Properties

Label 525.2.a.g
Level $525$
Weight $2$
Character orbit 525.a
Self dual yes
Analytic conductor $4.192$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(1,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{2} + q^{3} + 3 q^{4} - \beta q^{6} - q^{7} - \beta q^{8} + q^{9} + ( - 2 \beta + 2) q^{11} + 3 q^{12} + 2 \beta q^{13} + \beta q^{14} - q^{16} + 2 q^{17} - \beta q^{18} + (2 \beta + 2) q^{19} + \cdots + ( - 2 \beta + 2) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 6 q^{4} - 2 q^{7} + 2 q^{9} + 4 q^{11} + 6 q^{12} - 2 q^{16} + 4 q^{17} + 4 q^{19} - 2 q^{21} + 20 q^{22} - 8 q^{23} - 20 q^{26} + 2 q^{27} - 6 q^{28} - 4 q^{29} + 12 q^{31} + 4 q^{33} + 6 q^{36}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
−2.23607 1.00000 3.00000 0 −2.23607 −1.00000 −2.23607 1.00000 0
1.2 2.23607 1.00000 3.00000 0 2.23607 −1.00000 2.23607 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.2.a.g 2
3.b odd 2 1 1575.2.a.r 2
4.b odd 2 1 8400.2.a.cx 2
5.b even 2 1 105.2.a.b 2
5.c odd 4 2 525.2.d.c 4
7.b odd 2 1 3675.2.a.y 2
15.d odd 2 1 315.2.a.d 2
15.e even 4 2 1575.2.d.d 4
20.d odd 2 1 1680.2.a.v 2
35.c odd 2 1 735.2.a.k 2
35.i odd 6 2 735.2.i.i 4
35.j even 6 2 735.2.i.k 4
40.e odd 2 1 6720.2.a.cs 2
40.f even 2 1 6720.2.a.cx 2
60.h even 2 1 5040.2.a.bw 2
105.g even 2 1 2205.2.a.w 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.a.b 2 5.b even 2 1
315.2.a.d 2 15.d odd 2 1
525.2.a.g 2 1.a even 1 1 trivial
525.2.d.c 4 5.c odd 4 2
735.2.a.k 2 35.c odd 2 1
735.2.i.i 4 35.i odd 6 2
735.2.i.k 4 35.j even 6 2
1575.2.a.r 2 3.b odd 2 1
1575.2.d.d 4 15.e even 4 2
1680.2.a.v 2 20.d odd 2 1
2205.2.a.w 2 105.g even 2 1
3675.2.a.y 2 7.b odd 2 1
5040.2.a.bw 2 60.h even 2 1
6720.2.a.cs 2 40.e odd 2 1
6720.2.a.cx 2 40.f even 2 1
8400.2.a.cx 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(525))\):

\( T_{2}^{2} - 5 \) Copy content Toggle raw display
\( T_{11}^{2} - 4T_{11} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 5 \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$13$ \( T^{2} - 20 \) Copy content Toggle raw display
$17$ \( (T - 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 4T - 16 \) Copy content Toggle raw display
$23$ \( (T + 4)^{2} \) Copy content Toggle raw display
$29$ \( (T + 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 12T + 16 \) Copy content Toggle raw display
$37$ \( T^{2} + 4T - 76 \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 80 \) Copy content Toggle raw display
$47$ \( T^{2} + 8T - 64 \) Copy content Toggle raw display
$53$ \( T^{2} - 16T + 44 \) Copy content Toggle raw display
$59$ \( T^{2} - 80 \) Copy content Toggle raw display
$61$ \( (T + 2)^{2} \) Copy content Toggle raw display
$67$ \( (T - 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 20T + 80 \) Copy content Toggle raw display
$73$ \( T^{2} - 16T + 44 \) Copy content Toggle raw display
$79$ \( T^{2} - 8T - 64 \) Copy content Toggle raw display
$83$ \( T^{2} - 16T - 16 \) Copy content Toggle raw display
$89$ \( (T + 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 8T - 4 \) Copy content Toggle raw display
show more
show less