Properties

Label 5220.2.a.z.1.7
Level $5220$
Weight $2$
Character 5220.1
Self dual yes
Analytic conductor $41.682$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5220,2,Mod(1,5220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5220.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5220 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.6819098551\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 22x^{5} + 38x^{4} + 81x^{3} - 75x^{2} - 42x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-1.72639\) of defining polynomial
Character \(\chi\) \(=\) 5220.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{5} +5.05487 q^{7} -1.88250 q^{11} +0.442075 q^{13} +2.34074 q^{17} -3.14544 q^{19} -7.67601 q^{23} +1.00000 q^{25} +1.00000 q^{29} -0.738641 q^{31} +5.05487 q^{35} +5.06321 q^{37} +3.06321 q^{41} +12.9306 q^{43} -5.53035 q^{47} +18.5518 q^{49} +8.58586 q^{53} -1.88250 q^{55} +13.9938 q^{59} +4.40680 q^{61} +0.442075 q^{65} +8.17072 q^{67} +2.40680 q^{71} -13.4784 q^{73} -9.51578 q^{77} +12.4761 q^{79} -15.5434 q^{83} +2.34074 q^{85} +14.3168 q^{89} +2.23464 q^{91} -3.14544 q^{95} -7.30663 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{5} + 3 q^{11} + 2 q^{13} + 8 q^{17} + 6 q^{19} + q^{23} + 7 q^{25} + 7 q^{29} - 2 q^{31} + 15 q^{37} + q^{41} + 9 q^{43} + 4 q^{47} + 29 q^{49} + 17 q^{53} + 3 q^{55} - 4 q^{59} + 6 q^{61}+ \cdots + 15 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) 5.05487 1.91056 0.955282 0.295698i \(-0.0955521\pi\)
0.955282 + 0.295698i \(0.0955521\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.88250 −0.567594 −0.283797 0.958884i \(-0.591594\pi\)
−0.283797 + 0.958884i \(0.591594\pi\)
\(12\) 0 0
\(13\) 0.442075 0.122610 0.0613048 0.998119i \(-0.480474\pi\)
0.0613048 + 0.998119i \(0.480474\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.34074 0.567712 0.283856 0.958867i \(-0.408386\pi\)
0.283856 + 0.958867i \(0.408386\pi\)
\(18\) 0 0
\(19\) −3.14544 −0.721614 −0.360807 0.932640i \(-0.617499\pi\)
−0.360807 + 0.932640i \(0.617499\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.67601 −1.60056 −0.800279 0.599627i \(-0.795316\pi\)
−0.800279 + 0.599627i \(0.795316\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −0.738641 −0.132664 −0.0663319 0.997798i \(-0.521130\pi\)
−0.0663319 + 0.997798i \(0.521130\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 5.05487 0.854430
\(36\) 0 0
\(37\) 5.06321 0.832387 0.416193 0.909276i \(-0.363364\pi\)
0.416193 + 0.909276i \(0.363364\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.06321 0.478393 0.239197 0.970971i \(-0.423116\pi\)
0.239197 + 0.970971i \(0.423116\pi\)
\(42\) 0 0
\(43\) 12.9306 1.97190 0.985951 0.167036i \(-0.0534196\pi\)
0.985951 + 0.167036i \(0.0534196\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −5.53035 −0.806685 −0.403343 0.915049i \(-0.632152\pi\)
−0.403343 + 0.915049i \(0.632152\pi\)
\(48\) 0 0
\(49\) 18.5518 2.65025
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 8.58586 1.17936 0.589680 0.807637i \(-0.299254\pi\)
0.589680 + 0.807637i \(0.299254\pi\)
\(54\) 0 0
\(55\) −1.88250 −0.253836
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 13.9938 1.82184 0.910921 0.412581i \(-0.135373\pi\)
0.910921 + 0.412581i \(0.135373\pi\)
\(60\) 0 0
\(61\) 4.40680 0.564233 0.282117 0.959380i \(-0.408963\pi\)
0.282117 + 0.959380i \(0.408963\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.442075 0.0548327
\(66\) 0 0
\(67\) 8.17072 0.998213 0.499106 0.866541i \(-0.333662\pi\)
0.499106 + 0.866541i \(0.333662\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.40680 0.285635 0.142817 0.989749i \(-0.454384\pi\)
0.142817 + 0.989749i \(0.454384\pi\)
\(72\) 0 0
\(73\) −13.4784 −1.57753 −0.788765 0.614694i \(-0.789279\pi\)
−0.788765 + 0.614694i \(0.789279\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −9.51578 −1.08442
\(78\) 0 0
\(79\) 12.4761 1.40367 0.701833 0.712341i \(-0.252365\pi\)
