Properties

Label 525.4.a.o.1.2
Level $525$
Weight $4$
Character 525.1
Self dual yes
Analytic conductor $30.976$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [525,4,Mod(1,525)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(525, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("525.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 525 = 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 525.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(30.9760027530\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 105)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 525.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.23607 q^{2} -3.00000 q^{3} +9.94427 q^{4} -12.7082 q^{6} +7.00000 q^{7} +8.23607 q^{8} +9.00000 q^{9} -41.5279 q^{11} -29.8328 q^{12} -88.9706 q^{13} +29.6525 q^{14} -44.6656 q^{16} +120.387 q^{17} +38.1246 q^{18} -112.138 q^{19} -21.0000 q^{21} -175.915 q^{22} +115.279 q^{23} -24.7082 q^{24} -376.885 q^{26} -27.0000 q^{27} +69.6099 q^{28} -144.833 q^{29} -258.079 q^{31} -255.095 q^{32} +124.584 q^{33} +509.967 q^{34} +89.4984 q^{36} -48.3344 q^{37} -475.023 q^{38} +266.912 q^{39} +200.885 q^{41} -88.9574 q^{42} +218.217 q^{43} -412.964 q^{44} +488.328 q^{46} -575.659 q^{47} +133.997 q^{48} +49.0000 q^{49} -361.161 q^{51} -884.748 q^{52} +184.302 q^{53} -114.374 q^{54} +57.6525 q^{56} +336.413 q^{57} -613.522 q^{58} -151.502 q^{59} -529.830 q^{61} -1093.24 q^{62} +63.0000 q^{63} -723.276 q^{64} +527.745 q^{66} -1.28485 q^{67} +1197.16 q^{68} -345.836 q^{69} -61.4226 q^{71} +74.1246 q^{72} -484.800 q^{73} -204.748 q^{74} -1115.13 q^{76} -290.695 q^{77} +1130.66 q^{78} +878.257 q^{79} +81.0000 q^{81} +850.964 q^{82} -491.830 q^{83} -208.830 q^{84} +924.381 q^{86} +434.498 q^{87} -342.026 q^{88} -415.560 q^{89} -622.794 q^{91} +1146.36 q^{92} +774.237 q^{93} -2438.53 q^{94} +765.286 q^{96} +1031.70 q^{97} +207.567 q^{98} -373.751 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 6 q^{3} + 2 q^{4} - 12 q^{6} + 14 q^{7} + 12 q^{8} + 18 q^{9} - 92 q^{11} - 6 q^{12} - 8 q^{13} + 28 q^{14} + 18 q^{16} + 44 q^{17} + 36 q^{18} - 108 q^{19} - 42 q^{21} - 164 q^{22} + 320 q^{23}+ \cdots - 828 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.23607 1.49768 0.748838 0.662753i \(-0.230612\pi\)
0.748838 + 0.662753i \(0.230612\pi\)
\(3\) −3.00000 −0.577350
\(4\) 9.94427 1.24303
\(5\) 0 0
\(6\) −12.7082 −0.864684
\(7\) 7.00000 0.377964
\(8\) 8.23607 0.363986
\(9\) 9.00000 0.333333
\(10\) 0 0
\(11\) −41.5279 −1.13828 −0.569142 0.822239i \(-0.692725\pi\)
−0.569142 + 0.822239i \(0.692725\pi\)
\(12\) −29.8328 −0.717666
\(13\) −88.9706 −1.89815 −0.949077 0.315044i \(-0.897981\pi\)
−0.949077 + 0.315044i \(0.897981\pi\)
\(14\) 29.6525 0.566068
\(15\) 0 0
\(16\) −44.6656 −0.697900
\(17\) 120.387 1.71754 0.858769 0.512364i \(-0.171230\pi\)
0.858769 + 0.512364i \(0.171230\pi\)
\(18\) 38.1246 0.499225
\(19\) −112.138 −1.35401 −0.677004 0.735979i \(-0.736722\pi\)
−0.677004 + 0.735979i \(0.736722\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) −175.915 −1.70478
\(23\) 115.279 1.04510 0.522549 0.852609i \(-0.324981\pi\)
0.522549 + 0.852609i \(0.324981\pi\)
\(24\) −24.7082 −0.210148
\(25\) 0 0
\(26\) −376.885 −2.84282
\(27\) −27.0000 −0.192450
