Properties

Label 525.2.q.d.374.1
Level $525$
Weight $2$
Character 525.374
Analytic conductor $4.192$
Analytic rank $0$
Dimension $4$
CM discriminant -3
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(299,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.299");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 21)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 374.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 525.374
Dual form 525.2.q.d.299.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 1.50000i) q^{3} +(1.00000 - 1.73205i) q^{4} +(2.59808 + 0.500000i) q^{7} +(-1.50000 - 2.59808i) q^{9} +(1.73205 + 3.00000i) q^{12} +1.73205 q^{13} +(-2.00000 - 3.46410i) q^{16} +(4.50000 - 2.59808i) q^{19} +(-3.00000 + 3.46410i) q^{21} +5.19615 q^{27} +(3.46410 - 4.00000i) q^{28} +(7.50000 + 4.33013i) q^{31} -6.00000 q^{36} +(0.866025 - 0.500000i) q^{37} +(-1.50000 + 2.59808i) q^{39} +5.00000i q^{43} +6.92820 q^{48} +(6.50000 + 2.59808i) q^{49} +(1.73205 - 3.00000i) q^{52} +9.00000i q^{57} +(6.00000 - 3.46410i) q^{61} +(-2.59808 - 7.50000i) q^{63} -8.00000 q^{64} +(-9.52628 - 5.50000i) q^{67} +(-7.79423 + 13.5000i) q^{73} -10.3923i q^{76} +(-6.50000 - 11.2583i) q^{79} +(-4.50000 + 7.79423i) q^{81} +(3.00000 + 8.66025i) q^{84} +(4.50000 + 0.866025i) q^{91} +(-12.9904 + 7.50000i) q^{93} -13.8564 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{4} - 6 q^{9} - 8 q^{16} + 18 q^{19} - 12 q^{21} + 30 q^{31} - 24 q^{36} - 6 q^{39} + 26 q^{49} + 24 q^{61} - 32 q^{64} - 26 q^{79} - 18 q^{81} + 12 q^{84} + 18 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(3\) −0.866025 + 1.50000i −0.500000 + 0.866025i
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) 0 0
\(6\) 0 0
\(7\) 2.59808 + 0.500000i 0.981981 + 0.188982i
\(8\) 0 0
\(9\) −1.50000 2.59808i −0.500000 0.866025i
\(10\) 0 0
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 1.73205 + 3.00000i 0.500000 + 0.866025i
\(13\) 1.73205 0.480384 0.240192 0.970725i \(-0.422790\pi\)
0.240192 + 0.970725i \(0.422790\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) 0 0
\(19\) 4.50000 2.59808i 1.03237 0.596040i 0.114708 0.993399i \(-0.463407\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) 0 0
\(21\) −3.00000 + 3.46410i −0.654654 + 0.755929i
\(22\) 0 0
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615 1.00000
\(28\) 3.46410 4.00000i 0.654654 0.755929i
\(29\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(30\) 0 0
\(31\) 7.50000 + 4.33013i 1.34704 + 0.777714i 0.987829 0.155543i \(-0.0497126\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −6.00000 −1.00000
\(37\) 0.866025 0.500000i 0.142374 0.0821995i −0.427121 0.904194i \(-0.640472\pi\)
0.569495 + 0.821995i \(0.307139\pi\)
\(38\) 0 0
\(39\) −1.50000 + 2.59808i −0.240192 + 0.416025i
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 5.00000i 0.762493i 0.924473 + 0.381246i \(0.124505\pi\)
−0.924473 + 0.381246i \(0.875495\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(48\) 6.92820 1.00000
\(49\) 6.50000 + 2.59808i 0.928571 + 0.371154i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.73205 3.00000i 0.240192 0.416025i
\(53\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 9.00000i 1.19208i
\(58\) 0 0
\(59\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(60\) 0 0
\(61\) 6.00000 3.46410i 0.768221 0.443533i −0.0640184 0.997949i \(-0.520392\pi\)
0.832240 + 0.554416i \(0.187058\pi\)
\(62\) 0 0
\(63\) −2.59808 7.50000i −0.327327 0.944911i
\(64\) −8.00000 −1.00000
\(65\) 0 0
\(66\) 0 0
\(67\) −9.52628 5.50000i −1.16382 0.671932i −0.211604 0.977356i \(-0.567869\pi\)