0.701833 + 0.712341i \(0.252365\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −15.5434 −1.70611 −0.853056 0.521819i \(-0.825254\pi\)
−0.853056 + 0.521819i \(0.825254\pi\)
\(84\) 0 0
\(85\) 2.34074 0.253889
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 14.3168 1.51758 0.758790 0.651336i \(-0.225791\pi\)
0.758790 + 0.651336i \(0.225791\pi\)
\(90\) 0 0
\(91\) 2.23464 0.234253
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.14544 −0.322716
\(96\) 0 0
\(97\) −7.30663 −0.741876 −0.370938 0.928658i \(-0.620964\pi\)
−0.370938 + 0.928658i \(0.620964\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.0817 −1.00317 −0.501586 0.865108i \(-0.667250\pi\)
−0.501586 + 0.865108i \(0.667250\pi\)
\(102\) 0 0
\(103\) −2.88228 −0.284000 −0.142000 0.989867i \(-0.545353\pi\)
−0.142000 + 0.989867i \(0.545353\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −17.5184 −1.69356 −0.846782 0.531941i \(-0.821463\pi\)
−0.846782 + 0.531941i \(0.821463\pi\)
\(108\) 0 0
\(109\) −1.64261 −0.157333 −0.0786666 0.996901i \(-0.525066\pi\)
−0.0786666 + 0.996901i \(0.525066\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 14.9026 1.40192 0.700960 0.713200i \(-0.252755\pi\)
0.700960 + 0.713200i \(0.252755\pi\)
\(114\) 0 0
\(115\) −7.67601 −0.715792
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 11.8321 1.08465
\(120\) 0 0
\(121\) −7.45621 −0.677837
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −1.84234 −0.163482 −0.0817408 0.996654i \(-0.526048\pi\)
−0.0817408 + 0.996654i \(0.526048\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.81928 −0.421063 −0.210531 0.977587i \(-0.567519\pi\)
−0.210531 + 0.977587i \(0.567519\pi\)
\(132\) 0 0
\(133\) −15.8998 −1.37869
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 22.7061 1.93991 0.969957 0.243278i \(-0.0782226\pi\)
0.969957 + 0.243278i \(0.0782226\pi\)
\(138\) 0 0
\(139\) −1.91209 −0.162181 −0.0810907 0.996707i \(-0.525840\pi\)
−0.0810907 + 0.996707i \(0.525840\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.832205 −0.0695924
\(144\) 0 0
\(145\) 1.00000 0.0830455
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.88409 −0.645889 −0.322945 0.946418i \(-0.604673\pi\)
−0.322945 + 0.946418i \(0.604673\pi\)
\(150\) 0 0
\(151\) 11.9688 0.974004 0.487002 0.873401i \(-0.338090\pi\)
0.487002 + 0.873401i \(0.338090\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.738641 −0.0593291
\(156\) 0 0
\(157\) 17.8877 1.42760 0.713798 0.700351i \(-0.246973\pi\)
0.713798 + 0.700351i \(0.246973\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −38.8013 −3.05797
\(162\) 0 0
\(163\) 22.4424 1.75782 0.878911 0.476985i \(-0.158270\pi\)
0.878911 + 0.476985i \(0.158270\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.4693 0.810140 0.405070 0.914286i \(-0.367247\pi\)
0.405070 + 0.914286i \(0.367247\pi\)
\(168\) 0 0
\(169\) −12.8046 −0.984967
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −14.6336 −1.11257 −0.556285 0.830992i \(-0.687774\pi\)
−0.556285 + 0.830992i \(0.687774\pi\)
\(174\) 0 0
\(175\) 5.05487 0.382113
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 18.4058 1.37572 0.687858 0.725845i \(-0.258551\pi\)
0.687858 + 0.725845i \(0.258551\pi\)
\(180\) 0 0
\(181\) −0.723558 −0.0537816 −0.0268908 0.999638i \(-0.508561\pi\)
−0.0268908 + 0.999638i \(0.508561\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.06321 0.372255
\(186\) 0 0
\(187\) −4.40643 −0.322230
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 7.23013 0.523154 0.261577 0.965183i \(-0.415758\pi\)
0.261577 + 0.965183i \(0.415758\pi\)
\(192\) 0 0
\(193\) 13.7301 0.988314 0.494157 0.869373i \(-0.335477\pi\)
0.494157 + 0.869373i \(0.335477\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.9092 −0.848492 −0.424246 0.905547i \(-0.639461\pi\)
−0.424246 + 0.905547i \(0.639461\pi\)
\(198\) 0 0
\(199\) −10.0891 −0.715195 −0.357598 0.933876i \(-0.616404\pi\)