\(28\) 69.6099 0.469823
\(29\) −144.833 −0.927406 −0.463703 0.885991i \(-0.653480\pi\)
−0.463703 + 0.885991i \(0.653480\pi\)
\(30\) 0 0
\(31\) −258.079 −1.49524 −0.747618 0.664128i \(-0.768803\pi\)
−0.747618 + 0.664128i \(0.768803\pi\)
\(32\) −255.095 −1.40922
\(33\) 124.584 0.657188
\(34\) 509.967 2.57231
\(35\) 0 0
\(36\) 89.4984 0.414345
\(37\) −48.3344 −0.214760 −0.107380 0.994218i \(-0.534246\pi\)
−0.107380 + 0.994218i \(0.534246\pi\)
\(38\) −475.023 −2.02787
\(39\) 266.912 1.09590
\(40\) 0 0
\(41\) 200.885 0.765196 0.382598 0.923915i \(-0.375029\pi\)
0.382598 + 0.923915i \(0.375029\pi\)
\(42\) −88.9574 −0.326820
\(43\) 218.217 0.773901 0.386950 0.922101i \(-0.373528\pi\)
0.386950 + 0.922101i \(0.373528\pi\)
\(44\) −412.964 −1.41493
\(45\) 0 0
\(46\) 488.328 1.56522
\(47\) −575.659 −1.78657 −0.893283 0.449496i \(-0.851604\pi\)
−0.893283 + 0.449496i \(0.851604\pi\)
\(48\) 133.997 0.402933
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −361.161 −0.991621
\(52\) −884.748 −2.35947
\(53\) 184.302 0.477657 0.238828 0.971062i \(-0.423237\pi\)
0.238828 + 0.971062i \(0.423237\pi\)
\(54\) −114.374 −0.288228
\(55\) 0 0
\(56\) 57.6525 0.137574
\(57\) 336.413 0.781737
\(58\) −613.522 −1.38895
\(59\) −151.502 −0.334302 −0.167151 0.985931i \(-0.553457\pi\)
−0.167151 + 0.985931i \(0.553457\pi\)
\(60\) 0 0
\(61\) −529.830 −1.11209 −0.556047 0.831151i \(-0.687683\pi\)
−0.556047 + 0.831151i \(0.687683\pi\)
\(62\) −1093.24 −2.23938
\(63\) 63.0000 0.125988
\(64\) −723.276 −1.41265
\(65\) 0 0
\(66\) 527.745 0.984256
\(67\) −1.28485 −0.00234283 −0.00117142 0.999999i \(-0.500373\pi\)
−0.00117142 + 0.999999i \(0.500373\pi\)
\(68\) 1197.16 2.13496
\(69\) −345.836 −0.603388
\(70\) 0 0
\(71\) −61.4226 −0.102669 −0.0513347 0.998682i \(-0.516348\pi\)
−0.0513347 + 0.998682i \(0.516348\pi\)
\(72\) 74.1246 0.121329
\(73\) −484.800 −0.777282 −0.388641 0.921389i \(-0.627055\pi\)
−0.388641 + 0.921389i \(0.627055\pi\)
\(74\) −204.748 −0.321641
\(75\) 0 0
\(76\) −1115.13 −1.68308
\(77\) −290.695 −0.430231
\(78\) 1130.66 1.64130
\(79\) 878.257 1.25078 0.625390 0.780312i \(-0.284940\pi\)
0.625390 + 0.780312i \(0.284940\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) 850.964 1.14602
\(83\) −491.830 −0.650426 −0.325213 0.945641i \(-0.605436\pi\)
−0.325213 + 0.945641i \(0.605436\pi\)
\(84\) −208.830 −0.271252
\(85\) 0 0
\(86\) 924.381 1.15905
\(87\) 434.498 0.535438
\(88\) −342.026 −0.414320
\(89\) −415.560 −0.494936 −0.247468 0.968896i \(-0.579599\pi\)
−0.247468 + 0.968896i \(0.579599\pi\)
\(90\) 0 0
\(91\) −622.794 −0.717435
\(92\) 1146.36 1.29909
\(93\) 774.237 0.863275
\(94\) −2438.53 −2.67570
\(95\) 0 0
\(96\) 765.286 0.813611
\(97\) 1031.70 1.07993 0.539964 0.841688i \(-0.318438\pi\)
0.539964 + 0.841688i \(0.318438\pi\)
\(98\) 207.567 0.213954
\(99\) −373.751 −0.379428
\(100\) 0 0
\(101\) 1447.19 1.42576 0.712878 0.701288i \(-0.247391\pi\)
0.712878 + 0.701288i \(0.247391\pi\)
\(102\) −1529.90 −1.48513
\(103\) 163.567 0.156473 0.0782364 0.996935i \(-0.475071\pi\)
0.0782364 + 0.996935i \(0.475071\pi\)
\(104\) −732.768 −0.690902
\(105\) 0 0
\(106\) 780.715 0.715375
\(107\) 129.653 0.117141 0.0585703 0.998283i \(-0.481346\pi\)
0.0585703 + 0.998283i \(0.481346\pi\)
\(108\) −268.495 −0.239222