−0.952217 + 0.305424i \(0.901202\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) −7.79423 + 13.5000i −0.912245 + 1.58006i −0.101361 + 0.994850i \(0.532320\pi\)
−0.810885 + 0.585206i \(0.801014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 10.3923i 1.19208i
\(77\) 0 0
\(78\) 0 0
\(79\) −6.50000 11.2583i −0.731307 1.26666i −0.956325 0.292306i \(-0.905577\pi\)
0.225018 0.974355i \(-0.427756\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 3.00000 + 8.66025i 0.327327 + 0.944911i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(90\) 0 0
\(91\) 4.50000 + 0.866025i 0.471728 + 0.0907841i
\(92\) 0 0
\(93\) −12.9904 + 7.50000i −1.34704 + 0.777714i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −13.8564 −1.40690 −0.703452 0.710742i \(-0.748359\pi\)
−0.703452 + 0.710742i \(0.748359\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) −9.52628 16.5000i −0.938652 1.62579i −0.767988 0.640464i \(-0.778742\pi\)
−0.170664 0.985329i \(-0.554591\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 5.19615 9.00000i 0.500000 0.866025i
\(109\) −8.50000 + 14.7224i −0.814152 + 1.41015i 0.0957826 + 0.995402i \(0.469465\pi\)
−0.909935 + 0.414751i \(0.863869\pi\)
\(110\) 0 0
\(111\) 1.73205i 0.164399i
\(112\) −3.46410 10.0000i −0.327327 0.944911i
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.59808 4.50000i −0.240192 0.416025i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 9.52628i −0.500000 0.866025i
\(122\) 0 0
\(123\) 0 0
\(124\) 15.0000 8.66025i 1.34704 0.777714i
\(125\) 0 0
\(126\) 0 0
\(127\) 19.0000i 1.68598i −0.537931 0.842989i \(-0.680794\pi\)
0.537931 0.842989i \(-0.319206\pi\)
\(128\) 0 0
\(129\) −7.50000 4.33013i −0.660338 0.381246i
\(130\) 0 0
\(131\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(132\) 0 0
\(133\) 12.9904 4.50000i 1.12641 0.390199i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) 0 0
\(139\) 22.5167i 1.90984i 0.296866 + 0.954919i \(0.404058\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −6.00000 + 10.3923i −0.500000 + 0.866025i
\(145\) 0 0
\(146\) 0 0
\(147\) −9.52628 + 7.50000i −0.785714 + 0.618590i
\(148\) 2.00000i 0.164399i
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 0 0
\(151\) −2.00000 + 3.46410i −0.162758 + 0.281905i −0.935857 0.352381i \(-0.885372\pi\)
0.773099 + 0.634285i \(0.218706\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 3.00000 + 5.19615i 0.240192 + 0.416025i
\(157\) −10.3923 + 18.0000i −0.829396 + 1.43656i 0.0691164 + 0.997609i \(0.477982\pi\)
−0.898513 + 0.438948i \(0.855351\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −6.92820 + 4.00000i −0.542659 + 0.313304i −0.746156 0.665771i \(-0.768103\pi\)
0.203497 + 0.979076i \(0.434769\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) −10.0000 −0.769231
\(170\) 0 0
\(171\) −13.5000 7.79423i −1.03237 0.596040i
\(172\) 8.66025 + 5.00000i 0.660338 + 0.381246i
\(173\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) 0 0
\(181\) 25.9808i 1.93113i 0.260153 + 0.965567i \(0.416227\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 12.0000i 0.887066i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 13.5000 + 2.59808i 0.981981 + 0.188982i
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 6.92820 12.0000i 0.500000 0.866025i
\(193\) 21.6506 + 12.5000i 1.55845 + 0.899770i 0.997406 + 0.0719816i \(0.0229323\pi\)
0.561041 + 0.827788i \(0.310401\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 11.0000 8.66025i 0.785714 0.618590i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 3.00000 + 1.73205i 0.212664 + 0.122782i 0.602549 0.798082i \(-0.294152\pi\)