−0.357598 + 0.933876i \(0.616404\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 5.05487 0.354783
\(204\) 0 0
\(205\) 3.06321 0.213944
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.92128 0.409584
\(210\) 0 0
\(211\) 17.9987 1.23908 0.619541 0.784964i \(-0.287319\pi\)
0.619541 + 0.784964i \(0.287319\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 12.9306 0.881861
\(216\) 0 0
\(217\) −3.73374 −0.253463
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.03478 0.0696070
\(222\) 0 0
\(223\) −19.9222 −1.33409 −0.667045 0.745017i \(-0.732441\pi\)
−0.667045 + 0.745017i \(0.732441\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.4897 −0.895342 −0.447671 0.894198i \(-0.647746\pi\)
−0.447671 + 0.894198i \(0.647746\pi\)
\(228\) 0 0
\(229\) 3.84124 0.253836 0.126918 0.991913i \(-0.459491\pi\)
0.126918 + 0.991913i \(0.459491\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.99792 −0.130888 −0.0654441 0.997856i \(-0.520846\pi\)
−0.0654441 + 0.997856i \(0.520846\pi\)
\(234\) 0 0
\(235\) −5.53035 −0.360761
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −24.9938 −1.61671 −0.808356 0.588694i \(-0.799642\pi\)
−0.808356 + 0.588694i \(0.799642\pi\)
\(240\) 0 0
\(241\) 4.48382 0.288828 0.144414 0.989517i \(-0.453870\pi\)
0.144414 + 0.989517i \(0.453870\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 18.5518 1.18523
\(246\) 0 0
\(247\) −1.39052 −0.0884769
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −7.97652 −0.503474 −0.251737 0.967796i \(-0.581002\pi\)
−0.251737 + 0.967796i \(0.581002\pi\)
\(252\) 0 0
\(253\) 14.4501 0.908467
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.61058 0.537113 0.268557 0.963264i \(-0.413453\pi\)
0.268557 + 0.963264i \(0.413453\pi\)
\(258\) 0 0
\(259\) 25.5939 1.59033
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −5.17173 −0.318902 −0.159451 0.987206i \(-0.550972\pi\)
−0.159451 + 0.987206i \(0.550972\pi\)
\(264\) 0 0
\(265\) 8.58586 0.527425
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.4919 1.31038 0.655191 0.755464i \(-0.272588\pi\)
0.655191 + 0.755464i \(0.272588\pi\)
\(270\) 0 0
\(271\) −6.06926 −0.368681 −0.184341 0.982862i \(-0.559015\pi\)
−0.184341 + 0.982862i \(0.559015\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.88250 −0.113519
\(276\) 0 0
\(277\) 3.81073 0.228965 0.114482 0.993425i \(-0.463479\pi\)
0.114482 + 0.993425i \(0.463479\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −15.3030 −0.912903 −0.456452 0.889748i \(-0.650880\pi\)
−0.456452 + 0.889748i \(0.650880\pi\)
\(282\) 0 0
\(283\) −13.6995 −0.814350 −0.407175 0.913350i \(-0.633486\pi\)
−0.407175 + 0.913350i \(0.633486\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 15.4842 0.914001
\(288\) 0 0
\(289\) −11.5209 −0.677703
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.0745 −0.588557 −0.294279 0.955720i \(-0.595079\pi\)
−0.294279 + 0.955720i \(0.595079\pi\)
\(294\) 0 0
\(295\) 13.9938 0.814753
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.39338 −0.196244
\(300\) 0 0
\(301\) 65.3627 3.76744
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.40680 0.252333
\(306\) 0 0
\(307\) −10.9380 −0.624262 −0.312131 0.950039i \(-0.601043\pi\)
−0.312131 + 0.950039i \(0.601043\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −15.4481 −0.875983 −0.437991 0.898979i \(-0.644310\pi\)
−0.437991 + 0.898979i \(0.644310\pi\)
\(312\) 0 0
\(313\) 8.10941 0.458371 0.229185 0.973383i \(-0.426394\pi\)
0.229185 + 0.973383i \(0.426394\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −19.1210 −1.07394 −0.536972 0.843600i \(-0.680432\pi\)
−0.536972 + 0.843600i \(0.680432\pi\)
\(318\) 0 0
\(319\) −1.88250 −0.105399
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7.36266 −0.409669
\(324\) 0 0
\(325\) 0.442075 0.0245219
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −27.9553 −1.54122
\(330\) 0 0
\(331\) 16.3090 0.896424 0.448212 0.893927i \(-0.352061\pi\)