\(109\) 566.681 0.497965 0.248983 0.968508i \(-0.419904\pi\)
0.248983 + 0.968508i \(0.419904\pi\)
\(110\) 0 0
\(111\) 145.003 0.123992
\(112\) −312.659 −0.263782
\(113\) −809.890 −0.674230 −0.337115 0.941463i \(-0.609451\pi\)
−0.337115 + 0.941463i \(0.609451\pi\)
\(114\) 1425.07 1.17079
\(115\) 0 0
\(116\) −1440.26 −1.15280
\(117\) −800.735 −0.632718
\(118\) −641.771 −0.500676
\(119\) 842.709 0.649168
\(120\) 0 0
\(121\) 393.563 0.295690
\(122\) −2244.39 −1.66556
\(123\) −602.656 −0.441786
\(124\) −2566.41 −1.85863
\(125\) 0 0
\(126\) 266.872 0.188689
\(127\) 2584.25 1.80563 0.902816 0.430028i \(-0.141496\pi\)
0.902816 + 0.430028i \(0.141496\pi\)
\(128\) −1023.08 −0.706473
\(129\) −654.650 −0.446812
\(130\) 0 0
\(131\) −1421.10 −0.947804 −0.473902 0.880578i \(-0.657155\pi\)
−0.473902 + 0.880578i \(0.657155\pi\)
\(132\) 1238.89 0.816908
\(133\) −784.964 −0.511767
\(134\) −5.44272 −0.00350880
\(135\) 0 0
\(136\) 991.515 0.625160
\(137\) −104.878 −0.0654037 −0.0327019 0.999465i \(-0.510411\pi\)
−0.0327019 + 0.999465i \(0.510411\pi\)
\(138\) −1464.98 −0.903679
\(139\) −913.160 −0.557217 −0.278609 0.960405i \(-0.589873\pi\)
−0.278609 + 0.960405i \(0.589873\pi\)
\(140\) 0 0
\(141\) 1726.98 1.03147
\(142\) −260.190 −0.153765
\(143\) 3694.76 2.16064
\(144\) −401.991 −0.232633
\(145\) 0 0
\(146\) −2053.65 −1.16412
\(147\) −147.000 −0.0824786
\(148\) −480.650 −0.266954
\(149\) 1781.45 0.979476 0.489738 0.871870i \(-0.337092\pi\)
0.489738 + 0.871870i \(0.337092\pi\)
\(150\) 0 0
\(151\) 1407.53 0.758564 0.379282 0.925281i \(-0.376171\pi\)
0.379282 + 0.925281i \(0.376171\pi\)
\(152\) −923.574 −0.492841
\(153\) 1083.48 0.572512
\(154\) −1231.40 −0.644346
\(155\) 0 0
\(156\) 2654.24 1.36224
\(157\) 1598.94 0.812798 0.406399 0.913696i \(-0.366784\pi\)
0.406399 + 0.913696i \(0.366784\pi\)
\(158\) 3720.36 1.87326
\(159\) −552.906 −0.275775
\(160\) 0 0
\(161\) 806.950 0.395010
\(162\) 343.122 0.166408
\(163\) 204.892 0.0984562 0.0492281 0.998788i \(-0.484324\pi\)
0.0492281 + 0.998788i \(0.484324\pi\)
\(164\) 1997.66 0.951165
\(165\) 0 0
\(166\) −2083.42 −0.974127
\(167\) 1165.94 0.540259 0.270129 0.962824i \(-0.412933\pi\)
0.270129 + 0.962824i \(0.412933\pi\)
\(168\) −172.957 −0.0794283
\(169\) 5718.76 2.60299
\(170\) 0 0
\(171\) −1009.24 −0.451336
\(172\) 2170.01 0.961985
\(173\) 2538.00 1.11538 0.557690 0.830049i \(-0.311688\pi\)
0.557690 + 0.830049i \(0.311688\pi\)
\(174\) 1840.56 0.801913
\(175\) 0 0
\(176\) 1854.87 0.794409
\(177\) 454.505 0.193009
\(178\) −1760.34 −0.741254
\(179\) 392.255 0.163791 0.0818954 0.996641i \(-0.473903\pi\)
0.0818954 + 0.996641i \(0.473903\pi\)
\(180\) 0 0
\(181\) −2978.08 −1.22298 −0.611489 0.791253i \(-0.709429\pi\)
−0.611489 + 0.791253i \(0.709429\pi\)
\(182\) −2638.20 −1.07448
\(183\) 1589.49 0.642068
\(184\) 949.443 0.380401
\(185\) 0 0
\(186\) 3279.72 1.29291
\(187\) −4999.41 −1.95504
\(188\) −5724.51 −2.22076
\(189\) −189.000 −0.0727393
\(190\) 0 0
\(191\) −1097.37 −0.415722 −0.207861 0.978158i \(-0.566650\pi\)
−0.207861 + 0.978158i \(0.566650\pi\)
\(192\) 2169.83 0.815592
\(193\) −3500.31 −1.30548 −0.652740 0.757582i \(-0.726381\pi\)
−0.652740 + 0.757582i \(0.726381\pi\)
\(194\) 4370.34 1.61738
\(195\) 0 0
\(196\) 487.269 0.177576
\(197\) −1573.96 −0.569237 −0.284618 0.958641i \(-0.591867\pi\)
