Properties

Label 525.2.a.f.1.2
Level $525$
Weight $2$
Character 525.1
Self dual yes
Analytic conductor $4.192$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(1,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.19214610612\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.30278\) of defining polynomial
Character \(\chi\) \(=\) 525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.30278 q^{2} -1.00000 q^{3} -0.302776 q^{4} -1.30278 q^{6} -1.00000 q^{7} -3.00000 q^{8} +1.00000 q^{9} -3.00000 q^{11} +0.302776 q^{12} -4.60555 q^{13} -1.30278 q^{14} -3.30278 q^{16} +2.60555 q^{17} +1.30278 q^{18} -0.605551 q^{19} +1.00000 q^{21} -3.90833 q^{22} -8.21110 q^{23} +3.00000 q^{24} -6.00000 q^{26} -1.00000 q^{27} +0.302776 q^{28} -0.394449 q^{29} +7.21110 q^{31} +1.69722 q^{32} +3.00000 q^{33} +3.39445 q^{34} -0.302776 q^{36} -10.2111 q^{37} -0.788897 q^{38} +4.60555 q^{39} +1.30278 q^{42} -2.39445 q^{43} +0.908327 q^{44} -10.6972 q^{46} -3.39445 q^{47} +3.30278 q^{48} +1.00000 q^{49} -2.60555 q^{51} +1.39445 q^{52} +11.2111 q^{53} -1.30278 q^{54} +3.00000 q^{56} +0.605551 q^{57} -0.513878 q^{58} -3.39445 q^{59} +13.2111 q^{61} +9.39445 q^{62} -1.00000 q^{63} +8.81665 q^{64} +3.90833 q^{66} -8.39445 q^{67} -0.788897 q^{68} +8.21110 q^{69} -3.00000 q^{71} -3.00000 q^{72} +6.60555 q^{73} -13.3028 q^{74} +0.183346 q^{76} +3.00000 q^{77} +6.00000 q^{78} +6.81665 q^{79} +1.00000 q^{81} -11.2111 q^{83} -0.302776 q^{84} -3.11943 q^{86} +0.394449 q^{87} +9.00000 q^{88} -13.8167 q^{89} +4.60555 q^{91} +2.48612 q^{92} -7.21110 q^{93} -4.42221 q^{94} -1.69722 q^{96} +15.2111 q^{97} +1.30278 q^{98} -3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - 2 q^{3} + 3 q^{4} + q^{6} - 2 q^{7} - 6 q^{8} + 2 q^{9} - 6 q^{11} - 3 q^{12} - 2 q^{13} + q^{14} - 3 q^{16} - 2 q^{17} - q^{18} + 6 q^{19} + 2 q^{21} + 3 q^{22} - 2 q^{23} + 6 q^{24}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30278 0.921201 0.460601 0.887607i \(-0.347634\pi\)
0.460601 + 0.887607i \(0.347634\pi\)
\(3\) −1.00000 −0.577350
\(4\) −0.302776 −0.151388
\(5\) 0 0
\(6\) −1.30278 −0.531856
\(7\) −1.00000 −0.377964
\(8\) −3.00000 −1.06066
\(9\) 1.00000 0.333333
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0.302776 0.0874038
\(13\) −4.60555 −1.27735 −0.638675 0.769477i \(-0.720517\pi\)
−0.638675 + 0.769477i \(0.720517\pi\)
\(14\) −1.30278 −0.348181
\(15\) 0 0
\(16\) −3.30278 −0.825694
\(17\) 2.60555 0.631939 0.315970 0.948769i \(-0.397670\pi\)
0.315970 + 0.948769i \(0.397670\pi\)
\(18\) 1.30278 0.307067
\(19\) −0.605551 −0.138923 −0.0694615 0.997585i \(-0.522128\pi\)
−0.0694615 + 0.997585i \(0.522128\pi\)
\(20\) 0 0
\(21\) 1.00000 0.218218
\(22\) −3.90833 −0.833258
\(23\) −8.21110 −1.71213 −0.856067 0.516865i \(-0.827099\pi\)
−0.856067 + 0.516865i \(0.827099\pi\)
\(24\) 3.00000 0.612372
\(25\) 0 0
\(26\) −6.00000 −1.17670
\(27\) −1.00000 −0.192450
\(28\) 0.302776 0.0572192
\(29\) −0.394449 −0.0732473 −0.0366236 0.999329i \(-0.511660\pi\)
−0.0366236 + 0.999329i \(0.511660\pi\)
\(30\) 0 0
\(31\) 7.21110 1.29515 0.647576 0.762001i \(-0.275783\pi\)
0.647576 + 0.762001i \(0.275783\pi\)
\(32\) 1.69722 0.300030
\(33\) 3.00000 0.522233
\(34\) 3.39445 0.582143
\(35\) 0 0
\(36\) −0.302776 −0.0504626
\(37\) −10.2111 −1.67869 −0.839347 0.543595i \(-0.817063\pi\)
−0.839347 + 0.543595i \(0.817063\pi\)
\(38\) −0.788897 −0.127976
\(39\) 4.60555 0.737478
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 1.30278 0.201023
\(43\) −2.39445 −0.365150 −0.182575 0.983192i \(-0.558443\pi\)
−0.182575 + 0.983192i \(0.558443\pi\)
\(44\) 0.908327 0.136935
\(45\) 0 0
\(46\) −10.6972 −1.57722
\(47\) −3.39445 −0.495131 −0.247566 0.968871i \(-0.579631\pi\)
−0.247566 + 0.968871i \(0.579631\pi\)
\(48\) 3.30278 0.476715
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −2.60555 −0.364850
\(52\) 1.39445 0.193375
\(53\) 11.2111 1.53996 0.769982 0.638066i \(-0.220265\pi\)
0.769982 + 0.638066i \(0.220265\pi\)
\(54\) −1.30278 −0.177285
\(55\) 0 0
\(56\) 3.00000 0.400892
\(57\) 0.605551 0.0802072
\(58\) −0.513878 −0.0674755
\(59\) −3.39445 −0.441920 −0.220960 0.975283i \(-0.570919\pi\)
−0.220960 + 0.975283i \(0.570919\pi\)
\(60\) 0 0
\(61\) 13.2111 1.69151 0.845754 0.533573i \(-0.179151\pi\)
0.845754 + 0.533573i \(0.179151\pi\)
\(62\) 9.39445 1.19310
\(63\) −1.00000 −0.125988
\(64\) 8.81665 1.10208
\(65\) 0 0
\(66\) 3.90833 0.481082
\(67\) −8.39445 −1.02555 −0.512773 0.858524i \(-0.671382\pi\)
−0.512773 + 0.858524i \(0.671382\pi\)
\(68\) −0.788897 −0.0956679
\(69\) 8.21110 0.988501
\(70\) 0 0
\(71\) −3.00000 −0.356034 −0.178017 0.984027i \(-0.556968\pi\)
−0.178017 + 0.984027i \(0.556968\pi\)
\(72\) −3.00000 −0.353553
\(73\) 6.60555 0.773121 0.386561 0.922264i \(-0.373663\pi\)