−0.389885 + 0.920864i \(0.627485\pi\)
\(200\) 0 0
\(201\) 16.5000 9.52628i 1.16382 0.671932i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −3.46410 6.00000i −0.240192 0.416025i
\(209\) 0 0
\(210\) 0 0
\(211\) 16.0000 1.10149 0.550743 0.834675i \(-0.314345\pi\)
0.550743 + 0.834675i \(0.314345\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 17.3205 + 15.0000i 1.17579 + 1.01827i
\(218\) 0 0
\(219\) −13.5000 23.3827i −0.912245 1.58006i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −10.3923 −0.695920 −0.347960 0.937509i \(-0.613126\pi\)
−0.347960 + 0.937509i \(0.613126\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) 15.5885 + 9.00000i 1.03237 + 0.596040i
\(229\) 25.5000 14.7224i 1.68509 0.972886i 0.726900 0.686743i \(-0.240960\pi\)
0.958187 0.286143i \(-0.0923732\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 22.5167 1.46261
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) −24.0000 13.8564i −1.54598 0.892570i −0.998443 0.0557856i \(-0.982234\pi\)
−0.547533 0.836784i \(-0.684433\pi\)
\(242\) 0 0
\(243\) −7.79423 13.5000i −0.500000 0.866025i
\(244\) 13.8564i 0.887066i
\(245\) 0 0
\(246\) 0 0
\(247\) 7.79423 4.50000i 0.495935 0.286328i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) −15.5885 3.00000i −0.981981 0.188982i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 0 0
\(259\) 2.50000 0.866025i 0.155342 0.0538122i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −19.0526 + 11.0000i −1.16382 + 0.671932i
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0 0
\(271\) −15.0000 + 8.66025i −0.911185 + 0.526073i −0.880812 0.473466i \(-0.843003\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 0 0
\(273\) −5.19615 + 6.00000i −0.314485 + 0.363137i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 26.8468 + 15.5000i 1.61307 + 0.931305i 0.988654 + 0.150210i \(0.0479951\pi\)
0.624413 + 0.781094i \(0.285338\pi\)
\(278\) 0 0
\(279\) 25.9808i 1.55543i
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 16.4545 28.5000i 0.978117 1.69415i 0.308879 0.951101i \(-0.400046\pi\)
0.669238 0.743048i \(-0.266621\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.50000 14.7224i −0.500000 0.866025i
\(290\) 0 0
\(291\) 12.0000 20.7846i 0.703452 1.21842i
\(292\) 15.5885 + 27.0000i 0.912245 + 1.58006i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −2.50000 + 12.9904i −0.144098 + 0.748753i
\(302\) 0 0
\(303\) 0 0
\(304\) −18.0000 10.3923i −1.03237 0.596040i
\(305\) 0 0
\(306\) 0 0
\(307\) −1.73205 −0.0988534 −0.0494267 0.998778i \(-0.515739\pi\)
−0.0494267 + 0.998778i \(0.515739\pi\)
\(308\) 0 0
\(309\) 33.0000 1.87730
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 0 0
\(313\) 2.59808 + 4.50000i 0.146852 + 0.254355i 0.930062 0.367402i \(-0.119753\pi\)
−0.783210 + 0.621757i \(0.786419\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −26.0000 −1.46261
\(317\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 9.00000 + 15.5885i 0.500000 + 0.866025i
\(325\) 0 0
\(326\) 0 0
\(327\) −14.7224 25.5000i −0.814152 1.41015i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.500000 0.866025i −0.0274825 0.0476011i 0.851957 0.523612i \(-0.175416\pi\)
−0.879440 + 0.476011i \(0.842082\pi\)
\(332\) 0 0
\(333\) −2.59808 1.50000i −0.142374 0.0821995i
\(334\) 0 0
\(335\) 0 0
\(336\) 18.0000 + 3.46410i 0.981981 + 0.188982i
\(337\) 5.00000i 0.272367i −0.990684 0.136184i \(-0.956516\pi\)
0.990684 0.136184i \(-0.0434837\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 15.5885 + 10.0000i 0.841698 + 0.539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) 34.6410i 1.85429i 0.374701 + 0.927146i \(0.377745\pi\)