0.448212 + 0.893927i \(0.352061\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.17072 0.446414
\(336\) 0 0
\(337\) −13.3025 −0.724636 −0.362318 0.932055i \(-0.618015\pi\)
−0.362318 + 0.932055i \(0.618015\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.39049 0.0752992
\(342\) 0 0
\(343\) 58.3927 3.15291
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −20.9722 −1.12584 −0.562922 0.826510i \(-0.690323\pi\)
−0.562922 + 0.826510i \(0.690323\pi\)
\(348\) 0 0
\(349\) 25.8758 1.38510 0.692551 0.721369i \(-0.256487\pi\)
0.692551 + 0.721369i \(0.256487\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.8779 −0.845096 −0.422548 0.906340i \(-0.638864\pi\)
−0.422548 + 0.906340i \(0.638864\pi\)
\(354\) 0 0
\(355\) 2.40680 0.127740
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −31.4114 −1.65783 −0.828916 0.559374i \(-0.811042\pi\)
−0.828916 + 0.559374i \(0.811042\pi\)
\(360\) 0 0
\(361\) −9.10618 −0.479273
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −13.4784 −0.705493
\(366\) 0 0
\(367\) 12.8686 0.671734 0.335867 0.941909i \(-0.390971\pi\)
0.335867 + 0.941909i \(0.390971\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 43.4005 2.25324
\(372\) 0 0
\(373\) 38.6023 1.99875 0.999377 0.0353037i \(-0.0112399\pi\)
0.999377 + 0.0353037i \(0.0112399\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0.442075 0.0227680
\(378\) 0 0
\(379\) −20.4005 −1.04790 −0.523952 0.851748i \(-0.675543\pi\)
−0.523952 + 0.851748i \(0.675543\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 14.1502 0.723040 0.361520 0.932364i \(-0.382258\pi\)
0.361520 + 0.932364i \(0.382258\pi\)
\(384\) 0 0
\(385\) −9.51578 −0.484969
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 11.3800 0.576990 0.288495 0.957481i \(-0.406845\pi\)
0.288495 + 0.957481i \(0.406845\pi\)
\(390\) 0 0
\(391\) −17.9675 −0.908657
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.4761 0.627739
\(396\) 0 0
\(397\) 23.2256 1.16566 0.582830 0.812594i \(-0.301945\pi\)
0.582830 + 0.812594i \(0.301945\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −25.2196 −1.25940 −0.629702 0.776836i \(-0.716823\pi\)
−0.629702 + 0.776836i \(0.716823\pi\)
\(402\) 0 0
\(403\) −0.326535 −0.0162659
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −9.53147 −0.472457
\(408\) 0 0
\(409\) −18.0955 −0.894767 −0.447383 0.894342i \(-0.647644\pi\)
−0.447383 + 0.894342i \(0.647644\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 70.7371 3.48074
\(414\) 0 0
\(415\) −15.5434 −0.762997
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 22.6323 1.10566 0.552831 0.833293i \(-0.313548\pi\)
0.552831 + 0.833293i \(0.313548\pi\)
\(420\) 0 0
\(421\) −6.53323 −0.318410 −0.159205 0.987246i \(-0.550893\pi\)
−0.159205 + 0.987246i \(0.550893\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.34074 0.113542
\(426\) 0 0
\(427\) 22.2758 1.07800
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.2241 −0.685150 −0.342575 0.939491i \(-0.611299\pi\)
−0.342575 + 0.939491i \(0.611299\pi\)
\(432\) 0 0
\(433\) −16.7527 −0.805082 −0.402541 0.915402i \(-0.631873\pi\)
−0.402541 + 0.915402i \(0.631873\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 24.1445 1.15499
\(438\) 0 0
\(439\) 14.5209 0.693047 0.346523 0.938041i \(-0.387362\pi\)
0.346523 + 0.938041i \(0.387362\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 40.8334 1.94005 0.970026 0.243001i \(-0.0781320\pi\)
0.970026 + 0.243001i \(0.0781320\pi\)
\(444\) 0 0
\(445\) 14.3168 0.678682
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.0851 0.570329 0.285165 0.958479i \(-0.407952\pi\)
0.285165 + 0.958479i \(0.407952\pi\)
\(450\) 0 0
\(451\) −5.76648 −0.271533
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.23464 0.104761
\(456\) 0 0
\(457\) 14.2285 0.665580 0.332790 0.943001i \(-0.392010\pi\)
0.332790 + 0.943001i \(0.392010\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 25.4001 1.18300 0.591500 0.806305i \(-0.298536\pi\)
0.591500 + 0.806305i \(0.298536\pi\)