0.386561 + 0.922264i \(0.373663\pi\)
\(74\) −13.3028 −1.54642
\(75\) 0 0
\(76\) 0.183346 0.0210312
\(77\) 3.00000 0.341882
\(78\) 6.00000 0.679366
\(79\) 6.81665 0.766933 0.383467 0.923555i \(-0.374730\pi\)
0.383467 + 0.923555i \(0.374730\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −11.2111 −1.23058 −0.615289 0.788301i \(-0.710961\pi\)
−0.615289 + 0.788301i \(0.710961\pi\)
\(84\) −0.302776 −0.0330355
\(85\) 0 0
\(86\) −3.11943 −0.336377
\(87\) 0.394449 0.0422893
\(88\) 9.00000 0.959403
\(89\) −13.8167 −1.46456 −0.732281 0.681002i \(-0.761544\pi\)
−0.732281 + 0.681002i \(0.761544\pi\)
\(90\) 0 0
\(91\) 4.60555 0.482793
\(92\) 2.48612 0.259196
\(93\) −7.21110 −0.747757
\(94\) −4.42221 −0.456116
\(95\) 0 0
\(96\) −1.69722 −0.173222
\(97\) 15.2111 1.54445 0.772227 0.635347i \(-0.219143\pi\)
0.772227 + 0.635347i \(0.219143\pi\)
\(98\) 1.30278 0.131600
\(99\) −3.00000 −0.301511
\(100\) 0 0
\(101\) 9.39445 0.934783 0.467391 0.884051i \(-0.345194\pi\)
0.467391 + 0.884051i \(0.345194\pi\)
\(102\) −3.39445 −0.336101
\(103\) 17.8167 1.75553 0.877764 0.479094i \(-0.159035\pi\)
0.877764 + 0.479094i \(0.159035\pi\)
\(104\) 13.8167 1.35483
\(105\) 0 0
\(106\) 14.6056 1.41862
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0.302776 0.0291346
\(109\) −12.2111 −1.16961 −0.584806 0.811173i \(-0.698829\pi\)
−0.584806 + 0.811173i \(0.698829\pi\)
\(110\) 0 0
\(111\) 10.2111 0.969195
\(112\) 3.30278 0.312083
\(113\) −10.8167 −1.01755 −0.508773 0.860901i \(-0.669901\pi\)
−0.508773 + 0.860901i \(0.669901\pi\)
\(114\) 0.788897 0.0738870
\(115\) 0 0
\(116\) 0.119429 0.0110887
\(117\) −4.60555 −0.425783
\(118\) −4.42221 −0.407097
\(119\) −2.60555 −0.238850
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 17.2111 1.55822
\(123\) 0 0
\(124\) −2.18335 −0.196070
\(125\) 0 0
\(126\) −1.30278 −0.116060
\(127\) 8.81665 0.782352 0.391176 0.920316i \(-0.372068\pi\)
0.391176 + 0.920316i \(0.372068\pi\)
\(128\) 8.09167 0.715210
\(129\) 2.39445 0.210819
\(130\) 0 0
\(131\) −14.6056 −1.27609 −0.638046 0.769998i \(-0.720257\pi\)
−0.638046 + 0.769998i \(0.720257\pi\)
\(132\) −0.908327 −0.0790597
\(133\) 0.605551 0.0525080
\(134\) −10.9361 −0.944734
\(135\) 0 0
\(136\) −7.81665 −0.670273
\(137\) −11.2111 −0.957829 −0.478915 0.877862i \(-0.658970\pi\)
−0.478915 + 0.877862i \(0.658970\pi\)
\(138\) 10.6972 0.910608
\(139\) −17.0278 −1.44428 −0.722138 0.691749i \(-0.756840\pi\)
−0.722138 + 0.691749i \(0.756840\pi\)
\(140\) 0 0
\(141\) 3.39445 0.285864
\(142\) −3.90833 −0.327980
\(143\) 13.8167 1.15541
\(144\) −3.30278 −0.275231
\(145\) 0 0
\(146\) 8.60555 0.712200
\(147\) −1.00000 −0.0824786
\(148\) 3.09167 0.254134
\(149\) −23.6056 −1.93384 −0.966921 0.255076i \(-0.917900\pi\)
−0.966921 + 0.255076i \(0.917900\pi\)
\(150\) 0 0
\(151\) −14.8167 −1.20576 −0.602881 0.797831i \(-0.705981\pi\)
−0.602881 + 0.797831i \(0.705981\pi\)
\(152\) 1.81665 0.147350
\(153\) 2.60555 0.210646
\(154\) 3.90833 0.314942
\(155\) 0 0
\(156\) −1.39445 −0.111645
\(157\) 14.4222 1.15102 0.575509 0.817796i \(-0.304804\pi\)
0.575509 + 0.817796i \(0.304804\pi\)
\(158\) 8.88057 0.706500
\(159\) −11.2111 −0.889098
\(160\) 0 0
\(161\) 8.21110 0.647126
\(162\) 1.30278 0.102356
\(163\) −2.78890 −0.218443 −0.109222 0.994017i \(-0.534836\pi\)
−0.109222 + 0.994017i \(0.534836\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −14.6056 −1.13361
\(167\) −19.0278 −1.47241 −0.736206 0.676758i \(-0.763385\pi\)
−0.736206 + 0.676758i \(0.763385\pi\)
\(168\) −3.00000 −0.231455
\(169\) 8.21110 0.631623
\(170\) 0 0
\(171\) −0.605551 −0.0463077
\(172\) 0.724981 0.0552793
\(173\) −13.8167 −1.05046 −0.525230 0.850960i \(-0.676021\pi\)
−0.525230 + 0.850960i \(0.676021\pi\)
\(174\) 0.513878 0.0389570
\(175\) 0 0
\(176\) 9.90833 0.746868
\(177\) 3.39445 0.255142
\(178\) −18.0000 −1.34916
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 5.39445 0.400966 0.200483 0.979697i \(-0.435749\pi\)
0.200483 + 0.979697i \(0.435749\pi\)
\(182\) 6.00000 0.444750
\(183\) −13.2111 −0.976593
\(184\) 24.6333 1.81599
\(185\) 0 0
\(186\) −9.39445 −0.688834
\(187\) −7.81665 −0.571610
\(188\) 1.02776 0.0749568
\(189\) 1.00000 0.0727393
\(190\) 0 0
\(191\) −17.2111 −1.24535 −0.622676 0.782480i \(-0.713954\pi\)
−0.622676 + 0.782480i \(0.713954\pi\)
\(192\) −8.81665 −0.636287
\(193\) 6.21110 0.447085 0.223542 0.974694i \(-0.428238\pi\)
0.223542 + 0.974694i \(0.428238\pi\)
\(194\) 19.8167 1.42275
\(195\) 0 0
\(196\) −0.302776 −0.0216268
\(197\) 4.81665 0.343172 0.171586 0.985169i \(-0.445111\pi\)
0.171586 + 0.985169i \(0.445111\pi\)
\(198\) −3.90833 −0.277753
\(199\) 8.00000 0.567105 0.283552 0.958957i \(-0.408487\pi\)
0.283552 + 0.958957i \(0.408487\pi\)