−0.374701 + 0.927146i \(0.622255\pi\)
\(350\) 0 0
\(351\) 9.00000 0.480384
\(352\) 0 0
\(353\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(360\) 0 0
\(361\) 4.00000 6.92820i 0.210526 0.364642i
\(362\) 0 0
\(363\) 19.0526 1.00000
\(364\) 6.00000 6.92820i 0.314485 0.363137i
\(365\) 0 0
\(366\) 0 0
\(367\) 7.79423 13.5000i 0.406855 0.704694i −0.587680 0.809093i \(-0.699959\pi\)
0.994535 + 0.104399i \(0.0332919\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 30.0000i 1.55543i
\(373\) 11.2583 6.50000i 0.582934 0.336557i −0.179364 0.983783i \(-0.557404\pi\)
0.762299 + 0.647225i \(0.224071\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −37.0000 −1.90056 −0.950281 0.311393i \(-0.899204\pi\)
−0.950281 + 0.311393i \(0.899204\pi\)
\(380\) 0 0
\(381\) 28.5000 + 16.4545i 1.46010 + 0.842989i
\(382\) 0 0
\(383\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 12.9904 7.50000i 0.660338 0.381246i
\(388\) −13.8564 + 24.0000i −0.703452 + 1.21842i
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 9.52628 + 16.5000i 0.478110 + 0.828111i 0.999685 0.0250943i \(-0.00798860\pi\)
−0.521575 + 0.853206i \(0.674655\pi\)
\(398\) 0 0
\(399\) −4.50000 + 23.3827i −0.225282 + 1.17060i
\(400\) 0 0
\(401\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(402\) 0 0
\(403\) 12.9904 + 7.50000i 0.647097 + 0.373602i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 34.5000 + 19.9186i 1.70592 + 0.984911i 0.939490 + 0.342578i \(0.111300\pi\)
0.766426 + 0.642333i \(0.222033\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −38.1051 −1.87730
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −33.7750 19.5000i −1.65397 0.954919i
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −19.0000 −0.926003 −0.463002 0.886357i \(-0.653228\pi\)
−0.463002 + 0.886357i \(0.653228\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 17.3205 6.00000i 0.838198 0.290360i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(432\) −10.3923 18.0000i −0.500000 0.866025i
\(433\) −22.5167 −1.08208 −0.541041 0.840996i \(-0.681970\pi\)
−0.541041 + 0.840996i \(0.681970\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 17.0000 + 29.4449i 0.814152 + 1.41015i
\(437\) 0 0
\(438\) 0 0
\(439\) −27.0000 + 15.5885i −1.28864 + 0.743996i −0.978412 0.206666i \(-0.933739\pi\)
−0.310228 + 0.950662i \(0.600405\pi\)
\(440\) 0 0
\(441\) −3.00000 20.7846i −0.142857 0.989743i
\(442\) 0 0
\(443\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(444\) 3.00000 + 1.73205i 0.142374 + 0.0821995i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −20.7846 4.00000i −0.981981 0.188982i
\(449\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −3.46410 6.00000i −0.162758 0.281905i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −35.5070 + 20.5000i −1.66095 + 0.958950i −0.688686 + 0.725059i \(0.741812\pi\)
−0.972263 + 0.233890i \(0.924854\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 23.0000i 1.06890i −0.845200 0.534450i \(-0.820519\pi\)
0.845200 0.534450i \(-0.179481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(468\) −10.3923 −0.480384
\(469\) −22.0000 19.0526i −1.01587 0.879765i
\(470\) 0 0
\(471\) −18.0000 31.1769i −0.829396 1.43656i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) 0 0
\(481\) 1.50000 0.866025i 0.0683941 0.0394874i
\(482\) 0 0
\(483\) 0 0
\(484\) −22.0000 −1.00000
\(485\) 0 0
\(486\) 0 0
\(487\) −21.6506 12.5000i −0.981084 0.566429i −0.0784867 0.996915i \(-0.525009\pi\)
−0.902597 + 0.430486i \(0.858342\pi\)