−0.284618 + 0.958641i \(0.591867\pi\)
\(198\) −1583.23 −0.568260
\(199\) −3396.62 −1.20995 −0.604976 0.796244i \(-0.706817\pi\)
−0.604976 + 0.796244i \(0.706817\pi\)
\(200\) 0 0
\(201\) 3.85456 0.00135263
\(202\) 6130.42 2.13532
\(203\) −1013.83 −0.350527
\(204\) −3591.48 −1.23262
\(205\) 0 0
\(206\) 692.879 0.234346
\(207\) 1037.51 0.348366
\(208\) 3973.93 1.32472
\(209\) 4656.84 1.54125
\(210\) 0 0
\(211\) 3337.81 1.08903 0.544513 0.838753i \(-0.316715\pi\)
0.544513 + 0.838753i \(0.316715\pi\)
\(212\) 1832.75 0.593744
\(213\) 184.268 0.0592762
\(214\) 549.220 0.175439
\(215\) 0 0
\(216\) −222.374 −0.0700492
\(217\) −1806.55 −0.565146
\(218\) 2400.50 0.745791
\(219\) 1454.40 0.448764
\(220\) 0 0
\(221\) −10710.9 −3.26015
\(222\) 614.243 0.185700
\(223\) −127.328 −0.0382356 −0.0191178 0.999817i \(-0.506086\pi\)
−0.0191178 + 0.999817i \(0.506086\pi\)
\(224\) −1785.67 −0.532633
\(225\) 0 0
\(226\) −3430.75 −1.00978
\(227\) −3844.12 −1.12398 −0.561990 0.827144i \(-0.689964\pi\)
−0.561990 + 0.827144i \(0.689964\pi\)
\(228\) 3345.39 0.971726
\(229\) 2536.95 0.732080 0.366040 0.930599i \(-0.380713\pi\)
0.366040 + 0.930599i \(0.380713\pi\)
\(230\) 0 0
\(231\) 872.085 0.248394
\(232\) −1192.85 −0.337563
\(233\) −3987.44 −1.12114 −0.560570 0.828107i \(-0.689418\pi\)
−0.560570 + 0.828107i \(0.689418\pi\)
\(234\) −3391.97 −0.947607
\(235\) 0 0
\(236\) −1506.57 −0.415549
\(237\) −2634.77 −0.722138
\(238\) 3569.77 0.972244
\(239\) −3367.18 −0.911317 −0.455659 0.890155i \(-0.650596\pi\)
−0.455659 + 0.890155i \(0.650596\pi\)
\(240\) 0 0
\(241\) −939.551 −0.251128 −0.125564 0.992086i \(-0.540074\pi\)
−0.125564 + 0.992086i \(0.540074\pi\)
\(242\) 1667.16 0.442848
\(243\) −243.000 −0.0641500
\(244\) −5268.77 −1.38237
\(245\) 0 0
\(246\) −2552.89 −0.661653
\(247\) 9976.96 2.57012
\(248\) −2125.56 −0.544246
\(249\) 1475.49 0.375523
\(250\) 0 0
\(251\) −1403.96 −0.353056 −0.176528 0.984296i \(-0.556487\pi\)
−0.176528 + 0.984296i \(0.556487\pi\)
\(252\) 626.489 0.156608
\(253\) −4787.28 −1.18962
\(254\) 10947.1 2.70425
\(255\) 0 0
\(256\) 1452.36 0.354579
\(257\) 1964.86 0.476905 0.238453 0.971154i \(-0.423360\pi\)
0.238453 + 0.971154i \(0.423360\pi\)
\(258\) −2773.14 −0.669179
\(259\) −338.341 −0.0811717
\(260\) 0 0
\(261\) −1303.50 −0.309135
\(262\) −6019.89 −1.41950
\(263\) 393.821 0.0923347 0.0461673 0.998934i \(-0.485299\pi\)
0.0461673 + 0.998934i \(0.485299\pi\)
\(264\) 1026.08 0.239208
\(265\) 0 0
\(266\) −3325.16 −0.766462
\(267\) 1246.68 0.285751
\(268\) −12.7769 −0.00291222
\(269\) −1877.03 −0.425444 −0.212722 0.977113i \(-0.568233\pi\)
−0.212722 + 0.977113i \(0.568233\pi\)
\(270\) 0 0
\(271\) −689.909 −0.154646 −0.0773228 0.997006i \(-0.524637\pi\)
−0.0773228 + 0.997006i \(0.524637\pi\)
\(272\) −5377.16 −1.19867
\(273\) 1868.38 0.414211
\(274\) −444.269 −0.0979536
\(275\) 0 0
\(276\) −3439.09 −0.750031
\(277\) −6289.13 −1.36418 −0.682088 0.731270i \(-0.738928\pi\)
−0.682088 + 0.731270i \(0.738928\pi\)
\(278\) −3868.21 −0.834531
\(279\) −2322.71 −0.498412
\(280\) 0 0
\(281\) −1954.87 −0.415010 −0.207505 0.978234i \(-0.566534\pi\)
−0.207505 + 0.978234i \(0.566534\pi\)
\(282\) 7315.60 1.54481
\(283\) −5033.96 −1.05738 −0.528688 0.848816i \(-0.677316\pi\)
