Properties

Label 525.2.t.b
Level 525525
Weight 22
Character orbit 525.t
Analytic conductor 4.1924.192
Analytic rank 00
Dimension 22
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,2,Mod(26,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 525=3527 525 = 3 \cdot 5^{2} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 525.t (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.192146106124.19214610612
Analytic rank: 00
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{-3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D6]\mathrm{U}(1)[D_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a primitive root of unity ζ6\zeta_{6}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(ζ61)q3+(2ζ62)q4+(2ζ63)q7+3ζ6q9+(2ζ6+4)q12+(8ζ6+4)q134ζ6q16+(2ζ6+4)q19++(6ζ63)q97+O(q100) q + ( - \zeta_{6} - 1) q^{3} + (2 \zeta_{6} - 2) q^{4} + (2 \zeta_{6} - 3) q^{7} + 3 \zeta_{6} q^{9} + ( - 2 \zeta_{6} + 4) q^{12} + ( - 8 \zeta_{6} + 4) q^{13} - 4 \zeta_{6} q^{16} + ( - 2 \zeta_{6} + 4) q^{19} + \cdots + (6 \zeta_{6} - 3) q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q32q44q7+3q9+6q124q16+6q19+9q212q2815q3112q3611q3712q39+10q43+2q49+24q5212q57+27q61++15q93+O(q100) 2 q - 3 q^{3} - 2 q^{4} - 4 q^{7} + 3 q^{9} + 6 q^{12} - 4 q^{16} + 6 q^{19} + 9 q^{21} - 2 q^{28} - 15 q^{31} - 12 q^{36} - 11 q^{37} - 12 q^{39} + 10 q^{43} + 2 q^{49} + 24 q^{52} - 12 q^{57} + 27 q^{61}+ \cdots + 15 q^{93}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/525Z)×\left(\mathbb{Z}/525\mathbb{Z}\right)^\times.

nn 127127 176176 451451
χ(n)\chi(n) 11 1-1 ζ6\zeta_{6}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
26.1
0.500000 0.866025i
0.500000 + 0.866025i
0 −1.50000 + 0.866025i −1.00000 1.73205i 0 0 −2.00000 1.73205i 0 1.50000 2.59808i 0
101.1 0 −1.50000 0.866025i −1.00000 + 1.73205i 0 0 −2.00000 + 1.73205i 0 1.50000 + 2.59808i 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by Q(3)\Q(\sqrt{-3})
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 525.2.t.b 2
3.b odd 2 1 CM 525.2.t.b 2
5.b even 2 1 525.2.t.d yes 2
5.c odd 4 2 525.2.q.c 4
7.d odd 6 1 inner 525.2.t.b 2
15.d odd 2 1 525.2.t.d yes 2
15.e even 4 2 525.2.q.c 4
21.g even 6 1 inner 525.2.t.b 2
35.i odd 6 1 525.2.t.d yes 2
35.k even 12 2 525.2.q.c 4
105.p even 6 1 525.2.t.d yes 2
105.w odd 12 2 525.2.q.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
525.2.q.c 4 5.c odd 4 2
525.2.q.c 4 15.e even 4 2
525.2.q.c 4 35.k even 12 2
525.2.q.c 4 105.w odd 12 2
525.2.t.b 2 1.a even 1 1 trivial
525.2.t.b 2 3.b odd 2 1 CM
525.2.t.b 2 7.d odd 6 1 inner
525.2.t.b 2 21.g even 6 1 inner
525.2.t.d yes 2 5.b even 2 1
525.2.t.d yes 2 15.d odd 2 1
525.2.t.d yes 2 35.i odd 6 1
525.2.t.d yes 2 105.p even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(525,[χ])S_{2}^{\mathrm{new}}(525, [\chi]):

T2 T_{2} Copy content Toggle raw display
T132+48 T_{13}^{2} + 48 Copy content Toggle raw display
T372+11T37+121 T_{37}^{2} + 11T_{37} + 121 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+3T+3 T^{2} + 3T + 3 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+4T+7 T^{2} + 4T + 7 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+48 T^{2} + 48 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 T26T+12 T^{2} - 6T + 12 Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2 T^{2} Copy content Toggle raw display
3131 T2+15T+75 T^{2} + 15T + 75 Copy content Toggle raw display
3737 T2+11T+121 T^{2} + 11T + 121 Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 (T5)2 (T - 5)^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2 T^{2} Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T227T+243 T^{2} - 27T + 243 Copy content Toggle raw display
6767 T2+16T+256 T^{2} + 16T + 256 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T23T+3 T^{2} - 3T + 3 Copy content Toggle raw display
7979 T2+17T+289 T^{2} + 17T + 289 Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 T2 T^{2} Copy content Toggle raw display
9797 T2+27 T^{2} + 27 Copy content Toggle raw display
show more
show less