\(462\) 0 0
\(463\) −19.1813 −0.891431 −0.445715 0.895175i \(-0.647051\pi\)
−0.445715 + 0.895175i \(0.647051\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −20.0749 −0.928953 −0.464477 0.885585i \(-0.653758\pi\)
−0.464477 + 0.885585i \(0.653758\pi\)
\(468\) 0 0
\(469\) 41.3020 1.90715
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −24.3418 −1.11924
\(474\) 0 0
\(475\) −3.14544 −0.144323
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 23.1360 1.05711 0.528555 0.848899i \(-0.322734\pi\)
0.528555 + 0.848899i \(0.322734\pi\)
\(480\) 0 0
\(481\) 2.23832 0.102059
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.30663 −0.331777
\(486\) 0 0
\(487\) 15.0624 0.682545 0.341272 0.939964i \(-0.389142\pi\)
0.341272 + 0.939964i \(0.389142\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −7.17175 −0.323656 −0.161828 0.986819i \(-0.551739\pi\)
−0.161828 + 0.986819i \(0.551739\pi\)
\(492\) 0 0
\(493\) 2.34074 0.105422
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 12.1661 0.545724
\(498\) 0 0
\(499\) −3.00446 −0.134498 −0.0672490 0.997736i \(-0.521422\pi\)
−0.0672490 + 0.997736i \(0.521422\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 18.3262 0.817123 0.408562 0.912731i \(-0.366031\pi\)
0.408562 + 0.912731i \(0.366031\pi\)
\(504\) 0 0
\(505\) −10.0817 −0.448632
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 12.9294 0.573085 0.286543 0.958068i \(-0.407494\pi\)
0.286543 + 0.958068i \(0.407494\pi\)
\(510\) 0 0
\(511\) −68.1318 −3.01397
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.88228 −0.127009
\(516\) 0 0
\(517\) 10.4109 0.457869
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −27.1490 −1.18942 −0.594710 0.803940i \(-0.702733\pi\)
−0.594710 + 0.803940i \(0.702733\pi\)
\(522\) 0 0
\(523\) −27.7464 −1.21327 −0.606633 0.794982i \(-0.707480\pi\)
−0.606633 + 0.794982i \(0.707480\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.72897 −0.0753149
\(528\) 0 0
\(529\) 35.9211 1.56179
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.35417 0.0586556
\(534\) 0 0
\(535\) −17.5184 −0.757385
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −34.9236 −1.50427
\(540\) 0 0
\(541\) −12.5395 −0.539117 −0.269559 0.962984i \(-0.586878\pi\)
−0.269559 + 0.962984i \(0.586878\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.64261 −0.0703615
\(546\) 0 0
\(547\) −40.8712 −1.74752 −0.873762 0.486353i \(-0.838327\pi\)
−0.873762 + 0.486353i \(0.838327\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.14544 −0.134000
\(552\) 0 0
\(553\) 63.0649 2.68179
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 29.2900 1.24106 0.620529 0.784183i \(-0.286918\pi\)
0.620529 + 0.784183i \(0.286918\pi\)
\(558\) 0 0
\(559\) 5.71631 0.241774
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 46.9463 1.97855 0.989275 0.146063i \(-0.0466602\pi\)
0.989275 + 0.146063i \(0.0466602\pi\)
\(564\) 0 0
\(565\) 14.9026 0.626958
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.1401 0.425096 0.212548 0.977151i \(-0.431824\pi\)
0.212548 + 0.977151i \(0.431824\pi\)
\(570\) 0 0
\(571\) 6.25849 0.261910 0.130955 0.991388i \(-0.458196\pi\)
0.130955 + 0.991388i \(0.458196\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −7.67601 −0.320112
\(576\) 0 0
\(577\) 29.0988 1.21140 0.605699 0.795694i \(-0.292893\pi\)
0.605699 + 0.795694i \(0.292893\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −78.5701 −3.25964
\(582\) 0 0
\(583\) −16.1628 −0.669397
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −37.8834 −1.56361 −0.781807 0.623520i \(-0.785702\pi\)
−0.781807 + 0.623520i \(0.785702\pi\)
\(588\) 0 0
\(589\) 2.32335 0.0957322
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5.70392 0.234232 0.117116 0.993118i \(-0.462635\pi\)
0.117116 + 0.993118i \(0.462635\pi\)
\(594\) 0 0
\(595\) 11.8321 0.485070
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −21.4894 −0.878033 −0.439017 0.898479i \(-0.644673\pi\)