−0.528688 + 0.848816i \(0.677316\pi\)
\(284\) −610.803 −0.127621
\(285\) 0 0
\(286\) 15651.2 3.23594
\(287\) 1406.20 0.289217
\(288\) −2295.86 −0.469738
\(289\) 9580.03 1.94993
\(290\) 0 0
\(291\) −3095.09 −0.623497
\(292\) −4820.99 −0.966188
\(293\) −6369.12 −1.26993 −0.634963 0.772543i \(-0.718985\pi\)
−0.634963 + 0.772543i \(0.718985\pi\)
\(294\) −622.702 −0.123526
\(295\) 0 0
\(296\) −398.085 −0.0781697
\(297\) 1121.25 0.219063
\(298\) 7546.34 1.46694
\(299\) −10256.4 −1.98376
\(300\) 0 0
\(301\) 1527.52 0.292507
\(302\) 5962.39 1.13608
\(303\) −4341.58 −0.823160
\(304\) 5008.70 0.944963
\(305\) 0 0
\(306\) 4589.71 0.857438
\(307\) 6619.83 1.23066 0.615332 0.788268i \(-0.289022\pi\)
0.615332 + 0.788268i \(0.289022\pi\)
\(308\) −2890.75 −0.534792
\(309\) −490.700 −0.0903396
\(310\) 0 0
\(311\) −9909.22 −1.80675 −0.903377 0.428848i \(-0.858920\pi\)
−0.903377 + 0.428848i \(0.858920\pi\)
\(312\) 2198.30 0.398892
\(313\) 422.336 0.0762678 0.0381339 0.999273i \(-0.487859\pi\)
0.0381339 + 0.999273i \(0.487859\pi\)
\(314\) 6773.22 1.21731
\(315\) 0 0
\(316\) 8733.63 1.55476
\(317\) 4902.78 0.868668 0.434334 0.900752i \(-0.356984\pi\)
0.434334 + 0.900752i \(0.356984\pi\)
\(318\) −2342.15 −0.413022
\(319\) 6014.60 1.05565
\(320\) 0 0
\(321\) −388.960 −0.0676312
\(322\) 3418.30 0.591597
\(323\) −13499.9 −2.32556
\(324\) 805.486 0.138115
\(325\) 0 0
\(326\) 867.935 0.147455
\(327\) −1700.04 −0.287500
\(328\) 1654.51 0.278521
\(329\) −4029.62 −0.675258
\(330\) 0 0
\(331\) −5281.74 −0.877071 −0.438535 0.898714i \(-0.644503\pi\)
−0.438535 + 0.898714i \(0.644503\pi\)
\(332\) −4890.89 −0.808501
\(333\) −435.009 −0.0715867
\(334\) 4939.01 0.809133
\(335\) 0 0
\(336\) 937.978 0.152294
\(337\) −4459.60 −0.720860 −0.360430 0.932786i \(-0.617370\pi\)
−0.360430 + 0.932786i \(0.617370\pi\)
\(338\) 24225.1 3.89843
\(339\) 2429.67 0.389267
\(340\) 0 0
\(341\) 10717.5 1.70200
\(342\) −4275.21 −0.675956
\(343\) 343.000 0.0539949
\(344\) 1797.25 0.281689
\(345\) 0 0
\(346\) 10751.2 1.67048
\(347\) −5261.97 −0.814056 −0.407028 0.913416i \(-0.633435\pi\)
−0.407028 + 0.913416i \(0.633435\pi\)
\(348\) 4320.77 0.665568
\(349\) 960.325 0.147292 0.0736461 0.997284i \(-0.476536\pi\)
0.0736461 + 0.997284i \(0.476536\pi\)
\(350\) 0 0
\(351\) 2402.21 0.365300
\(352\) 10593.6 1.60409
\(353\) 8925.80 1.34581 0.672907 0.739727i \(-0.265045\pi\)
0.672907 + 0.739727i \(0.265045\pi\)
\(354\) 1925.31 0.289066
\(355\) 0 0
\(356\) −4132.45 −0.615222
\(357\) −2528.13 −0.374797
\(358\) 1661.62 0.245306
\(359\) −3056.27 −0.449314 −0.224657 0.974438i \(-0.572126\pi\)
−0.224657 + 0.974438i \(0.572126\pi\)
\(360\) 0 0
\(361\) 5715.88 0.833340
\(362\) −12615.4 −1.83162
\(363\) −1180.69 −0.170717
\(364\) −6193.23 −0.891796
\(365\) 0 0
\(366\) 6733.18 0.961610
\(367\) 1813.52 0.257943 0.128971 0.991648i \(-0.458832\pi\)
0.128971 + 0.991648i \(0.458832\pi\)
\(368\) −5148.99 −0.729375
\(369\) 1807.97 0.255065
\(370\) 0 0
\(371\) 1290.11 0.180537
\(372\) 7699.22 1.07308
\(373\) 4517.48 0.627094 0.313547 0.949573i \(-0.398483\pi\)
0.313547 + 0.949573i \(0.398483\pi\)
\(374\) −21177.9 −2.92802
\(375\) 0 0
\(376\) −4741.17 −0.650285
\(377\) 12885.9 1.76036
\(378\) −800.617 −0.108940
\(379\) −4931.24 −0.668340 −0.334170 0.942513i \(-0.608456\pi\)