\(200\) 0 0
\(201\) 8.39445 0.592099
\(202\) 12.2389 0.861123
\(203\) 0.394449 0.0276849
\(204\) 0.788897 0.0552339
\(205\) 0 0
\(206\) 23.2111 1.61719
\(207\) −8.21110 −0.570711
\(208\) 15.2111 1.05470
\(209\) 1.81665 0.125661
\(210\) 0 0
\(211\) −2.42221 −0.166751 −0.0833757 0.996518i \(-0.526570\pi\)
−0.0833757 + 0.996518i \(0.526570\pi\)
\(212\) −3.39445 −0.233132
\(213\) 3.00000 0.205557
\(214\) 0 0
\(215\) 0 0
\(216\) 3.00000 0.204124
\(217\) −7.21110 −0.489522
\(218\) −15.9083 −1.07745
\(219\) −6.60555 −0.446362
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 13.3028 0.892824
\(223\) −22.6056 −1.51378 −0.756890 0.653542i \(-0.773282\pi\)
−0.756890 + 0.653542i \(0.773282\pi\)
\(224\) −1.69722 −0.113401
\(225\) 0 0
\(226\) −14.0917 −0.937364
\(227\) −15.3944 −1.02177 −0.510883 0.859650i \(-0.670681\pi\)
−0.510883 + 0.859650i \(0.670681\pi\)
\(228\) −0.183346 −0.0121424
\(229\) 7.21110 0.476523 0.238262 0.971201i \(-0.423422\pi\)
0.238262 + 0.971201i \(0.423422\pi\)
\(230\) 0 0
\(231\) −3.00000 −0.197386
\(232\) 1.18335 0.0776905
\(233\) 22.8167 1.49477 0.747384 0.664392i \(-0.231309\pi\)
0.747384 + 0.664392i \(0.231309\pi\)
\(234\) −6.00000 −0.392232
\(235\) 0 0
\(236\) 1.02776 0.0669012
\(237\) −6.81665 −0.442789
\(238\) −3.39445 −0.220029
\(239\) 29.2111 1.88951 0.944755 0.327779i \(-0.106300\pi\)
0.944755 + 0.327779i \(0.106300\pi\)
\(240\) 0 0
\(241\) 16.6056 1.06966 0.534829 0.844960i \(-0.320376\pi\)
0.534829 + 0.844960i \(0.320376\pi\)
\(242\) −2.60555 −0.167491
\(243\) −1.00000 −0.0641500
\(244\) −4.00000 −0.256074
\(245\) 0 0
\(246\) 0 0
\(247\) 2.78890 0.177453
\(248\) −21.6333 −1.37372
\(249\) 11.2111 0.710475
\(250\) 0 0
\(251\) 7.81665 0.493383 0.246691 0.969094i \(-0.420657\pi\)
0.246691 + 0.969094i \(0.420657\pi\)
\(252\) 0.302776 0.0190731
\(253\) 24.6333 1.54868
\(254\) 11.4861 0.720703
\(255\) 0 0
\(256\) −7.09167 −0.443230
\(257\) −21.6333 −1.34945 −0.674724 0.738070i \(-0.735737\pi\)
−0.674724 + 0.738070i \(0.735737\pi\)
\(258\) 3.11943 0.194207
\(259\) 10.2111 0.634487
\(260\) 0 0
\(261\) −0.394449 −0.0244158
\(262\) −19.0278 −1.17554
\(263\) 20.2111 1.24627 0.623135 0.782114i \(-0.285859\pi\)
0.623135 + 0.782114i \(0.285859\pi\)
\(264\) −9.00000 −0.553912
\(265\) 0 0
\(266\) 0.788897 0.0483704
\(267\) 13.8167 0.845565
\(268\) 2.54163 0.155255
\(269\) 11.2111 0.683553 0.341776 0.939781i \(-0.388971\pi\)
0.341776 + 0.939781i \(0.388971\pi\)
\(270\) 0 0
\(271\) −19.3944 −1.17813 −0.589064 0.808086i \(-0.700504\pi\)
−0.589064 + 0.808086i \(0.700504\pi\)
\(272\) −8.60555 −0.521788
\(273\) −4.60555 −0.278741
\(274\) −14.6056 −0.882354
\(275\) 0 0
\(276\) −2.48612 −0.149647
\(277\) 10.0000 0.600842 0.300421 0.953807i \(-0.402873\pi\)
0.300421 + 0.953807i \(0.402873\pi\)
\(278\) −22.1833 −1.33047
\(279\) 7.21110 0.431717
\(280\) 0 0
\(281\) −22.8167 −1.36113 −0.680564 0.732689i \(-0.738265\pi\)
−0.680564 + 0.732689i \(0.738265\pi\)
\(282\) 4.42221 0.263338
\(283\) −29.6333 −1.76152 −0.880759 0.473565i \(-0.842967\pi\)
−0.880759 + 0.473565i \(0.842967\pi\)
\(284\) 0.908327 0.0538993
\(285\) 0 0
\(286\) 18.0000 1.06436
\(287\) 0 0
\(288\) 1.69722 0.100010
\(289\) −10.2111 −0.600653
\(290\) 0 0
\(291\) −15.2111 −0.891691
\(292\) −2.00000 −0.117041
\(293\) −3.39445 −0.198306 −0.0991529 0.995072i \(-0.531613\pi\)
−0.0991529 + 0.995072i \(0.531613\pi\)
\(294\) −1.30278 −0.0759794
\(295\) 0 0
\(296\) 30.6333 1.78052
\(297\) 3.00000 0.174078
\(298\) −30.7527 −1.78146
\(299\) 37.8167 2.18699
\(300\) 0 0
\(301\) 2.39445 0.138014
\(302\) −19.3028 −1.11075
\(303\) −9.39445 −0.539697
\(304\) 2.00000 0.114708
\(305\) 0 0
\(306\) 3.39445 0.194048
\(307\) 1.39445 0.0795854 0.0397927 0.999208i \(-0.487330\pi\)
0.0397927 + 0.999208i \(0.487330\pi\)
\(308\) −0.908327 −0.0517567
\(309\) −17.8167 −1.01355
\(310\) 0 0
\(311\) −7.81665 −0.443242 −0.221621 0.975133i \(-0.571135\pi\)
−0.221621 + 0.975133i \(0.571135\pi\)
\(312\) −13.8167 −0.782214
\(313\) 2.18335 0.123410 0.0617050 0.998094i \(-0.480346\pi\)
0.0617050 + 0.998094i \(0.480346\pi\)
\(314\) 18.7889 1.06032
\(315\) 0 0
\(316\) −2.06392 −0.116104
\(317\) 23.6056 1.32582 0.662910 0.748699i \(-0.269321\pi\)
0.662910 + 0.748699i \(0.269321\pi\)
\(318\) −14.6056 −0.819039
\(319\) 1.18335 0.0662547
\(320\) 0 0
\(321\) 0 0
\(322\) 10.6972 0.596133
\(323\) −1.57779 −0.0877909
\(324\) −0.302776 −0.0168209
\(325\) 0 0
\(326\) −3.63331 −0.201230
\(327\) 12.2111 0.675276
\(328\) 0 0
\(329\) 3.39445 0.187142
\(330\) 0 0
\(331\) 29.2389 1.60711 0.803557 0.595228i \(-0.202938\pi\)
0.803557 + 0.595228i \(0.202938\pi\)
\(332\) 3.39445 0.186295
\(333\) −10.2111 −0.559565
\(334\) −24.7889 −1.35639
\(335\) 0 0
\(336\) −3.30278 −0.180181