\(488\) 0 0
\(489\) 13.8564i 0.626608i
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 34.6410i 1.55543i
\(497\) 0 0
\(498\) 0 0
\(499\) 21.5000 + 37.2391i 0.962472 + 1.66705i 0.716258 + 0.697835i \(0.245853\pi\)
0.246214 + 0.969216i \(0.420813\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 8.66025 15.0000i 0.384615 0.666173i
\(508\) −32.9090 19.0000i −1.46010 0.842989i
\(509\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(510\) 0 0
\(511\) −27.0000 + 31.1769i −1.19441 + 1.37919i
\(512\) 0 0
\(513\) 23.3827 13.5000i 1.03237 0.596040i
\(514\) 0 0
\(515\) 0 0
\(516\) −15.0000 + 8.66025i −0.660338 + 0.381246i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(522\) 0 0
\(523\) 14.7224 + 25.5000i 0.643767 + 1.11504i 0.984585 + 0.174908i \(0.0559627\pi\)
−0.340818 + 0.940129i \(0.610704\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 5.19615 27.0000i 0.225282 1.17060i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −14.5000 25.1147i −0.623404 1.07977i −0.988847 0.148933i \(-0.952416\pi\)
0.365444 0.930834i \(-0.380917\pi\)
\(542\) 0 0
\(543\) −38.9711 22.5000i −1.67241 0.965567i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 40.0000i 1.71028i −0.518400 0.855138i \(-0.673472\pi\)
0.518400 0.855138i \(-0.326528\pi\)
\(548\) 0 0
\(549\) −18.0000 10.3923i −0.768221 0.443533i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −11.2583 32.5000i −0.478753 1.38204i
\(554\) 0 0
\(555\) 0 0
\(556\) 39.0000 + 22.5167i 1.65397 + 0.954919i
\(557\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(558\) 0 0
\(559\) 8.66025i 0.366290i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −15.5885 + 18.0000i −0.654654 + 0.755929i
\(568\) 0 0
\(569\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) 15.5000 26.8468i 0.648655 1.12350i −0.334790 0.942293i \(-0.608665\pi\)
0.983444 0.181210i \(-0.0580014\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 12.0000 + 20.7846i 0.500000 + 0.866025i
\(577\) −16.4545 + 28.5000i −0.685009 + 1.18647i 0.288425 + 0.957503i \(0.406868\pi\)
−0.973434 + 0.228968i \(0.926465\pi\)
\(578\) 0 0
\(579\) −37.5000 + 21.6506i −1.55845 + 0.899770i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 3.46410 + 24.0000i 0.142857 + 0.989743i
\(589\) 45.0000 1.85419
\(590\) 0 0
\(591\) 0 0
\(592\) −3.46410 2.00000i −0.142374 0.0821995i
\(593\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −5.19615 + 3.00000i −0.212664 + 0.122782i
\(598\) 0 0
\(599\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(600\) 0 0
\(601\) 1.73205i 0.0706518i 0.999376 + 0.0353259i \(0.0112469\pi\)
−0.999376 + 0.0353259i \(0.988753\pi\)
\(602\) 0 0
\(603\) 33.0000i 1.34386i
\(604\) 4.00000 + 6.92820i 0.162758 + 0.281905i
\(605\) 0 0
\(606\) 0 0
\(607\) −2.59808 4.50000i −0.105453 0.182649i 0.808470 0.588537i \(-0.200296\pi\)
−0.913923 + 0.405887i \(0.866962\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −8.66025 5.00000i −0.349784 0.201948i 0.314806 0.949156i \(-0.398061\pi\)
−0.664590 + 0.747208i \(0.731394\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) −7.50000 4.33013i −0.301450 0.174042i 0.341644 0.939829i \(-0.389016\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 12.0000 0.480384
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 20.7846 + 36.0000i 0.829396 + 1.43656i
\(629\) 0 0
\(630\) 0 0
\(631\) 44.0000 1.75161 0.875806 0.482663i \(-0.160330\pi\)
0.875806 + 0.482663i \(0.160330\pi\)
\(632\) 0 0
\(633\) −13.8564 + 24.0000i −0.550743 + 0.953914i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 11.2583 + 4.50000i 0.446071 + 0.178296i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0 0