−0.334170 + 0.942513i \(0.608456\pi\)
\(380\) 0 0
\(381\) −7752.75 −1.04248
\(382\) −4648.53 −0.622617
\(383\) 1482.37 0.197770 0.0988849 0.995099i \(-0.468472\pi\)
0.0988849 + 0.995099i \(0.468472\pi\)
\(384\) 3069.25 0.407883
\(385\) 0 0
\(386\) −14827.5 −1.95519
\(387\) 1963.95 0.257967
\(388\) 10259.5 1.34239
\(389\) −5448.98 −0.710217 −0.355109 0.934825i \(-0.615556\pi\)
−0.355109 + 0.934825i \(0.615556\pi\)
\(390\) 0 0
\(391\) 13878.0 1.79500
\(392\) 403.567 0.0519980
\(393\) 4263.31 0.547215
\(394\) −6667.38 −0.852532
\(395\) 0 0
\(396\) −3716.68 −0.471642
\(397\) 13675.9 1.72891 0.864453 0.502713i \(-0.167665\pi\)
0.864453 + 0.502713i \(0.167665\pi\)
\(398\) −14388.3 −1.81212
\(399\) 2354.89 0.295469
\(400\) 0 0
\(401\) 14109.9 1.75714 0.878570 0.477613i \(-0.158498\pi\)
0.878570 + 0.477613i \(0.158498\pi\)
\(402\) 16.3282 0.00202581
\(403\) 22961.4 2.83819
\(404\) 14391.3 1.77226
\(405\) 0 0
\(406\) −4294.65 −0.524975
\(407\) 2007.22 0.244458
\(408\) −2974.55 −0.360936
\(409\) −13995.6 −1.69203 −0.846015 0.533159i \(-0.821005\pi\)
−0.846015 + 0.533159i \(0.821005\pi\)
\(410\) 0 0
\(411\) 314.633 0.0377609
\(412\) 1626.55 0.194501
\(413\) −1060.51 −0.126354
\(414\) 4394.95 0.521740
\(415\) 0 0
\(416\) 22696.0 2.67491
\(417\) 2739.48 0.321709
\(418\) 19726.7 2.30829
\(419\) −9840.61 −1.14736 −0.573682 0.819078i \(-0.694485\pi\)
−0.573682 + 0.819078i \(0.694485\pi\)
\(420\) 0 0
\(421\) −12660.5 −1.46564 −0.732822 0.680420i \(-0.761797\pi\)
−0.732822 + 0.680420i \(0.761797\pi\)
\(422\) 14139.2 1.63101
\(423\) −5180.93 −0.595522
\(424\) 1517.92 0.173860
\(425\) 0 0
\(426\) 780.571 0.0887765
\(427\) −3708.81 −0.420332
\(428\) 1289.31 0.145610
\(429\) −11084.3 −1.24744
\(430\) 0 0
\(431\) −4578.91 −0.511736 −0.255868 0.966712i \(-0.582361\pi\)
−0.255868 + 0.966712i \(0.582361\pi\)
\(432\) 1205.97 0.134311
\(433\) 3279.88 0.364020 0.182010 0.983297i \(-0.441740\pi\)
0.182010 + 0.983297i \(0.441740\pi\)
\(434\) −7652.68 −0.846406
\(435\) 0 0
\(436\) 5635.23 0.618988
\(437\) −12927.1 −1.41507
\(438\) 6160.94 0.672103
\(439\) −427.807 −0.0465105 −0.0232552 0.999730i \(-0.507403\pi\)
−0.0232552 + 0.999730i \(0.507403\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) −45372.1 −4.88265
\(443\) −15441.2 −1.65605 −0.828027 0.560688i \(-0.810537\pi\)
−0.828027 + 0.560688i \(0.810537\pi\)
\(444\) 1441.95 0.154126
\(445\) 0 0
\(446\) −539.371 −0.0572645
\(447\) −5344.35 −0.565501
\(448\) −5062.93 −0.533931
\(449\) 9382.02 0.986113 0.493057 0.869997i \(-0.335880\pi\)
0.493057 + 0.869997i \(0.335880\pi\)
\(450\) 0 0
\(451\) −8342.34 −0.871010
\(452\) −8053.77 −0.838091
\(453\) −4222.59 −0.437957
\(454\) −16284.0 −1.68336
\(455\) 0 0
\(456\) 2770.72 0.284542
\(457\) −13570.4 −1.38905 −0.694524 0.719469i \(-0.744385\pi\)
−0.694524 + 0.719469i \(0.744385\pi\)
\(458\) 10746.7 1.09642
\(459\) −3250.45 −0.330540
\(460\) 0 0
\(461\) 1251.88 0.126477 0.0632386 0.997998i \(-0.479857\pi\)
0.0632386 + 0.997998i \(0.479857\pi\)
\(462\) 3694.21 0.372014
\(463\) −7934.36 −0.796417 −0.398209 0.917295i \(-0.630368\pi\)
−0.398209 + 0.917295i \(0.630368\pi\)
\(464\) 6469.05 0.647237
\(465\) 0 0
\(466\) −16891.1 −1.67911
\(467\) −7583.76 −0.751466 −0.375733 0.926728i \(-0.622609\pi\)