\(337\) −7.21110 −0.392814 −0.196407 0.980522i \(-0.562927\pi\)
−0.196407 + 0.980522i \(0.562927\pi\)
\(338\) 10.6972 0.581852
\(339\) 10.8167 0.587480
\(340\) 0 0
\(341\) −21.6333 −1.17151
\(342\) −0.788897 −0.0426587
\(343\) −1.00000 −0.0539949
\(344\) 7.18335 0.387300
\(345\) 0 0
\(346\) −18.0000 −0.967686
\(347\) −15.7889 −0.847592 −0.423796 0.905758i \(-0.639303\pi\)
−0.423796 + 0.905758i \(0.639303\pi\)
\(348\) −0.119429 −0.00640209
\(349\) −33.4500 −1.79054 −0.895268 0.445529i \(-0.853016\pi\)
−0.895268 + 0.445529i \(0.853016\pi\)
\(350\) 0 0
\(351\) 4.60555 0.245826
\(352\) −5.09167 −0.271387
\(353\) 30.0000 1.59674 0.798369 0.602168i \(-0.205696\pi\)
0.798369 + 0.602168i \(0.205696\pi\)
\(354\) 4.42221 0.235038
\(355\) 0 0
\(356\) 4.18335 0.221717
\(357\) 2.60555 0.137900
\(358\) 0 0
\(359\) −18.6333 −0.983428 −0.491714 0.870757i \(-0.663630\pi\)
−0.491714 + 0.870757i \(0.663630\pi\)
\(360\) 0 0
\(361\) −18.6333 −0.980700
\(362\) 7.02776 0.369371
\(363\) 2.00000 0.104973
\(364\) −1.39445 −0.0730890
\(365\) 0 0
\(366\) −17.2111 −0.899639
\(367\) 14.4222 0.752833 0.376416 0.926451i \(-0.377156\pi\)
0.376416 + 0.926451i \(0.377156\pi\)
\(368\) 27.1194 1.41370
\(369\) 0 0
\(370\) 0 0
\(371\) −11.2111 −0.582051
\(372\) 2.18335 0.113201
\(373\) 1.00000 0.0517780 0.0258890 0.999665i \(-0.491758\pi\)
0.0258890 + 0.999665i \(0.491758\pi\)
\(374\) −10.1833 −0.526568
\(375\) 0 0
\(376\) 10.1833 0.525166
\(377\) 1.81665 0.0935624
\(378\) 1.30278 0.0670075
\(379\) 6.81665 0.350148 0.175074 0.984555i \(-0.443984\pi\)
0.175074 + 0.984555i \(0.443984\pi\)
\(380\) 0 0
\(381\) −8.81665 −0.451691
\(382\) −22.4222 −1.14722
\(383\) −24.2389 −1.23855 −0.619274 0.785175i \(-0.712573\pi\)
−0.619274 + 0.785175i \(0.712573\pi\)
\(384\) −8.09167 −0.412926
\(385\) 0 0
\(386\) 8.09167 0.411855
\(387\) −2.39445 −0.121717
\(388\) −4.60555 −0.233811
\(389\) −7.18335 −0.364210 −0.182105 0.983279i \(-0.558291\pi\)
−0.182105 + 0.983279i \(0.558291\pi\)
\(390\) 0 0
\(391\) −21.3944 −1.08196
\(392\) −3.00000 −0.151523
\(393\) 14.6056 0.736753
\(394\) 6.27502 0.316131
\(395\) 0 0
\(396\) 0.908327 0.0456451
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 10.4222 0.522418
\(399\) −0.605551 −0.0303155
\(400\) 0 0
\(401\) 4.81665 0.240532 0.120266 0.992742i \(-0.461625\pi\)
0.120266 + 0.992742i \(0.461625\pi\)
\(402\) 10.9361 0.545442
\(403\) −33.2111 −1.65436
\(404\) −2.84441 −0.141515
\(405\) 0 0
\(406\) 0.513878 0.0255033
\(407\) 30.6333 1.51844
\(408\) 7.81665 0.386982
\(409\) 9.81665 0.485402 0.242701 0.970101i \(-0.421967\pi\)
0.242701 + 0.970101i \(0.421967\pi\)
\(410\) 0 0
\(411\) 11.2111 0.553003
\(412\) −5.39445 −0.265765
\(413\) 3.39445 0.167030
\(414\) −10.6972 −0.525740
\(415\) 0 0
\(416\) −7.81665 −0.383243
\(417\) 17.0278 0.833853
\(418\) 2.36669 0.115759
\(419\) 6.00000 0.293119 0.146560 0.989202i \(-0.453180\pi\)
0.146560 + 0.989202i \(0.453180\pi\)
\(420\) 0 0
\(421\) 4.21110 0.205237 0.102618 0.994721i \(-0.467278\pi\)
0.102618 + 0.994721i \(0.467278\pi\)
\(422\) −3.15559 −0.153612
\(423\) −3.39445 −0.165044
\(424\) −33.6333 −1.63338
\(425\) 0 0
\(426\) 3.90833 0.189359
\(427\) −13.2111 −0.639330
\(428\) 0 0
\(429\) −13.8167 −0.667074
\(430\) 0 0
\(431\) 34.4222 1.65806 0.829030 0.559205i \(-0.188893\pi\)
0.829030 + 0.559205i \(0.188893\pi\)
\(432\) 3.30278 0.158905
\(433\) 22.7889 1.09516 0.547582 0.836752i \(-0.315548\pi\)
0.547582 + 0.836752i \(0.315548\pi\)
\(434\) −9.39445 −0.450948
\(435\) 0 0
\(436\) 3.69722 0.177065
\(437\) 4.97224 0.237855
\(438\) −8.60555 −0.411189
\(439\) −0.605551 −0.0289014 −0.0144507 0.999896i \(-0.504600\pi\)
−0.0144507 + 0.999896i \(0.504600\pi\)
\(440\) 0 0
\(441\) 1.00000 0.0476190
\(442\) −15.6333 −0.743601
\(443\) 27.6333 1.31290 0.656449 0.754370i \(-0.272058\pi\)
0.656449 + 0.754370i \(0.272058\pi\)
\(444\) −3.09167 −0.146724
\(445\) 0 0
\(446\) −29.4500 −1.39450
\(447\) 23.6056 1.11650
\(448\) −8.81665 −0.416548
\(449\) −13.1833 −0.622161 −0.311080 0.950384i \(-0.600691\pi\)
−0.311080 + 0.950384i \(0.600691\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 3.27502 0.154044
\(453\) 14.8167 0.696147
\(454\) −20.0555 −0.941252
\(455\) 0 0
\(456\) −1.81665 −0.0850726
\(457\) 18.2111 0.851879 0.425940 0.904752i \(-0.359944\pi\)
0.425940 + 0.904752i \(0.359944\pi\)
\(458\) 9.39445 0.438974
\(459\) −2.60555 −0.121617
\(460\) 0 0
\(461\) 24.2389 1.12892 0.564458 0.825462i \(-0.309085\pi\)
0.564458 + 0.825462i \(0.309085\pi\)
\(462\) −3.90833 −0.181832
\(463\) −2.78890 −0.129611 −0.0648055 0.997898i \(-0.520643\pi\)
−0.0648055 + 0.997898i \(0.520643\pi\)
\(464\) 1.30278 0.0604798
\(465\) 0 0
\(466\) 29.7250 1.37698
\(467\) −28.4222 −1.31522 −0.657611 0.753357i \(-0.728433\pi\)
