi\)
\(648\) 0 0
\(649\) −0.703087 −0.0275986
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −19.9102 −0.779147 −0.389574 0.920995i \(-0.627378\pi\)
−0.389574 + 0.920995i \(0.627378\pi\)
\(654\) 0 0
\(655\) −1.28904 −0.0503671
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 28.6588 1.11639 0.558195 0.829710i \(-0.311494\pi\)
0.558195 + 0.829710i \(0.311494\pi\)
\(660\) 0 0
\(661\) 11.3667 0.442113 0.221057 0.975261i \(-0.429049\pi\)
0.221057 + 0.975261i \(0.429049\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.48193 −0.328915
\(666\) 0 0
\(667\) 0.114019 0.00441481
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0.269550 0.0104059
\(672\) 0 0
\(673\) 4.10543 0.158253 0.0791264 0.996865i \(-0.474787\pi\)
0.0791264 + 0.996865i \(0.474787\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −6.35675 −0.244310 −0.122155 0.992511i \(-0.538980\pi\)
−0.122155 + 0.992511i \(0.538980\pi\)
\(678\) 0 0
\(679\) 15.3654 0.589669
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −25.1306 −0.961595 −0.480798 0.876832i \(-0.659653\pi\)
−0.480798 + 0.876832i \(0.659653\pi\)
\(684\) 0 0
\(685\) −16.3598 −0.625077
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 42.4786 1.61830
\(690\) 0 0
\(691\) −39.9628 −1.52026 −0.760129 0.649772i \(-0.774864\pi\)
−0.760129 + 0.649772i \(0.774864\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.73162 0.141548
\(696\) 0 0
\(697\) −25.8760 −0.980122
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.3476 0.466362 0.233181 0.972433i \(-0.425086\pi\)
0.233181 + 0.972433i \(0.425086\pi\)
\(702\) 0 0
\(703\) 22.2075 0.837570
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −14.6227 −0.549944
\(708\) 0 0
\(709\) 4.89993 0.184021 0.0920103 0.995758i \(-0.470671\pi\)
0.0920103 + 0.995758i \(0.470671\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.169306 −0.00634058
\(714\) 0 0
\(715\) 5.34562 0.199915
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −26.5380 −0.989699 −0.494850 0.868979i \(-0.664777\pi\)
−0.494850 + 0.868979i \(0.664777\pi\)
\(720\) 0 0
\(721\) 35.9866 1.34021
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.00000 −0.0371391
\(726\) 0 0
\(727\) −33.7317 −1.25104 −0.625520 0.780208i \(-0.715113\pi\)
−0.625520 + 0.780208i \(0.715113\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −17.9072 −0.662323
\(732\) 0 0
\(733\) 52.0372 1.92204 0.961019 0.276482i \(-0.0891686\pi\)
0.961019 + 0.276482i \(0.0891686\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.31301 0.195707
\(738\) 0 0
\(739\) −23.4998 −0.864456 −0.432228 0.901764i \(-0.642272\pi\)
−0.432228 + 0.901764i \(0.642272\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −42.6872 −1.56604 −0.783021 0.621995i \(-0.786322\pi\)
−0.783021 + 0.621995i \(0.786322\pi\)
\(744\) 0 0
\(745\) 1.28223 0.0469773
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 37.9358 1.38614
\(750\) 0 0
\(751\) −39.1265 −1.42775 −0.713873 0.700276i \(-0.753060\pi\)
−0.713873 + 0.700276i \(0.753060\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −20.7941 −0.756775
\(756\) 0 0
\(757\) 36.9259 1.34209 0.671047 0.741415i \(-0.265845\pi\)
0.671047 + 0.741415i \(0.265845\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 50.8039 1.84164 0.920820 0.389988i \(-0.127521\pi\)
0.920820 + 0.389988i \(0.127521\pi\)
\(762\) 0 0
\(763\) −31.0042 −1.12243
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.04910 0.182313