−0.375733 + 0.926728i \(0.622609\pi\)
\(468\) −7962.73 −0.786490
\(469\) −8.99396 −0.000885507 0
\(470\) 0 0
\(471\) −4796.82 −0.469269
\(472\) −1247.78 −0.121681
\(473\) −9062.07 −0.880919
\(474\) −11161.1 −1.08153
\(475\) 0 0
\(476\) 8380.13 0.806938
\(477\) 1658.72 0.159219
\(478\) −14263.6 −1.36486
\(479\) −5829.34 −0.556053 −0.278027 0.960573i \(-0.589680\pi\)
−0.278027 + 0.960573i \(0.589680\pi\)
\(480\) 0 0
\(481\) 4300.34 0.407648
\(482\) −3980.00 −0.376108
\(483\) −2420.85 −0.228059
\(484\) 3913.70 0.367553
\(485\) 0 0
\(486\) −1029.36 −0.0960760
\(487\) 19902.1 1.85185 0.925925 0.377708i \(-0.123288\pi\)
0.925925 + 0.377708i \(0.123288\pi\)
\(488\) −4363.71 −0.404787
\(489\) −614.675 −0.0568437
\(490\) 0 0
\(491\) −16821.6 −1.54613 −0.773065 0.634327i \(-0.781277\pi\)
−0.773065 + 0.634327i \(0.781277\pi\)
\(492\) −5992.98 −0.549155
\(493\) −17436.0 −1.59285
\(494\) 42263.1 3.84920
\(495\) 0 0
\(496\) 11527.3 1.04353
\(497\) −429.958 −0.0388054
\(498\) 6250.27 0.562412
\(499\) 6031.83 0.541126 0.270563 0.962702i \(-0.412790\pi\)
0.270563 + 0.962702i \(0.412790\pi\)
\(500\) 0 0
\(501\) −3497.82 −0.311919
\(502\) −5947.27 −0.528764
\(503\) 17176.4 1.52258 0.761290 0.648412i \(-0.224566\pi\)
0.761290 + 0.648412i \(0.224566\pi\)
\(504\) 518.872 0.0458580
\(505\) 0 0
\(506\) −20279.2 −1.78166
\(507\) −17156.3 −1.50284
\(508\) 25698.5 2.24446
\(509\) 4706.59 0.409854 0.204927 0.978777i \(-0.434304\pi\)
0.204927 + 0.978777i \(0.434304\pi\)
\(510\) 0 0
\(511\) −3393.60 −0.293785
\(512\) 14336.9 1.23752
\(513\) 3027.72 0.260579
\(514\) 8323.28 0.714250
\(515\) 0 0
\(516\) −6510.02 −0.555402
\(517\) 23905.9 2.03362
\(518\) −1433.23 −0.121569
\(519\) −7614.01 −0.643965
\(520\) 0 0
\(521\) −8557.18 −0.719572 −0.359786 0.933035i \(-0.617150\pi\)
−0.359786 + 0.933035i \(0.617150\pi\)
\(522\) −5521.69 −0.462985
\(523\) −18248.5 −1.52572 −0.762858 0.646566i \(-0.776204\pi\)
−0.762858 + 0.646566i \(0.776204\pi\)
\(524\) −14131.8 −1.17815
\(525\) 0 0
\(526\) 1668.25 0.138287
\(527\) −31069.3 −2.56813
\(528\) −5564.60 −0.458652
\(529\) 1122.16 0.0922302
\(530\) 0 0
\(531\) −1363.51 −0.111434
\(532\) −7805.90 −0.636144
\(533\) −17872.9 −1.45246
\(534\) 5281.03 0.427963
\(535\) 0 0
\(536\) −10.5821 −0.000852758 0
\(537\) −1176.77 −0.0945646
\(538\) −7951.22 −0.637177
\(539\) −2034.87 −0.162612
\(540\) 0 0
\(541\) −5734.17 −0.455696 −0.227848 0.973697i \(-0.573169\pi\)
−0.227848 + 0.973697i \(0.573169\pi\)
\(542\) −2922.50 −0.231609
\(543\) 8934.24 0.706087
\(544\) −30710.1 −2.42038
\(545\) 0 0
\(546\) 7914.59 0.620354
\(547\) 8002.52 0.625527 0.312763 0.949831i \(-0.398745\pi\)
0.312763 + 0.949831i \(0.398745\pi\)
\(548\) −1042.93 −0.0812991
\(549\) −4768.47 −0.370698
\(550\) 0 0
\(551\) 16241.2 1.25572
\(552\) −2848.33 −0.219625
\(553\) 6147.80 0.472750
\(554\) −26641.2 −2.04310
\(555\) 0 0
\(556\) −9080.71 −0.692640
\(557\) −1276.82 −0.0971289 −0.0485644 0.998820i \(-0.515465\pi\)
−0.0485644 + 0.998820i \(0.515465\pi\)
\(558\) −9839.16 −0.746460
\(559\) −19414.9 −1.46898
\(560\) 0 0
\(561\) 14998.2 1.12875
\(562\) −8280.96 −0.621550
\(563\) −11027.7 −0.825507 −0.412753 0.910843i \(-0.635433\pi\)
−0.412753 + 0.910843i \(0.635433\pi\)
\(564\) 17173.5 1.28216
\(565\) 0 0
\(566\) −21324.2 −1.58361