−0.657611 + 0.753357i \(0.728433\pi\)
\(468\) 1.39445 0.0644584
\(469\) 8.39445 0.387620
\(470\) 0 0
\(471\) −14.4222 −0.664540
\(472\) 10.1833 0.468727
\(473\) 7.18335 0.330291
\(474\) −8.88057 −0.407898
\(475\) 0 0
\(476\) 0.788897 0.0361591
\(477\) 11.2111 0.513321
\(478\) 38.0555 1.74062
\(479\) 27.3944 1.25168 0.625842 0.779950i \(-0.284755\pi\)
0.625842 + 0.779950i \(0.284755\pi\)
\(480\) 0 0
\(481\) 47.0278 2.14428
\(482\) 21.6333 0.985370
\(483\) −8.21110 −0.373618
\(484\) 0.605551 0.0275251
\(485\) 0 0
\(486\) −1.30278 −0.0590951
\(487\) −0.816654 −0.0370061 −0.0185031 0.999829i \(-0.505890\pi\)
−0.0185031 + 0.999829i \(0.505890\pi\)
\(488\) −39.6333 −1.79412
\(489\) 2.78890 0.126118
\(490\) 0 0
\(491\) −3.00000 −0.135388 −0.0676941 0.997706i \(-0.521564\pi\)
−0.0676941 + 0.997706i \(0.521564\pi\)
\(492\) 0 0
\(493\) −1.02776 −0.0462878
\(494\) 3.63331 0.163470
\(495\) 0 0
\(496\) −23.8167 −1.06940
\(497\) 3.00000 0.134568
\(498\) 14.6056 0.654490
\(499\) −28.0000 −1.25345 −0.626726 0.779240i \(-0.715605\pi\)
−0.626726 + 0.779240i \(0.715605\pi\)
\(500\) 0 0
\(501\) 19.0278 0.850097
\(502\) 10.1833 0.454505
\(503\) 23.2111 1.03493 0.517466 0.855704i \(-0.326875\pi\)
0.517466 + 0.855704i \(0.326875\pi\)
\(504\) 3.00000 0.133631
\(505\) 0 0
\(506\) 32.0917 1.42665
\(507\) −8.21110 −0.364668
\(508\) −2.66947 −0.118438
\(509\) 8.60555 0.381434 0.190717 0.981645i \(-0.438919\pi\)
0.190717 + 0.981645i \(0.438919\pi\)
\(510\) 0 0
\(511\) −6.60555 −0.292212
\(512\) −25.4222 −1.12351
\(513\) 0.605551 0.0267357
\(514\) −28.1833 −1.24311
\(515\) 0 0
\(516\) −0.724981 −0.0319155
\(517\) 10.1833 0.447863
\(518\) 13.3028 0.584490
\(519\) 13.8167 0.606484
\(520\) 0 0
\(521\) −7.57779 −0.331989 −0.165995 0.986127i \(-0.553083\pi\)
−0.165995 + 0.986127i \(0.553083\pi\)
\(522\) −0.513878 −0.0224918
\(523\) 16.0000 0.699631 0.349816 0.936819i \(-0.386244\pi\)
0.349816 + 0.936819i \(0.386244\pi\)
\(524\) 4.42221 0.193185
\(525\) 0 0
\(526\) 26.3305 1.14807
\(527\) 18.7889 0.818457
\(528\) −9.90833 −0.431205
\(529\) 44.4222 1.93140
\(530\) 0 0
\(531\) −3.39445 −0.147307
\(532\) −0.183346 −0.00794906
\(533\) 0 0
\(534\) 18.0000 0.778936
\(535\) 0 0
\(536\) 25.1833 1.08775
\(537\) 0 0
\(538\) 14.6056 0.629690
\(539\) −3.00000 −0.129219
\(540\) 0 0
\(541\) −2.57779 −0.110828 −0.0554140 0.998463i \(-0.517648\pi\)
−0.0554140 + 0.998463i \(0.517648\pi\)
\(542\) −25.2666 −1.08529
\(543\) −5.39445 −0.231498
\(544\) 4.42221 0.189600
\(545\) 0 0
\(546\) −6.00000 −0.256776
\(547\) 22.3944 0.957517 0.478759 0.877947i \(-0.341087\pi\)
0.478759 + 0.877947i \(0.341087\pi\)
\(548\) 3.39445 0.145004
\(549\) 13.2111 0.563836
\(550\) 0 0
\(551\) 0.238859 0.0101757
\(552\) −24.6333 −1.04846
\(553\) −6.81665 −0.289874
\(554\) 13.0278 0.553496
\(555\) 0 0
\(556\) 5.15559 0.218646
\(557\) 39.2389 1.66260 0.831302 0.555821i \(-0.187596\pi\)
0.831302 + 0.555821i \(0.187596\pi\)
\(558\) 9.39445 0.397699
\(559\) 11.0278 0.466424
\(560\) 0 0
\(561\) 7.81665 0.330019
\(562\) −29.7250 −1.25387
\(563\) −0.788897 −0.0332481 −0.0166240 0.999862i \(-0.505292\pi\)
−0.0166240 + 0.999862i \(0.505292\pi\)
\(564\) −1.02776 −0.0432764
\(565\) 0 0
\(566\) −38.6056 −1.62271
\(567\) −1.00000 −0.0419961
\(568\) 9.00000 0.377632
\(569\) −22.8167 −0.956524 −0.478262 0.878217i \(-0.658733\pi\)
−0.478262 + 0.878217i \(0.658733\pi\)
\(570\) 0 0
\(571\) 1.60555 0.0671902 0.0335951 0.999436i \(-0.489304\pi\)
0.0335951 + 0.999436i \(0.489304\pi\)
\(572\) −4.18335 −0.174914
\(573\) 17.2111 0.719004
\(574\) 0 0
\(575\) 0 0
\(576\) 8.81665 0.367361
\(577\) −23.3944 −0.973924 −0.486962 0.873423i \(-0.661895\pi\)
−0.486962 + 0.873423i \(0.661895\pi\)
\(578\) −13.3028 −0.553323
\(579\) −6.21110 −0.258125
\(580\) 0 0
\(581\) 11.2111 0.465115
\(582\) −19.8167 −0.821427
\(583\) −33.6333 −1.39295
\(584\) −19.8167 −0.820019
\(585\) 0 0
\(586\) −4.42221 −0.182680
\(587\) −16.1833 −0.667958 −0.333979 0.942580i \(-0.608391\pi\)
−0.333979 + 0.942580i \(0.608391\pi\)
\(588\) 0.302776 0.0124863
\(589\) −4.36669 −0.179926
\(590\) 0 0
\(591\) −4.81665 −0.198131
\(592\) 33.7250 1.38609
\(593\) 15.6333 0.641983 0.320991 0.947082i \(-0.395984\pi\)
0.320991 + 0.947082i \(0.395984\pi\)
\(594\) 3.90833 0.160361
\(595\) 0 0
\(596\) 7.14719 0.292760
\(597\) −8.00000 −0.327418
\(598\) 49.2666 2.01466
\(599\) 20.2111 0.825803 0.412902 0.910776i \(-0.364515\pi\)
0.412902 + 0.910776i \(0.364515\pi\)
\(600\) 0 0
\(601\) 2.78890 0.113761 0.0568807 0.998381i \(-0.481885\pi\)
0.0568807 + 0.998381i \(0.481885\pi\)
\(602\) 3.11943 0.127138
\(603\) −8.39445 −0.341848
\(604\) 4.48612 0.182538
\(605\) 0 0
\(606\) −12.2389 −0.497170