\(768\) 0 0
\(769\) −5.85269 −0.211053 −0.105527 0.994416i \(-0.533653\pi\)
−0.105527 + 0.994416i \(0.533653\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 11.3796 0.409297 0.204649 0.978835i \(-0.434395\pi\)
0.204649 + 0.978835i \(0.434395\pi\)
\(774\) 0 0
\(775\) 1.48490 0.0533393
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.6128 −0.523558
\(780\) 0 0
\(781\) −1.99510 −0.0713901
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −23.7487 −0.847628
\(786\) 0 0
\(787\) 24.5905 0.876557 0.438279 0.898839i \(-0.355588\pi\)
0.438279 + 0.898839i \(0.355588\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 26.0823 0.927380
\(792\) 0 0
\(793\) −1.93573 −0.0687399
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3.93342 −0.139329 −0.0696644 0.997570i \(-0.522193\pi\)
−0.0696644 + 0.997570i \(0.522193\pi\)
\(798\) 0 0
\(799\) −77.7652 −2.75114
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.41888 −0.332385
\(804\) 0 0
\(805\) 0.254678 0.00897623
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −48.9615 −1.72139 −0.860697 0.509117i \(-0.829972\pi\)
−0.860697 + 0.509117i \(0.829972\pi\)
\(810\) 0 0
\(811\) −19.6362 −0.689522 −0.344761 0.938691i \(-0.612040\pi\)
−0.344761 + 0.938691i \(0.612040\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 13.5073 0.473140
\(816\) 0 0
\(817\) −10.1127 −0.353797
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 16.6248 0.580211 0.290106 0.956995i \(-0.406310\pi\)
0.290106 + 0.956995i \(0.406310\pi\)
\(822\) 0 0
\(823\) −28.6690 −0.999337 −0.499669 0.866217i \(-0.666545\pi\)
−0.499669 + 0.866217i \(0.666545\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 46.7188 1.62457 0.812286 0.583260i \(-0.198223\pi\)
0.812286 + 0.583260i \(0.198223\pi\)
\(828\) 0 0
\(829\) 9.89829 0.343782 0.171891 0.985116i \(-0.445012\pi\)
0.171891 + 0.985116i \(0.445012\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −13.5209 −0.468470
\(834\) 0 0
\(835\) −18.6135 −0.644148
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 29.0236 1.00201 0.501004 0.865445i \(-0.332964\pi\)
0.501004 + 0.865445i \(0.332964\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −25.3887 −0.873397
\(846\) 0 0
\(847\) −22.9075 −0.787113
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.666801 −0.0228577
\(852\) 0 0
\(853\) −36.6959 −1.25644 −0.628222 0.778034i \(-0.716217\pi\)
−0.628222 + 0.778034i \(0.716217\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0.902417 0.0308260 0.0154130 0.999881i \(-0.495094\pi\)
0.0154130 + 0.999881i \(0.495094\pi\)
\(858\) 0 0
\(859\) −43.6590 −1.48963 −0.744813 0.667273i \(-0.767461\pi\)
−0.744813 + 0.667273i \(0.767461\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.8040 0.640094 0.320047 0.947402i \(-0.396301\pi\)
0.320047 + 0.947402i \(0.396301\pi\)
\(864\) 0 0
\(865\) 1.88336 0.0640362
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.67666 0.192568
\(870\) 0 0
\(871\) −38.1545 −1.29282
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.23366 −0.0755114
\(876\) 0 0
\(877\) −8.49872 −0.286981 −0.143491 0.989652i \(-0.545833\pi\)
−0.143491 + 0.989652i \(0.545833\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 10.0746 0.339421 0.169710 0.985494i \(-0.445717\pi\)
0.169710 + 0.985494i \(0.445717\pi\)
\(882\) 0 0
\(883\) −17.4369 −0.586799 −0.293399 0.955990i \(-0.594787\pi\)
