Properties

Label 525.2.a.j
Level $525$
Weight $2$
Character orbit 525.a
Self dual yes
Analytic conductor $4.192$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(1,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + q^{3} + (\beta_{2} + \beta_1 + 1) q^{4} - \beta_1 q^{6} + q^{7} + ( - \beta_{2} - 2 \beta_1 - 2) q^{8} + q^{9} + 2 q^{11} + (\beta_{2} + \beta_1 + 1) q^{12} + (\beta_{2} - \beta_1 + 2) q^{13}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 3 q^{3} + 5 q^{4} - q^{6} + 3 q^{7} - 9 q^{8} + 3 q^{9} + 6 q^{11} + 5 q^{12} + 6 q^{13} - q^{14} + 13 q^{16} - q^{18} + 6 q^{19} + 3 q^{21} - 2 q^{22} - 4 q^{23} - 9 q^{24} + 10 q^{26}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + 2\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.17009
−1.48119
0.311108
−2.70928 1.00000 5.34017 0 −2.70928 1.00000 −9.04945 1.00000 0
1.2 −0.193937 1.00000 −1.96239 0 −0.193937 1.00000 0.768452 1.00000 0
1.3 1.90321 1.00000 1.62222 0 1.90321 1.00000 −0.719004 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.2.a.j 3
3.b odd 2 1 1575.2.a.x 3
4.b odd 2 1 8400.2.a.dg 3
5.b even 2 1 525.2.a.k 3
5.c odd 4 2 105.2.d.b 6
7.b odd 2 1 3675.2.a.bi 3
15.d odd 2 1 1575.2.a.w 3
15.e even 4 2 315.2.d.e 6
20.d odd 2 1 8400.2.a.dj 3
20.e even 4 2 1680.2.t.k 6
35.c odd 2 1 3675.2.a.bj 3
35.f even 4 2 735.2.d.b 6
35.k even 12 4 735.2.q.f 12
35.l odd 12 4 735.2.q.e 12
60.l odd 4 2 5040.2.t.v 6
105.k odd 4 2 2205.2.d.l 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
105.2.d.b 6 5.c odd 4 2
315.2.d.e 6 15.e even 4 2
525.2.a.j 3 1.a even 1 1 trivial
525.2.a.k 3 5.b even 2 1
735.2.d.b 6 35.f even 4 2
735.2.q.e 12 35.l odd 12 4
735.2.q.f 12 35.k even 12 4
1575.2.a.w 3 15.d odd 2 1
1575.2.a.x 3 3.b odd 2 1
1680.2.t.k 6 20.e even 4 2
2205.2.d.l 6 105.k odd 4 2
3675.2.a.bi 3 7.b odd 2 1
3675.2.a.bj 3 35.c odd 2 1
5040.2.t.v 6 60.l odd 4 2
8400.2.a.dg 3 4.b odd 2 1
8400.2.a.dj 3 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(525))\):

\( T_{2}^{3} + T_{2}^{2} - 5T_{2} - 1 \) Copy content Toggle raw display
\( T_{11} - 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 5T - 1 \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( (T - 2)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 6 T^{2} + \cdots + 8 \) Copy content Toggle raw display
$17$ \( T^{3} - 16T + 16 \) Copy content Toggle raw display
$19$ \( T^{3} - 6 T^{2} + \cdots + 40 \) Copy content Toggle raw display
$23$ \( T^{3} + 4 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$29$ \( T^{3} - 2 T^{2} + \cdots + 40 \) Copy content Toggle raw display
$31$ \( T^{3} - 2 T^{2} + \cdots + 184 \) Copy content Toggle raw display
$37$ \( T^{3} - 4 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$41$ \( T^{3} - 2 T^{2} + \cdots + 200 \) Copy content Toggle raw display
$43$ \( T^{3} + 4 T^{2} + \cdots - 832 \) Copy content Toggle raw display
$47$ \( T^{3} + 8 T^{2} + \cdots - 128 \) Copy content Toggle raw display
$53$ \( T^{3} + 14 T^{2} + \cdots - 296 \) Copy content Toggle raw display
$59$ \( T^{3} - 16 T^{2} + \cdots + 1280 \) Copy content Toggle raw display
$61$ \( T^{3} + 6 T^{2} + \cdots - 248 \) Copy content Toggle raw display
$67$ \( T^{3} + 8 T^{2} + \cdots - 128 \) Copy content Toggle raw display
$71$ \( (T - 2)^{3} \) Copy content Toggle raw display
$73$ \( T^{3} - 18 T^{2} + \cdots - 104 \) Copy content Toggle raw display
$79$ \( T^{3} - 12 T^{2} + \cdots + 320 \) Copy content Toggle raw display
$83$ \( T^{3} + 8 T^{2} + \cdots - 256 \) Copy content Toggle raw display
$89$ \( T^{3} - 14 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$97$ \( T^{3} - 22 T^{2} + \cdots + 1864 \) Copy content Toggle raw display
show more
show less