Properties

Label 525.2.t.b
Level $525$
Weight $2$
Character orbit 525.t
Analytic conductor $4.192$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(26,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 525.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.19214610612\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} - 1) q^{3} + (2 \zeta_{6} - 2) q^{4} + (2 \zeta_{6} - 3) q^{7} + 3 \zeta_{6} q^{9} + ( - 2 \zeta_{6} + 4) q^{12} + ( - 8 \zeta_{6} + 4) q^{13} - 4 \zeta_{6} q^{16} + ( - 2 \zeta_{6} + 4) q^{19} + \cdots + (6 \zeta_{6} - 3) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 3 q^{3} - 2 q^{4} - 4 q^{7} + 3 q^{9} + 6 q^{12} - 4 q^{16} + 6 q^{19} + 9 q^{21} - 2 q^{28} - 15 q^{31} - 12 q^{36} - 11 q^{37} - 12 q^{39} + 10 q^{43} + 2 q^{49} + 24 q^{52} - 12 q^{57} + 27 q^{61}+ \cdots + 15 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/525\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(176\) \(451\)
\(\chi(n)\) \(1\) \(-1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
26.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −1.50000 + 0.866025i −1.00000 1.73205i 0 0 −2.00000 1.73205i 0 1.50000 2.59808i 0
101.1 0 −1.50000 0.866025i −1.00000 + 1.73205i 0 0 −2.00000 + 1.73205i 0 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.2.t.b 2
3.b odd 2 1 CM 525.2.t.b 2
5.b even 2 1 525.2.t.d yes 2
5.c odd 4 2 525.2.q.c 4
7.d odd 6 1 inner 525.2.t.b 2
15.d odd 2 1 525.2.t.d yes 2
15.e even 4 2 525.2.q.c 4
21.g even 6 1 inner 525.2.t.b 2
35.i odd 6 1 525.2.t.d yes 2
35.k even 12 2 525.2.q.c 4
105.p even 6 1 525.2.t.d yes 2
105.w odd 12 2 525.2.q.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
525.2.q.c 4 5.c odd 4 2
525.2.q.c 4 15.e even 4 2
525.2.q.c 4 35.k even 12 2
525.2.q.c 4 105.w odd 12 2
525.2.t.b 2 1.a even 1 1 trivial
525.2.t.b 2 3.b odd 2 1 CM
525.2.t.b 2 7.d odd 6 1 inner
525.2.t.b 2 21.g even 6 1 inner
525.2.t.d yes 2 5.b even 2 1
525.2.t.d yes 2 15.d odd 2 1
525.2.t.d yes 2 35.i odd 6 1
525.2.t.d yes 2 105.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(525, [\chi])\):

\( T_{2} \) Copy content Toggle raw display
\( T_{13}^{2} + 48 \) Copy content Toggle raw display
\( T_{37}^{2} + 11T_{37} + 121 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 4T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 48 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 6T + 12 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 15T + 75 \) Copy content Toggle raw display
$37$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T - 5)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 27T + 243 \) Copy content Toggle raw display
$67$ \( T^{2} + 16T + 256 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$79$ \( T^{2} + 17T + 289 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 27 \) Copy content Toggle raw display
show more
show less