−0.439017 + 0.898479i \(0.644673\pi\)
\(600\) 0 0
\(601\) −30.0582 −1.22610 −0.613050 0.790044i \(-0.710058\pi\)
−0.613050 + 0.790044i \(0.710058\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −7.45621 −0.303138
\(606\) 0 0
\(607\) −34.0116 −1.38049 −0.690245 0.723576i \(-0.742497\pi\)
−0.690245 + 0.723576i \(0.742497\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −2.44483 −0.0989074
\(612\) 0 0
\(613\) 13.7404 0.554968 0.277484 0.960730i \(-0.410499\pi\)
0.277484 + 0.960730i \(0.410499\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 39.3466 1.58403 0.792017 0.610499i \(-0.209031\pi\)
0.792017 + 0.610499i \(0.209031\pi\)
\(618\) 0 0
\(619\) −25.8592 −1.03937 −0.519685 0.854358i \(-0.673951\pi\)
−0.519685 + 0.854358i \(0.673951\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 72.3697 2.89943
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 11.8517 0.472556
\(630\) 0 0
\(631\) 21.0500 0.837988 0.418994 0.907989i \(-0.362383\pi\)
0.418994 + 0.907989i \(0.362383\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −1.84234 −0.0731112
\(636\) 0 0
\(637\) 8.20127 0.324946
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5.54375 −0.218965 −0.109483 0.993989i \(-0.534919\pi\)
−0.109483 + 0.993989i \(0.534919\pi\)
\(642\) 0 0
\(643\) −32.4462 −1.27955 −0.639777 0.768560i \(-0.720973\pi\)
−0.639777 + 0.768560i \(0.720973\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −33.2558 −1.30742 −0.653711 0.756744i \(-0.726789\pi\)
−0.653711 + 0.756744i \(0.726789\pi\)
\(648\) 0 0
\(649\) −26.3433 −1.03407
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 26.3645 1.03172 0.515862 0.856672i \(-0.327472\pi\)
0.515862 + 0.856672i \(0.327472\pi\)
\(654\) 0 0
\(655\) −4.81928 −0.188305
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −41.8337 −1.62961 −0.814804 0.579736i \(-0.803156\pi\)
−0.814804 + 0.579736i \(0.803156\pi\)
\(660\) 0 0
\(661\) 28.5436 1.11022 0.555108 0.831778i \(-0.312677\pi\)
0.555108 + 0.831778i \(0.312677\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −15.8998 −0.616569
\(666\) 0 0
\(667\) −7.67601 −0.297216
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −8.29578 −0.320255
\(672\) 0 0
\(673\) −33.2892 −1.28320 −0.641602 0.767038i \(-0.721730\pi\)
−0.641602 + 0.767038i \(0.721730\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.846740 −0.0325429 −0.0162714 0.999868i \(-0.505180\pi\)
−0.0162714 + 0.999868i \(0.505180\pi\)
\(678\) 0 0
\(679\) −36.9341 −1.41740
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −3.60547 −0.137959 −0.0689797 0.997618i \(-0.521974\pi\)
−0.0689797 + 0.997618i \(0.521974\pi\)
\(684\) 0 0
\(685\) 22.7061 0.867556
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 3.79560 0.144601
\(690\) 0 0
\(691\) −30.5133 −1.16078 −0.580391 0.814338i \(-0.697100\pi\)
−0.580391 + 0.814338i \(0.697100\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.91209 −0.0725297
\(696\) 0 0
\(697\) 7.17018 0.271590
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.10358 0.306068 0.153034 0.988221i \(-0.451096\pi\)
0.153034 + 0.988221i \(0.451096\pi\)
\(702\) 0 0
\(703\) −15.9260 −0.600662
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −50.9620 −1.91662
\(708\) 0 0
\(709\) −32.5630 −1.22293 −0.611465 0.791271i \(-0.709420\pi\)
−0.611465 + 0.791271i \(0.709420\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 5.66982 0.212336
\(714\) 0 0
\(715\) −0.832205 −0.0311227
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −26.0732 −0.972365 −0.486182 0.873857i \(-0.661611\pi\)
−0.486182 + 0.873857i \(0.661611\pi\)
\(720\) 0 0
\(721\) −14.5696 −0.542599
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.00000 0.0371391
\(726\) 0 0
\(727\) −47.3945 −1.75777 −0.878883 0.477037i \(-0.841711\pi\)
−0.878883 + 0.477037i \(0.841711\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 30.2672 1.11947
\(732\) 0 0
