Properties

Label 525.2.a.j
Level 525525
Weight 22
Character orbit 525.a
Self dual yes
Analytic conductor 4.1924.192
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(1,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 525=3527 525 = 3 \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 4.192146106124.19214610612
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x3x23x+1 x^{3} - x^{2} - 3x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 105)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β21,\beta_1,\beta_2 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+q3+(β2+β1+1)q4β1q6+q7+(β22β12)q8+q9+2q11+(β2+β1+1)q12+(β2β1+2)q13++2q99+O(q100) q - \beta_1 q^{2} + q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} - \beta_1 q^{6} + q^{7} + ( - \beta_{2} - 2 \beta_1 - 2) q^{8} + q^{9} + 2 q^{11} + (\beta_{2} + \beta_1 + 1) q^{12} + (\beta_{2} - \beta_1 + 2) q^{13}+ \cdots + 2 q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 3qq2+3q3+5q4q6+3q79q8+3q9+6q11+5q12+6q13q14+13q16q18+6q19+3q212q224q239q24+10q26++6q99+O(q100) 3 q - q^{2} + 3 q^{3} + 5 q^{4} - q^{6} + 3 q^{7} - 9 q^{8} + 3 q^{9} + 6 q^{11} + 5 q^{12} + 6 q^{13} - q^{14} + 13 q^{16} - q^{18} + 6 q^{19} + 3 q^{21} - 2 q^{22} - 4 q^{23} - 9 q^{24} + 10 q^{26}+ \cdots + 6 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x3x23x+1 x^{3} - x^{2} - 3x + 1 : Copy content Toggle raw display

β1\beta_{1}== ν22 \nu^{2} - 2 Copy content Toggle raw display
β2\beta_{2}== ν2+2ν+2 -\nu^{2} + 2\nu + 2 Copy content Toggle raw display
ν\nu== (β2+β1)/2 ( \beta_{2} + \beta_1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== β1+2 \beta _1 + 2 Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
2.17009
−1.48119
0.311108
−2.70928 1.00000 5.34017 0 −2.70928 1.00000 −9.04945 1.00000 0
1.2 −0.193937 1.00000 −1.96239 0 −0.193937 1.00000 0.768452 1.00000 0
1.3 1.90321 1.00000 1.62222 0 1.90321 1.00000 −0.719004 1.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
77 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.2.a.j 3
3.b odd 2 1 1575.2.a.x 3
4.b odd 2 1 8400.2.a.dg 3
5.b even 2 1 525.2.a.k 3
5.c odd 4 2 105.2.d.b 6
7.b odd 2 1 3675.2.a.bi 3
15.d odd 2 1 1575.2.a.w 3
15.e even 4 2 315.2.d.e 6
20.d odd 2 1 8400.2.a.dj 3
20.e even 4 2 1680.2.t.k 6
35.c odd 2 1 3675.2.a.bj 3
35.f even 4 2 735.2.d.b 6
35.k even 12 4 735.2.q.f 12
35.l odd 12 4 735.2.q.e 12
60.l odd 4 2 5040.2.t.v 6
105.k odd 4 2 2205.2.d.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.d.b 6 5.c odd 4 2
315.2.d.e 6 15.e even 4 2
525.2.a.j 3 1.a even 1 1 trivial
525.2.a.k 3 5.b even 2 1
735.2.d.b 6 35.f even 4 2
735.2.q.e 12 35.l odd 12 4
735.2.q.f 12 35.k even 12 4
1575.2.a.w 3 15.d odd 2 1
1575.2.a.x 3 3.b odd 2 1
1680.2.t.k 6 20.e even 4 2
2205.2.d.l 6 105.k odd 4 2
3675.2.a.bi 3 7.b odd 2 1
3675.2.a.bj 3 35.c odd 2 1
5040.2.t.v 6 60.l odd 4 2
8400.2.a.dg 3 4.b odd 2 1
8400.2.a.dj 3 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(525))S_{2}^{\mathrm{new}}(\Gamma_0(525)):

T23+T225T21 T_{2}^{3} + T_{2}^{2} - 5T_{2} - 1 Copy content Toggle raw display
T112 T_{11} - 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T3+T25T1 T^{3} + T^{2} - 5T - 1 Copy content Toggle raw display
33 (T1)3 (T - 1)^{3} Copy content Toggle raw display
55 T3 T^{3} Copy content Toggle raw display
77 (T1)3 (T - 1)^{3} Copy content Toggle raw display
1111 (T2)3 (T - 2)^{3} Copy content Toggle raw display
1313 T36T2++8 T^{3} - 6 T^{2} + \cdots + 8 Copy content Toggle raw display
1717 T316T+16 T^{3} - 16T + 16 Copy content Toggle raw display
1919 T36T2++40 T^{3} - 6 T^{2} + \cdots + 40 Copy content Toggle raw display
2323 T3+4T2+16 T^{3} + 4 T^{2} + \cdots - 16 Copy content Toggle raw display
2929 T32T2++40 T^{3} - 2 T^{2} + \cdots + 40 Copy content Toggle raw display
3131 T32T2++184 T^{3} - 2 T^{2} + \cdots + 184 Copy content Toggle raw display
3737 T34T2++64 T^{3} - 4 T^{2} + \cdots + 64 Copy content Toggle raw display
4141 T32T2++200 T^{3} - 2 T^{2} + \cdots + 200 Copy content Toggle raw display
4343 T3+4T2+832 T^{3} + 4 T^{2} + \cdots - 832 Copy content Toggle raw display
4747 T3+8T2+128 T^{3} + 8 T^{2} + \cdots - 128 Copy content Toggle raw display
5353 T3+14T2+296 T^{3} + 14 T^{2} + \cdots - 296 Copy content Toggle raw display
5959 T316T2++1280 T^{3} - 16 T^{2} + \cdots + 1280 Copy content Toggle raw display
6161 T3+6T2+248 T^{3} + 6 T^{2} + \cdots - 248 Copy content Toggle raw display
6767 T3+8T2+128 T^{3} + 8 T^{2} + \cdots - 128 Copy content Toggle raw display
7171 (T2)3 (T - 2)^{3} Copy content Toggle raw display
7373 T318T2+104 T^{3} - 18 T^{2} + \cdots - 104 Copy content Toggle raw display
7979 T312T2++320 T^{3} - 12 T^{2} + \cdots + 320 Copy content Toggle raw display
8383 T3+8T2+256 T^{3} + 8 T^{2} + \cdots - 256 Copy content Toggle raw display
8989 T314T2+40 T^{3} - 14 T^{2} + \cdots - 40 Copy content Toggle raw display
9797 T322T2++1864 T^{3} - 22 T^{2} + \cdots + 1864 Copy content Toggle raw display
show more
show less