\(643\) 50.2295 1.98086 0.990429 0.138027i \(-0.0440759\pi\)
0.990429 + 0.138027i \(0.0440759\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) −37.5000 + 12.9904i −1.46974 + 0.509133i
\(652\) 16.0000i 0.626608i
\(653\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 46.7654 1.82449
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) −13.5000 7.79423i −0.525089 0.303160i 0.213925 0.976850i \(-0.431375\pi\)
−0.739014 + 0.673690i \(0.764708\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 9.00000 15.5885i 0.347960 0.602685i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 37.0000i 1.42625i −0.701039 0.713123i \(-0.747280\pi\)
0.701039 0.713123i \(-0.252720\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −10.0000 + 17.3205i −0.384615 + 0.666173i
\(677\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(678\) 0 0
\(679\) −36.0000 6.92820i −1.38155 0.265880i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(684\) −27.0000 + 15.5885i −1.03237 + 0.596040i
\(685\) 0 0
\(686\) 0 0
\(687\) 51.0000i 1.94577i
\(688\) 17.3205 10.0000i 0.660338 0.381246i
\(689\) 0 0
\(690\) 0 0
\(691\) 16.5000 9.52628i 0.627690 0.362397i −0.152167 0.988355i \(-0.548625\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 2.59808 4.50000i 0.0979883 0.169721i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 11.0000 + 19.0526i 0.413114 + 0.715534i 0.995228 0.0975728i \(-0.0311079\pi\)
−0.582115 + 0.813107i \(0.697775\pi\)
\(710\) 0 0
\(711\) −19.5000 + 33.7750i −0.731307 + 1.26666i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) −16.5000 47.6314i −0.614492 1.77389i
\(722\) 0 0
\(723\) 41.5692 24.0000i 1.54598 0.892570i
\(724\) 45.0000 + 25.9808i 1.67241 + 0.965567i
\(725\) 0 0
\(726\) 0 0
\(727\) 22.5167 0.835097 0.417548 0.908655i \(-0.362889\pi\)
0.417548 + 0.908655i \(0.362889\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 20.7846 + 12.0000i 0.768221 + 0.443533i
\(733\) 26.8468 + 46.5000i 0.991609 + 1.71752i 0.607760 + 0.794121i \(0.292068\pi\)
0.383849 + 0.923396i \(0.374598\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 26.5000 45.8993i 0.974818 1.68843i 0.294285 0.955718i \(-0.404919\pi\)
0.680534 0.732717i \(-0.261748\pi\)
\(740\) 0 0
\(741\) 15.5885i 0.572656i
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 20.5000 + 35.5070i 0.748056 + 1.29567i 0.948753 + 0.316017i \(0.102346\pi\)
−0.200698 + 0.979653i \(0.564321\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 18.0000 20.7846i 0.654654 0.755929i
\(757\) 26.0000i 0.944986i −0.881334 0.472493i \(-0.843354\pi\)
0.881334 0.472493i \(-0.156646\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 0 0
\(763\) −29.4449 + 34.0000i −1.06598 + 1.23088i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −13.8564 24.0000i −0.500000 0.866025i
\(769\) 25.9808i 0.936890i −0.883493 0.468445i \(-0.844814\pi\)
0.883493 0.468445i \(-0.155186\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 43.3013 25.0000i 1.55845 0.899770i
\(773\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −0.866025 + 4.50000i −0.0310685 + 0.161437i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −4.00000 27.7128i −0.142857 0.989743i
\(785\) 0 0
\(786\) 0 0
\(787\) 1.73205 3.00000i 0.0617409 0.106938i −0.833503 0.552515i \(-0.813668\pi\)
0.895244 + 0.445577i \(0.147001\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 10.3923 6.00000i 0.369042 0.213066i
\(794\) 0 0
\(795\) 0 0
\(796\) 6.00000 3.46410i 0.212664 0.122782i