\(733\) −20.0282 −0.739758 −0.369879 0.929080i \(-0.620601\pi\)
−0.369879 + 0.929080i \(0.620601\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −15.3813 −0.566579
\(738\) 0 0
\(739\) −34.1405 −1.25588 −0.627939 0.778262i \(-0.716101\pi\)
−0.627939 + 0.778262i \(0.716101\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.5853 −0.425022 −0.212511 0.977159i \(-0.568164\pi\)
−0.212511 + 0.977159i \(0.568164\pi\)
\(744\) 0 0
\(745\) −7.88409 −0.288851
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −88.5531 −3.23566
\(750\) 0 0
\(751\) −37.4832 −1.36778 −0.683891 0.729585i \(-0.739713\pi\)
−0.683891 + 0.729585i \(0.739713\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 11.9688 0.435588
\(756\) 0 0
\(757\) 4.61469 0.167724 0.0838618 0.996477i \(-0.473275\pi\)
0.0838618 + 0.996477i \(0.473275\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.06064 0.147198 0.0735991 0.997288i \(-0.476551\pi\)
0.0735991 + 0.997288i \(0.476551\pi\)
\(762\) 0 0
\(763\) −8.30317 −0.300595
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 6.18633 0.223375
\(768\) 0 0
\(769\) 33.4576 1.20651 0.603256 0.797547i \(-0.293870\pi\)
0.603256 + 0.797547i \(0.293870\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 33.3745 1.20040 0.600199 0.799851i \(-0.295088\pi\)
0.600199 + 0.799851i \(0.295088\pi\)
\(774\) 0 0
\(775\) −0.738641 −0.0265328
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.63516 −0.345215
\(780\) 0 0
\(781\) −4.53079 −0.162125
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.8877 0.638441
\(786\) 0 0
\(787\) 18.5816 0.662363 0.331182 0.943567i \(-0.392553\pi\)
0.331182 + 0.943567i \(0.392553\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 75.3309 2.67846
\(792\) 0 0
\(793\) 1.94814 0.0691804
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 32.0136 1.13398 0.566991 0.823724i \(-0.308108\pi\)
0.566991 + 0.823724i \(0.308108\pi\)
\(798\) 0 0
\(799\) −12.9451 −0.457965
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 25.3731 0.895396
\(804\) 0 0
\(805\) −38.8013 −1.36757
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5.50155 −0.193424 −0.0967121 0.995312i \(-0.530833\pi\)
−0.0967121 + 0.995312i \(0.530833\pi\)
\(810\) 0 0
\(811\) 43.8798 1.54083 0.770414 0.637544i \(-0.220050\pi\)
0.770414 + 0.637544i \(0.220050\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 22.4424 0.786122
\(816\) 0 0
\(817\) −40.6726 −1.42295
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7.18639 −0.250807 −0.125403 0.992106i \(-0.540023\pi\)
−0.125403 + 0.992106i \(0.540023\pi\)
\(822\) 0 0
\(823\) −28.1741 −0.982088 −0.491044 0.871135i \(-0.663385\pi\)
−0.491044 + 0.871135i \(0.663385\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −24.7979 −0.862309 −0.431154 0.902278i \(-0.641894\pi\)
−0.431154 + 0.902278i \(0.641894\pi\)
\(828\) 0 0
\(829\) −2.41731 −0.0839567 −0.0419783 0.999119i \(-0.513366\pi\)
−0.0419783 + 0.999119i \(0.513366\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 43.4248 1.50458
\(834\) 0 0
\(835\) 10.4693 0.362306
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −50.1123 −1.73007 −0.865034 0.501713i \(-0.832704\pi\)
−0.865034 + 0.501713i \(0.832704\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −12.8046 −0.440491
\(846\) 0 0
\(847\) −37.6902 −1.29505
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −38.8653 −1.33228
\(852\) 0 0
\(853\) −16.7797 −0.574524 −0.287262 0.957852i \(-0.592745\pi\)
−0.287262 + 0.957852i \(0.592745\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −39.1226 −1.33640 −0.668200 0.743981i \(-0.732935\pi\)
−0.668200 + 0.743981i \(0.732935\pi\)
\(858\) 0 0
\(859\) 34.0463 1.16164 0.580822 0.814030i \(-0.302731\pi\)
0.580822 + 0.814030i \(0.302731\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 53.2187 1.81159 0.905793 0.423720i \(-0.139276\pi\)
0.905793 + 0.423720i \(0.139276\pi\)
\(864\) 0 0
\(865\) −14.6336 −0.497556