\(607\) 2.18335 0.0886193 0.0443096 0.999018i \(-0.485891\pi\)
0.0443096 + 0.999018i \(0.485891\pi\)
\(608\) −1.02776 −0.0416810
\(609\) −0.394449 −0.0159839
\(610\) 0 0
\(611\) 15.6333 0.632456
\(612\) −0.788897 −0.0318893
\(613\) 20.5778 0.831129 0.415565 0.909564i \(-0.363584\pi\)
0.415565 + 0.909564i \(0.363584\pi\)
\(614\) 1.81665 0.0733142
\(615\) 0 0
\(616\) −9.00000 −0.362620
\(617\) −1.18335 −0.0476397 −0.0238199 0.999716i \(-0.507583\pi\)
−0.0238199 + 0.999716i \(0.507583\pi\)
\(618\) −23.2111 −0.933687
\(619\) 4.60555 0.185113 0.0925564 0.995707i \(-0.470496\pi\)
0.0925564 + 0.995707i \(0.470496\pi\)
\(620\) 0 0
\(621\) 8.21110 0.329500
\(622\) −10.1833 −0.408315
\(623\) 13.8167 0.553553
\(624\) −15.2111 −0.608931
\(625\) 0 0
\(626\) 2.84441 0.113685
\(627\) −1.81665 −0.0725502
\(628\) −4.36669 −0.174250
\(629\) −26.6056 −1.06083
\(630\) 0 0
\(631\) −14.0278 −0.558436 −0.279218 0.960228i \(-0.590075\pi\)
−0.279218 + 0.960228i \(0.590075\pi\)
\(632\) −20.4500 −0.813456
\(633\) 2.42221 0.0962740
\(634\) 30.7527 1.22135
\(635\) 0 0
\(636\) 3.39445 0.134599
\(637\) −4.60555 −0.182479
\(638\) 1.54163 0.0610339
\(639\) −3.00000 −0.118678
\(640\) 0 0
\(641\) 1.18335 0.0467394 0.0233697 0.999727i \(-0.492561\pi\)
0.0233697 + 0.999727i \(0.492561\pi\)
\(642\) 0 0
\(643\) −9.57779 −0.377711 −0.188856 0.982005i \(-0.560478\pi\)
−0.188856 + 0.982005i \(0.560478\pi\)
\(644\) −2.48612 −0.0979669
\(645\) 0 0
\(646\) −2.05551 −0.0808731
\(647\) −6.00000 −0.235884 −0.117942 0.993020i \(-0.537630\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(648\) −3.00000 −0.117851
\(649\) 10.1833 0.399731
\(650\) 0 0
\(651\) 7.21110 0.282625
\(652\) 0.844410 0.0330697
\(653\) −11.2111 −0.438724 −0.219362 0.975643i \(-0.570398\pi\)
−0.219362 + 0.975643i \(0.570398\pi\)
\(654\) 15.9083 0.622065
\(655\) 0 0
\(656\) 0 0
\(657\) 6.60555 0.257707
\(658\) 4.42221 0.172396
\(659\) −12.0000 −0.467454 −0.233727 0.972302i \(-0.575092\pi\)
−0.233727 + 0.972302i \(0.575092\pi\)
\(660\) 0 0
\(661\) −41.8167 −1.62648 −0.813240 0.581929i \(-0.802298\pi\)
−0.813240 + 0.581929i \(0.802298\pi\)
\(662\) 38.0917 1.48047
\(663\) 12.0000 0.466041
\(664\) 33.6333 1.30523
\(665\) 0 0
\(666\) −13.3028 −0.515472
\(667\) 3.23886 0.125409
\(668\) 5.76114 0.222905
\(669\) 22.6056 0.873981
\(670\) 0 0
\(671\) −39.6333 −1.53003
\(672\) 1.69722 0.0654719
\(673\) 10.0000 0.385472 0.192736 0.981251i \(-0.438264\pi\)
0.192736 + 0.981251i \(0.438264\pi\)
\(674\) −9.39445 −0.361861
\(675\) 0 0
\(676\) −2.48612 −0.0956201
\(677\) 23.2111 0.892075 0.446038 0.895014i \(-0.352835\pi\)
0.446038 + 0.895014i \(0.352835\pi\)
\(678\) 14.0917 0.541187
\(679\) −15.2111 −0.583749
\(680\) 0 0
\(681\) 15.3944 0.589917
\(682\) −28.1833 −1.07920
\(683\) −24.6333 −0.942567 −0.471284 0.881982i \(-0.656209\pi\)
−0.471284 + 0.881982i \(0.656209\pi\)
\(684\) 0.183346 0.00701042
\(685\) 0 0
\(686\) −1.30278 −0.0497402
\(687\) −7.21110 −0.275121
\(688\) 7.90833 0.301502
\(689\) −51.6333 −1.96707
\(690\) 0 0
\(691\) 26.7889 1.01910 0.509549 0.860442i \(-0.329812\pi\)
0.509549 + 0.860442i \(0.329812\pi\)
\(692\) 4.18335 0.159027
\(693\) 3.00000 0.113961
\(694\) −20.5694 −0.780803
\(695\) 0 0
\(696\) −1.18335 −0.0448546
\(697\) 0 0
\(698\) −43.5778 −1.64944
\(699\) −22.8167 −0.863005
\(700\) 0 0
\(701\) −35.2111 −1.32990 −0.664952 0.746886i \(-0.731548\pi\)
−0.664952 + 0.746886i \(0.731548\pi\)
\(702\) 6.00000 0.226455
\(703\) 6.18335 0.233209
\(704\) −26.4500 −0.996870
\(705\) 0 0
\(706\) 39.0833 1.47092
\(707\) −9.39445 −0.353315
\(708\) −1.02776 −0.0386254
\(709\) 22.8444 0.857940 0.428970 0.903319i \(-0.358877\pi\)
0.428970 + 0.903319i \(0.358877\pi\)
\(710\) 0 0
\(711\) 6.81665 0.255644
\(712\) 41.4500 1.55340
\(713\) −59.2111 −2.21747
\(714\) 3.39445 0.127034
\(715\) 0 0
\(716\) 0 0
\(717\) −29.2111 −1.09091
\(718\) −24.2750 −0.905936
\(719\) 41.2111 1.53691 0.768457 0.639901i \(-0.221025\pi\)
0.768457 + 0.639901i \(0.221025\pi\)
\(720\) 0 0
\(721\) −17.8167 −0.663527
\(722\) −24.2750 −0.903423
\(723\) −16.6056 −0.617567
\(724\) −1.63331 −0.0607014
\(725\) 0 0
\(726\) 2.60555 0.0967011
\(727\) 30.6056 1.13510 0.567549 0.823340i \(-0.307892\pi\)
0.567549 + 0.823340i \(0.307892\pi\)
\(728\) −13.8167 −0.512079
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −6.23886 −0.230753
\(732\) 4.00000 0.147844
\(733\) −20.0000 −0.738717 −0.369358 0.929287i \(-0.620423\pi\)
−0.369358 + 0.929287i \(0.620423\pi\)
\(734\) 18.7889 0.693511
\(735\) 0 0
\(736\) −13.9361 −0.513691
\(737\) 25.1833 0.927640
\(738\) 0 0
\(739\) 24.8167 0.912895 0.456448 0.889750i \(-0.349122\pi\)
0.456448 + 0.889750i \(0.349122\pi\)
\(740\) 0 0
\(741\) −2.78890 −0.102453
\(742\) −14.6056 −0.536187