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 38.1051i 1.34386i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0 0
\(811\) 10.3923i 0.364923i −0.983213 0.182462i \(-0.941593\pi\)
0.983213 0.182462i \(-0.0584065\pi\)
\(812\) 0 0
\(813\) 30.0000i 1.05215i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 12.9904 + 22.5000i 0.454476 + 0.787175i
\(818\) 0 0
\(819\) −4.50000 12.9904i −0.157243 0.453921i
\(820\) 0 0
\(821\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(822\) 0 0
\(823\) −45.0333 26.0000i −1.56976 0.906303i −0.996196 0.0871445i \(-0.972226\pi\)
−0.573567 0.819159i \(-0.694441\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −49.5000 28.5788i −1.71921 0.992584i −0.920383 0.391018i \(-0.872123\pi\)
−0.798823 0.601566i \(-0.794544\pi\)
\(830\) 0 0
\(831\) −46.5000 + 26.8468i −1.61307 + 0.931305i
\(832\) −13.8564 −0.480384
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 38.9711 + 22.5000i 1.34704 + 0.777714i
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 29.0000 1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 16.0000 27.7128i 0.550743 0.953914i
\(845\) 0 0
\(846\) 0 0
\(847\) −9.52628 27.5000i −0.327327 0.944911i
\(848\) 0 0
\(849\) 28.5000 + 49.3634i 0.978117 + 1.69415i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −46.7654 −1.60122 −0.800608 0.599189i \(-0.795490\pi\)
−0.800608 + 0.599189i \(0.795490\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(858\) 0 0
\(859\) 15.0000 8.66025i 0.511793 0.295484i −0.221777 0.975097i \(-0.571186\pi\)
0.733571 + 0.679613i \(0.237852\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 29.4449 1.00000
\(868\) 43.3013 15.0000i 1.46974 0.509133i
\(869\) 0 0
\(870\) 0 0
\(871\) −16.5000 9.52628i −0.559081 0.322786i
\(872\) 0 0
\(873\) 20.7846 + 36.0000i 0.703452 + 1.21842i
\(874\) 0 0
\(875\) 0 0
\(876\) −54.0000 −1.82449
\(877\) −29.4449 + 17.0000i −0.994282 + 0.574049i −0.906552 0.422095i \(-0.861295\pi\)
−0.0877308 + 0.996144i \(0.527962\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 47.0000i 1.58168i 0.612026 + 0.790838i \(0.290355\pi\)
−0.612026 + 0.790838i \(0.709645\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) 9.50000 49.3634i 0.318620 1.65560i
\(890\) 0 0
\(891\) 0 0
\(892\) −10.3923 + 18.0000i −0.347960 + 0.602685i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −17.3205 15.0000i −0.576390 0.499169i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 51.0955 + 29.5000i 1.69660 + 0.979531i 0.948945 + 0.315442i \(0.102153\pi\)
0.747653 + 0.664089i \(0.231180\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 31.1769 18.0000i 1.03237 0.596040i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 58.8897i 1.94577i
\(917\) 0 0
\(918\) 0 0
\(919\) 0.500000 + 0.866025i 0.0164935 + 0.0285675i 0.874154 0.485648i \(-0.161416\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) 0 0
\(921\) 1.50000 2.59808i 0.0494267 0.0856095i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −28.5788 + 49.5000i −0.938652 + 1.62579i
\(928\) 0 0
\(929\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(930\) 0 0
\(931\) 36.0000 5.19615i 1.17985 0.170297i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −50.2295 −1.64093 −0.820463 0.571700i \(-0.806284\pi\)
−0.820463 + 0.571700i \(0.806284\pi\)
\(938\) 0 0
\(939\) −9.00000 −0.293704
\(940\) 0 0
\(941\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) 22.5167 39.0000i 0.731307 1.26666i
\(949\) −13.5000 + 23.3827i −0.438229 + 0.759034i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 22.0000 + 38.1051i 0.709677 + 1.22920i
\(962\) 0 0
\(963\) 0 0
\(964\) −48.0000 + 27.7128i −1.54598 + 0.892570i