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −23.4861 −0.796712
\(870\) 0 0
\(871\) 3.61208 0.122391
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 5.05487 0.170886
\(876\) 0 0
\(877\) −1.79289 −0.0605415 −0.0302707 0.999542i \(-0.509637\pi\)
−0.0302707 + 0.999542i \(0.509637\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −51.9826 −1.75134 −0.875670 0.482911i \(-0.839580\pi\)
−0.875670 + 0.482911i \(0.839580\pi\)
\(882\) 0 0
\(883\) −4.82566 −0.162396 −0.0811981 0.996698i \(-0.525875\pi\)
−0.0811981 + 0.996698i \(0.525875\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30.9192 1.03816 0.519082 0.854724i \(-0.326274\pi\)
0.519082 + 0.854724i \(0.326274\pi\)
\(888\) 0 0
\(889\) −9.31282 −0.312342
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 17.3954 0.582116
\(894\) 0 0
\(895\) 18.4058 0.615239
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −0.738641 −0.0246351
\(900\) 0 0
\(901\) 20.0973 0.669537
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −0.723558 −0.0240519
\(906\) 0 0
\(907\) −2.20780 −0.0733089 −0.0366545 0.999328i \(-0.511670\pi\)
−0.0366545 + 0.999328i \(0.511670\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.99196 −0.331048 −0.165524 0.986206i \(-0.552932\pi\)
−0.165524 + 0.986206i \(0.552932\pi\)
\(912\) 0 0
\(913\) 29.2604 0.968378
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −24.3609 −0.804467
\(918\) 0 0
\(919\) 20.2582 0.668257 0.334128 0.942528i \(-0.391558\pi\)
0.334128 + 0.942528i \(0.391558\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 1.06399 0.0350216
\(924\) 0 0
\(925\) 5.06321 0.166477
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −25.8525 −0.848192 −0.424096 0.905617i \(-0.639408\pi\)
−0.424096 + 0.905617i \(0.639408\pi\)
\(930\) 0 0
\(931\) −58.3535 −1.91246
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −4.40643 −0.144106
\(936\) 0 0
\(937\) 25.0030 0.816813 0.408407 0.912800i \(-0.366085\pi\)
0.408407 + 0.912800i \(0.366085\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −6.17179 −0.201195 −0.100597 0.994927i \(-0.532075\pi\)
−0.100597 + 0.994927i \(0.532075\pi\)
\(942\) 0 0
\(943\) −23.5132 −0.765697
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 17.9491 0.583267 0.291633 0.956530i \(-0.405801\pi\)
0.291633 + 0.956530i \(0.405801\pi\)
\(948\) 0 0
\(949\) −5.95848 −0.193420
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 3.05951 0.0991073 0.0495537 0.998771i \(-0.484220\pi\)
0.0495537 + 0.998771i \(0.484220\pi\)
\(954\) 0 0
\(955\) 7.23013 0.233961
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 114.777 3.70633
\(960\) 0 0
\(961\) −30.4544 −0.982400
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13.7301 0.441987
\(966\) 0 0
\(967\) −37.2342 −1.19737 −0.598685 0.800985i \(-0.704310\pi\)
−0.598685 + 0.800985i \(0.704310\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 45.6522 1.46505 0.732524 0.680741i \(-0.238342\pi\)
0.732524 + 0.680741i \(0.238342\pi\)
\(972\) 0 0
\(973\) −9.66537 −0.309858
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 47.4021 1.51653 0.758264 0.651948i \(-0.226048\pi\)
0.758264 + 0.651948i \(0.226048\pi\)
\(978\) 0 0
\(979\) −26.9513 −0.861368
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 26.4737 0.844380 0.422190 0.906507i \(-0.361261\pi\)
0.422190 + 0.906507i \(0.361261\pi\)
\(984\) 0 0
\(985\) −11.9092 −0.379457
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −99.2556 −3.15614
\(990\) 0 0
\(991\) −42.4199 −1.34751 −0.673757 0.738953i \(-0.735320\pi\)
−0.673757 + 0.738953i \(0.735320\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −10.0891 −0.319845
\(996\) 0 0
\(997\) −26.8974 −0.851849 −0.425924 0.904759i \(-0.640051\pi\)
−0.425924 + 0.904759i \(0.640051\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5220.2.a.z.1.7 yes 7
3.2 odd 2 5220.2.a.y.1.7 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5220.2.a.y.1.7 7 3.2 odd 2
5220.2.a.z.1.7 yes 7 1.1 even 1 trivial