−0.293399 + 0.955990i \(0.594787\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 6.96047 0.233710 0.116855 0.993149i \(-0.462719\pi\)
0.116855 + 0.993149i \(0.462719\pi\)
\(888\) 0 0
\(889\) −20.3212 −0.681552
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −43.9160 −1.46959
\(894\) 0 0
\(895\) −4.11447 −0.137532
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −1.48490 −0.0495243
\(900\) 0 0
\(901\) 46.1009 1.53584
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −15.1334 −0.503052
\(906\) 0 0
\(907\) −23.0944 −0.766836 −0.383418 0.923575i \(-0.625253\pi\)
−0.383418 + 0.923575i \(0.625253\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 8.39120 0.278013 0.139006 0.990291i \(-0.455609\pi\)
0.139006 + 0.990291i \(0.455609\pi\)
\(912\) 0 0
\(913\) 7.44167 0.246283
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.87928 0.0950822
\(918\) 0 0
\(919\) −23.0180 −0.759293 −0.379647 0.925132i \(-0.623954\pi\)
−0.379647 + 0.925132i \(0.623954\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 14.3275 0.471594
\(924\) 0 0
\(925\) 5.84818 0.192287
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 53.4134 1.75244 0.876219 0.481913i \(-0.160058\pi\)
0.876219 + 0.481913i \(0.160058\pi\)
\(930\) 0 0
\(931\) −7.63557 −0.250246
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 5.80146 0.189728
\(936\) 0 0
\(937\) −9.18564 −0.300082 −0.150041 0.988680i \(-0.547941\pi\)
−0.150041 + 0.988680i \(0.547941\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.03797 −0.131634 −0.0658170 0.997832i \(-0.520965\pi\)
−0.0658170 + 0.997832i \(0.520965\pi\)
\(942\) 0 0
\(943\) 0.438764 0.0142881
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 50.6471 1.64581 0.822905 0.568179i \(-0.192352\pi\)
0.822905 + 0.568179i \(0.192352\pi\)
\(948\) 0 0
\(949\) 67.6401 2.19569
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −3.24076 −0.104978 −0.0524892 0.998621i \(-0.516716\pi\)
−0.0524892 + 0.998621i \(0.516716\pi\)
\(954\) 0 0
\(955\) 18.2790 0.591495
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 36.5422 1.18001
\(960\) 0 0
\(961\) −28.7951 −0.928873
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.34771 0.268722
\(966\) 0 0
\(967\) −51.3561 −1.65150 −0.825750 0.564037i \(-0.809248\pi\)
−0.825750 + 0.564037i \(0.809248\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −33.7059 −1.08167 −0.540836 0.841128i \(-0.681892\pi\)
−0.540836 + 0.841128i \(0.681892\pi\)
\(972\) 0 0
\(973\) −8.33516 −0.267213
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 51.0353 1.63277 0.816383 0.577511i \(-0.195976\pi\)
0.816383 + 0.577511i \(0.195976\pi\)
\(978\) 0 0
\(979\) 7.71114 0.246449
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −47.8553 −1.52635 −0.763174 0.646193i \(-0.776360\pi\)
−0.763174 + 0.646193i \(0.776360\pi\)
\(984\) 0 0
\(985\) 20.8912 0.665650
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.303643 0.00965527
\(990\) 0 0
\(991\) 21.6652 0.688216 0.344108 0.938930i \(-0.388181\pi\)
0.344108 + 0.938930i \(0.388181\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.29348 −0.0410062
\(996\) 0 0
\(997\) 11.7861 0.373270 0.186635 0.982429i \(-0.440242\pi\)
0.186635 + 0.982429i \(0.440242\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5220.2.a.y.1.5 7
3.2 odd 2 5220.2.a.z.1.5 yes 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5220.2.a.y.1.5 7 1.1 even 1 trivial
5220.2.a.z.1.5 yes 7 3.2 odd 2