\(965\) 0 0
\(966\) 0 0
\(967\) 61.0000i 1.96163i −0.194946 0.980814i \(-0.562453\pi\)
0.194946 0.980814i \(-0.437547\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(972\) −31.1769 −1.00000
\(973\) −11.2583 + 58.5000i −0.360925 + 1.87542i
\(974\) 0 0
\(975\) 0 0
\(976\) −24.0000 13.8564i −0.768221 0.443533i
\(977\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 51.0000 1.62830
\(982\) 0 0
\(983\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 18.0000i 0.572656i
\(989\) 0 0
\(990\) 0 0
\(991\) 8.50000 14.7224i 0.270011 0.467673i −0.698853 0.715265i \(-0.746306\pi\)
0.968864 + 0.247592i \(0.0796392\pi\)
\(992\) 0 0
\(993\) 1.73205 0.0549650
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 19.9186 34.5000i 0.630828 1.09263i −0.356555 0.934274i \(-0.616049\pi\)
0.987383 0.158352i \(-0.0506179\pi\)
\(998\) 0 0
\(999\) 4.50000 2.59808i 0.142374 0.0821995i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.2.q.d.374.1 4
3.2 odd 2 CM 525.2.q.d.374.1 4
5.2 odd 4 525.2.t.c.101.1 2
5.3 odd 4 21.2.g.a.17.1 yes 2
5.4 even 2 inner 525.2.q.d.374.2 4
7.5 odd 6 inner 525.2.q.d.299.2 4
15.2 even 4 525.2.t.c.101.1 2
15.8 even 4 21.2.g.a.17.1 yes 2
15.14 odd 2 inner 525.2.q.d.374.2 4
20.3 even 4 336.2.bc.c.17.1 2
21.5 even 6 inner 525.2.q.d.299.2 4
35.3 even 12 147.2.c.a.146.1 2
35.12 even 12 525.2.t.c.26.1 2
35.13 even 4 147.2.g.a.80.1 2
35.18 odd 12 147.2.c.a.146.2 2
35.19 odd 6 inner 525.2.q.d.299.1 4
35.23 odd 12 147.2.g.a.68.1 2
35.33 even 12 21.2.g.a.5.1 2
45.13 odd 12 567.2.i.b.269.1 2
45.23 even 12 567.2.i.b.269.1 2
45.38 even 12 567.2.s.a.458.1 2
45.43 odd 12 567.2.s.a.458.1 2
60.23 odd 4 336.2.bc.c.17.1 2
105.23 even 12 147.2.g.a.68.1 2
105.38 odd 12 147.2.c.a.146.1 2
105.47 odd 12 525.2.t.c.26.1 2
105.53 even 12 147.2.c.a.146.2 2
105.68 odd 12 21.2.g.a.5.1 2
105.83 odd 4 147.2.g.a.80.1 2
105.89 even 6 inner 525.2.q.d.299.1 4
140.3 odd 12 2352.2.k.c.881.2 2
140.103 odd 12 336.2.bc.c.257.1 2
140.123 even 12 2352.2.k.c.881.1 2
315.68 odd 12 567.2.s.a.26.1 2
315.103 even 12 567.2.s.a.26.1 2
315.173 odd 12 567.2.i.b.215.1 2
315.313 even 12 567.2.i.b.215.1 2
420.143 even 12 2352.2.k.c.881.2 2
420.263 odd 12 2352.2.k.c.881.1 2
420.383 even 12 336.2.bc.c.257.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
21.2.g.a.5.1 2 35.33 even 12
21.2.g.a.5.1 2 105.68 odd 12
21.2.g.a.17.1 yes 2 5.3 odd 4
21.2.g.a.17.1 yes 2 15.8 even 4
147.2.c.a.146.1 2 35.3 even 12
147.2.c.a.146.1 2 105.38 odd 12
147.2.c.a.146.2 2 35.18 odd 12
147.2.c.a.146.2 2 105.53 even 12
147.2.g.a.68.1 2 35.23 odd 12
147.2.g.a.68.1 2 105.23 even 12
147.2.g.a.80.1 2 35.13 even 4
147.2.g.a.80.1 2 105.83 odd 4
336.2.bc.c.17.1 2 20.3 even 4
336.2.bc.c.17.1 2 60.23 odd 4
336.2.bc.c.257.1 2 140.103 odd 12
336.2.bc.c.257.1 2 420.383 even 12
525.2.q.d.299.1 4 35.19 odd 6 inner
525.2.q.d.299.1 4 105.89 even 6 inner
525.2.q.d.299.2 4 7.5 odd 6 inner
525.2.q.d.299.2 4 21.5 even 6 inner
525.2.q.d.374.1 4 1.1 even 1 trivial
525.2.q.d.374.1 4 3.2 odd 2 CM
525.2.q.d.374.2 4 5.4 even 2 inner
525.2.q.d.374.2 4 15.14 odd 2 inner
525.2.t.c.26.1 2 35.12 even 12
525.2.t.c.26.1 2 105.47 odd 12
525.2.t.c.101.1 2 5.2 odd 4
525.2.t.c.101.1 2 15.2 even 4
567.2.i.b.215.1 2 315.173 odd 12
567.2.i.b.215.1 2 315.313 even 12
567.2.i.b.269.1 2 45.13 odd 12
567.2.i.b.269.1 2 45.23 even 12
567.2.s.a.26.1 2 315.68 odd 12
567.2.s.a.26.1 2 315.103 even 12
567.2.s.a.458.1 2 45.38 even 12
567.2.s.a.458.1 2 45.43 odd 12
2352.2.k.c.881.1 2 140.123 even 12
2352.2.k.c.881.1 2 420.263 odd 12
2352.2.k.c.881.2 2 140.3 odd 12
2352.2.k.c.881.2 2 420.143 even 12