\(743\) −15.6333 −0.573530 −0.286765 0.958001i \(-0.592580\pi\)
−0.286765 + 0.958001i \(0.592580\pi\)
\(744\) 21.6333 0.793116
\(745\) 0 0
\(746\) 1.30278 0.0476980
\(747\) −11.2111 −0.410193
\(748\) 2.36669 0.0865348
\(749\) 0 0
\(750\) 0 0
\(751\) −43.6333 −1.59220 −0.796101 0.605164i \(-0.793108\pi\)
−0.796101 + 0.605164i \(0.793108\pi\)
\(752\) 11.2111 0.408827
\(753\) −7.81665 −0.284855
\(754\) 2.36669 0.0861899
\(755\) 0 0
\(756\) −0.302776 −0.0110118
\(757\) −41.0000 −1.49017 −0.745085 0.666969i \(-0.767591\pi\)
−0.745085 + 0.666969i \(0.767591\pi\)
\(758\) 8.88057 0.322557
\(759\) −24.6333 −0.894132
\(760\) 0 0
\(761\) 15.6333 0.566707 0.283353 0.959016i \(-0.408553\pi\)
0.283353 + 0.959016i \(0.408553\pi\)
\(762\) −11.4861 −0.416098
\(763\) 12.2111 0.442072
\(764\) 5.21110 0.188531
\(765\) 0 0
\(766\) −31.5778 −1.14095
\(767\) 15.6333 0.564486
\(768\) 7.09167 0.255899
\(769\) 11.6333 0.419508 0.209754 0.977754i \(-0.432734\pi\)
0.209754 + 0.977754i \(0.432734\pi\)
\(770\) 0 0
\(771\) 21.6333 0.779105
\(772\) −1.88057 −0.0676832
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) −3.11943 −0.112126
\(775\) 0 0
\(776\) −45.6333 −1.63814
\(777\) −10.2111 −0.366321
\(778\) −9.35829 −0.335511
\(779\) 0 0
\(780\) 0 0
\(781\) 9.00000 0.322045
\(782\) −27.8722 −0.996707
\(783\) 0.394449 0.0140964
\(784\) −3.30278 −0.117956
\(785\) 0 0
\(786\) 19.0278 0.678698
\(787\) 22.2389 0.792730 0.396365 0.918093i \(-0.370272\pi\)
0.396365 + 0.918093i \(0.370272\pi\)
\(788\) −1.45837 −0.0519521
\(789\) −20.2111 −0.719534
\(790\) 0 0
\(791\) 10.8167 0.384596
\(792\) 9.00000 0.319801
\(793\) −60.8444 −2.16065
\(794\) −2.60555 −0.0924676
\(795\) 0 0
\(796\) −2.42221 −0.0858528
\(797\) −35.4500 −1.25570 −0.627851 0.778334i \(-0.716065\pi\)
−0.627851 + 0.778334i \(0.716065\pi\)
\(798\) −0.788897 −0.0279267
\(799\) −8.84441 −0.312893
\(800\) 0 0
\(801\) −13.8167 −0.488187
\(802\) 6.27502 0.221579
\(803\) −19.8167 −0.699315
\(804\) −2.54163 −0.0896365
\(805\) 0 0
\(806\) −43.2666 −1.52400
\(807\) −11.2111 −0.394650
\(808\) −28.1833 −0.991487
\(809\) −32.4500 −1.14088 −0.570440 0.821339i \(-0.693227\pi\)
−0.570440 + 0.821339i \(0.693227\pi\)
\(810\) 0 0
\(811\) −42.8444 −1.50447 −0.752235 0.658894i \(-0.771024\pi\)
−0.752235 + 0.658894i \(0.771024\pi\)
\(812\) −0.119429 −0.00419115
\(813\) 19.3944 0.680193
\(814\) 39.9083 1.39879
\(815\) 0 0
\(816\) 8.60555 0.301255
\(817\) 1.44996 0.0507277
\(818\) 12.7889 0.447153
\(819\) 4.60555 0.160931
\(820\) 0 0
\(821\) −37.2666 −1.30061 −0.650307 0.759672i \(-0.725360\pi\)
−0.650307 + 0.759672i \(0.725360\pi\)
\(822\) 14.6056 0.509427
\(823\) −3.18335 −0.110964 −0.0554822 0.998460i \(-0.517670\pi\)
−0.0554822 + 0.998460i \(0.517670\pi\)
\(824\) −53.4500 −1.86202
\(825\) 0 0
\(826\) 4.42221 0.153868
\(827\) −12.6333 −0.439303 −0.219652 0.975578i \(-0.570492\pi\)
−0.219652 + 0.975578i \(0.570492\pi\)
\(828\) 2.48612 0.0863987
\(829\) 50.2389 1.74487 0.872434 0.488732i \(-0.162540\pi\)
0.872434 + 0.488732i \(0.162540\pi\)
\(830\) 0 0
\(831\) −10.0000 −0.346896
\(832\) −40.6056 −1.40774
\(833\) 2.60555 0.0902770
\(834\) 22.1833 0.768146
\(835\) 0 0
\(836\) −0.550039 −0.0190235
\(837\) −7.21110 −0.249252
\(838\) 7.81665 0.270022
\(839\) −43.8167 −1.51272 −0.756359 0.654156i \(-0.773024\pi\)
−0.756359 + 0.654156i \(0.773024\pi\)
\(840\) 0 0
\(841\) −28.8444 −0.994635
\(842\) 5.48612 0.189064
\(843\) 22.8167 0.785847
\(844\) 0.733385 0.0252441
\(845\) 0 0
\(846\) −4.42221 −0.152039
\(847\) 2.00000 0.0687208
\(848\) −37.0278 −1.27154
\(849\) 29.6333 1.01701
\(850\) 0 0
\(851\) 83.8444 2.87415
\(852\) −0.908327 −0.0311188
\(853\) 21.2111 0.726254 0.363127 0.931740i \(-0.381709\pi\)
0.363127 + 0.931740i \(0.381709\pi\)
\(854\) −17.2111 −0.588952
\(855\) 0 0
\(856\) 0 0
\(857\) 15.6333 0.534024 0.267012 0.963693i \(-0.413964\pi\)
0.267012 + 0.963693i \(0.413964\pi\)
\(858\) −18.0000 −0.614510
\(859\) −6.36669 −0.217229 −0.108614 0.994084i \(-0.534641\pi\)
−0.108614 + 0.994084i \(0.534641\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 44.8444 1.52741
\(863\) −48.6333 −1.65550 −0.827749 0.561099i \(-0.810379\pi\)
−0.827749 + 0.561099i \(0.810379\pi\)
\(864\) −1.69722 −0.0577407
\(865\) 0 0
\(866\) 29.6888 1.00887
\(867\) 10.2111 0.346787
\(868\) 2.18335 0.0741076
\(869\) −20.4500 −0.693717
\(870\) 0 0
\(871\) 38.6611 1.30998
\(872\) 36.6333 1.24056
\(873\) 15.2111 0.514818
\(874\) 6.47772 0.219112
\(875\) 0 0
\(876\) 2.00000 0.0675737
\(877\) 22.0000 0.742887 0.371444 0.928456i \(-0.378863\pi\)
0.371444 + 0.928456i \(0.378863\pi\)
\(878\) −0.788897 −0.0266240
\(879\) 3.39445 0.114492
\(880\) 0 0
\(881\) −9.63331 −0.324554 −0.162277 0.986745i \(-0.551884\pi\)
−0.162277 + 0.986745i \(0.551884\pi\)
\(882\) 1.30278 0.0438667
\(883\) −8.39445 −0.282496 −0.141248 0.989974i \(-0.545111\pi\)
−0.141248 + 0.989974i \(0.545111\pi\)
\(884\) 3.63331 0.122201
\(885\) 0 0
\(886\) 36.0000 1.20944
\(887\) 29.2111 0.980813 0.490406 0.871494i \(-0.336848\pi\)
0.490406 + 0.871494i \(0.336848\pi\)
\(888\) −30.6333 −1.02799
\(889\) −8.81665 −0.295701
\(890\) 0 0
\(891\) −3.00000 −0.100504
\(892\) 6.84441 0.229168
\(893\) 2.05551 0.0687851
\(894\) 30.7527 1.02853
\(895\) 0 0
\(896\) −8.09167 −0.270324
\(897\) −37.8167 −1.26266
\(898\) −17.1749 −0.573135
\(899\) −2.84441 −0.0948664
\(900\) 0 0
\(901\) 29.2111 0.973163
\(902\) 0 0
\(903\) −2.39445 −0.0796823
\(904\) 32.4500 1.07927
\(905\) 0 0
\(906\) 19.3028 0.641292
\(907\) −1.21110 −0.0402140 −0.0201070 0.999798i \(-0.506401\pi\)
−0.0201070 + 0.999798i \(0.506401\pi\)
\(908\) 4.66106 0.154683
\(909\) 9.39445 0.311594
\(910\) 0 0
\(911\) 15.0000 0.496972 0.248486 0.968635i \(-0.420067\pi\)
0.248486 + 0.968635i \(0.420067\pi\)
\(912\) −2.00000 −0.0662266
\(913\) 33.6333 1.11310
\(914\) 23.7250 0.784753
\(915\) 0 0
\(916\) −2.18335 −0.0721398
\(917\) 14.6056 0.482318
\(918\) −3.39445 −0.112034
\(919\) −10.3944 −0.342881 −0.171441 0.985194i \(-0.554842\pi\)
−0.171441 + 0.985194i \(0.554842\pi\)
\(920\) 0 0
\(921\) −1.39445 −0.0459486
\(922\) 31.5778 1.03996
\(923\) 13.8167 0.454781
\(924\) 0.908327 0.0298818
\(925\) 0 0
\(926\) −3.63331 −0.119398
\(927\) 17.8167 0.585176
\(928\) −0.669468 −0.0219764
\(929\) 30.2389 0.992105 0.496052 0.868293i \(-0.334782\pi\)
0.496052 + 0.868293i \(0.334782\pi\)
\(930\) 0 0
\(931\) −0.605551 −0.0198461
\(932\) −6.90833 −0.226290
\(933\) 7.81665 0.255906
\(934\) −37.0278 −1.21159
\(935\) 0 0
\(936\) 13.8167 0.451611
\(937\) −44.4777 −1.45302 −0.726512 0.687154i \(-0.758860\pi\)
−0.726512 + 0.687154i \(0.758860\pi\)
\(938\) 10.9361 0.357076
\(939\) −2.18335 −0.0712508
\(940\) 0 0
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) −18.7889 −0.612175
\(943\) 0 0
\(944\) 11.2111 0.364890
\(945\) 0 0
\(946\) 9.35829 0.304264
\(947\) −56.8444 −1.84720 −0.923598 0.383363i \(-0.874766\pi\)
−0.923598 + 0.383363i \(0.874766\pi\)
\(948\) 2.06392 0.0670329
\(949\) −30.4222 −0.987547
\(950\) 0 0
\(951\) −23.6056 −0.765462
\(952\) 7.81665 0.253339
\(953\) 6.39445 0.207137 0.103568 0.994622i \(-0.466974\pi\)
0.103568 + 0.994622i \(0.466974\pi\)
\(954\) 14.6056 0.472872
\(955\) 0 0
\(956\) −8.84441 −0.286049
\(957\) −1.18335 −0.0382521
\(958\) 35.6888 1.15305
\(959\) 11.2111 0.362025
\(960\) 0 0
\(961\) 21.0000 0.677419
\(962\) 61.2666 1.97531
\(963\) 0 0
\(964\) −5.02776 −0.161933
\(965\) 0 0
\(966\) −10.6972 −0.344178
\(967\) −16.8444 −0.541680 −0.270840 0.962624i \(-0.587301\pi\)
−0.270840 + 0.962624i \(0.587301\pi\)
\(968\) 6.00000 0.192847
\(969\) 1.57779 0.0506861
\(970\) 0 0
\(971\) −39.8722 −1.27956 −0.639779 0.768559i \(-0.720974\pi\)
−0.639779 + 0.768559i \(0.720974\pi\)
\(972\) 0.302776 0.00971153
\(973\) 17.0278 0.545885
\(974\) −1.06392 −0.0340901
\(975\) 0 0
\(976\) −43.6333 −1.39667
\(977\) −34.0278 −1.08864 −0.544322 0.838876i \(-0.683213\pi\)
−0.544322 + 0.838876i \(0.683213\pi\)
\(978\) 3.63331 0.116180
\(979\) 41.4500 1.32475
\(980\) 0 0
\(981\) −12.2111 −0.389870
\(982\) −3.90833 −0.124720
\(983\) 32.0555 1.02241 0.511206 0.859458i \(-0.329199\pi\)
0.511206 + 0.859458i \(0.329199\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −1.33894 −0.0426404
\(987\) −3.39445 −0.108046
\(988\) −0.844410 −0.0268643
\(989\) 19.6611 0.625185
\(990\) 0 0
\(991\) 9.97224 0.316779 0.158389 0.987377i \(-0.449370\pi\)
0.158389 + 0.987377i \(0.449370\pi\)
\(992\) 12.2389 0.388584
\(993\) −29.2389 −0.927867
\(994\) 3.90833 0.123965
\(995\) 0 0
\(996\) −3.39445 −0.107557
\(997\) −49.4500 −1.56610 −0.783048 0.621961i \(-0.786336\pi\)
−0.783048 + 0.621961i \(0.786336\pi\)
\(998\) −36.4777 −1.15468
\(999\) 10.2111 0.323065
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.2.a.f.1.2 2
3.2 odd 2 1575.2.a.t.1.1 2
4.3 odd 2 8400.2.a.df.1.1 2
5.2 odd 4 525.2.d.d.274.3 4
5.3 odd 4 525.2.d.d.274.2 4
5.4 even 2 525.2.a.h.1.1 yes 2
7.6 odd 2 3675.2.a.w.1.2 2
15.2 even 4 1575.2.d.g.1324.2 4
15.8 even 4 1575.2.d.g.1324.3 4
15.14 odd 2 1575.2.a.o.1.2 2
20.19 odd 2 8400.2.a.cw.1.2 2
35.34 odd 2 3675.2.a.bb.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
525.2.a.f.1.2 2 1.1 even 1 trivial
525.2.a.h.1.1 yes 2 5.4 even 2
525.2.d.d.274.2 4 5.3 odd 4
525.2.d.d.274.3 4 5.2 odd 4
1575.2.a.o.1.2 2 15.14 odd 2
1575.2.a.t.1.1 2 3.2 odd 2
1575.2.d.g.1324.2 4 15.2 even 4
1575.2.d.g.1324.3 4 15.8 even 4
3675.2.a.w.1.2 2 7.6 odd 2
3675.2.a.bb.1.1 2 35.34 odd 2
8400.2.a.cw.1.2 2 20.19 odd 2
8400.2.a.df.1.1 2 4.3 odd 2