\(567\) 567.000 0.0419961
\(568\) −505.881 −0.0373702
\(569\) −4519.03 −0.332948 −0.166474 0.986046i \(-0.553238\pi\)
−0.166474 + 0.986046i \(0.553238\pi\)
\(570\) 0 0
\(571\) 3598.81 0.263758 0.131879 0.991266i \(-0.457899\pi\)
0.131879 + 0.991266i \(0.457899\pi\)
\(572\) 36741.7 2.68575
\(573\) 3292.11 0.240017
\(574\) 5956.75 0.433153
\(575\) 0 0
\(576\) −6509.48 −0.470883
\(577\) 3439.23 0.248140 0.124070 0.992273i \(-0.460405\pi\)
0.124070 + 0.992273i \(0.460405\pi\)
\(578\) 40581.6 2.92037
\(579\) 10500.9 0.753720
\(580\) 0 0
\(581\) −3442.81 −0.245838
\(582\) −13111.0 −0.933797
\(583\) −7653.66 −0.543709
\(584\) −3992.85 −0.282920
\(585\) 0 0
\(586\) −26980.0 −1.90194
\(587\) −21285.2 −1.49665 −0.748327 0.663330i \(-0.769143\pi\)
−0.748327 + 0.663330i \(0.769143\pi\)
\(588\) −1461.81 −0.102524
\(589\) 28940.4 2.02456
\(590\) 0 0
\(591\) 4721.87 0.328649
\(592\) 2158.89 0.149881
\(593\) 14200.8 0.983404 0.491702 0.870764i \(-0.336375\pi\)
0.491702 + 0.870764i \(0.336375\pi\)
\(594\) 4749.70 0.328085
\(595\) 0 0
\(596\) 17715.2 1.21752
\(597\) 10189.9 0.698566
\(598\) −43446.8 −2.97103
\(599\) −8885.05 −0.606065 −0.303033 0.952980i \(-0.597999\pi\)
−0.303033 + 0.952980i \(0.597999\pi\)
\(600\) 0 0
\(601\) −2052.89 −0.139333 −0.0696664 0.997570i \(-0.522193\pi\)
−0.0696664 + 0.997570i \(0.522193\pi\)
\(602\) 6470.67 0.438081
\(603\) −11.5637 −0.000780943 0
\(604\) 13996.9 0.942920
\(605\) 0 0
\(606\) −18391.2 −1.23283
\(607\) −10280.0 −0.687404 −0.343702 0.939079i \(-0.611681\pi\)
−0.343702 + 0.939079i \(0.611681\pi\)
\(608\) 28605.8 1.90809
\(609\) 3041.49 0.202377
\(610\) 0 0
\(611\) 51216.8 3.39118
\(612\) 10774.4 0.711652
\(613\) −23409.5 −1.54242 −0.771208 0.636584i \(-0.780347\pi\)
−0.771208 + 0.636584i \(0.780347\pi\)
\(614\) 28042.0 1.84314
\(615\) 0 0
\(616\) −2394.18 −0.156598
\(617\) 6632.75 0.432779 0.216389 0.976307i \(-0.430572\pi\)
0.216389 + 0.976307i \(0.430572\pi\)
\(618\) −2078.64 −0.135299
\(619\) 10734.0 0.696990 0.348495 0.937311i \(-0.386693\pi\)
0.348495 + 0.937311i \(0.386693\pi\)
\(620\) 0 0
\(621\) −3112.52 −0.201129
\(622\) −41976.1 −2.70593
\(623\) −2908.92 −0.187068
\(624\) −11921.8 −0.764829
\(625\) 0 0
\(626\) 1789.04 0.114225
\(627\) −13970.5 −0.889839
\(628\) 15900.3 1.01034
\(629\) −5818.83 −0.368858
\(630\) 0 0
\(631\) −17071.0 −1.07700 −0.538499 0.842626i \(-0.681008\pi\)
−0.538499 + 0.842626i \(0.681008\pi\)
\(632\) 7233.38 0.455267
\(633\) −10013.4 −0.628749
\(634\) 20768.5 1.30098
\(635\) 0 0
\(636\) −5498.24 −0.342798
\(637\) −4359.56 −0.271165
\(638\) 25478.2 1.58102
\(639\) −552.804 −0.0342231
\(640\) 0 0
\(641\) −19389.7 −1.19477 −0.597386 0.801954i \(-0.703794\pi\)
−0.597386 + 0.801954i \(0.703794\pi\)
\(642\) −1647.66 −0.101290
\(643\) 25409.3 1.55839 0.779196 0.626780i \(-0.215628\pi\)
0.779196 + 0.626780i \(0.215628\pi\)
\(644\) 8024.54 0.491011
\(645\) 0 0
\(646\) −57186.6 −3.48294
\(647\) 6039.08 0.366956 0.183478 0.983024i \(-0.441264\pi\)
0.183478 + 0.983024i \(0.441264\pi\)
\(648\) 667.122 0.0404429
\(649\) 6291.54 0.380531
\(650\) 0 0
\(651\) 5419.66 0.326287
\(652\) 2037.50 0.122384
\(653\) 30666.2 1.83776 0.918882 0.394532i \(-0.129093\pi\)
0.918882 + 0.394532i \(0.129093\pi\)
\(654\) −7201.50 −0.430582
\(655\) 0 0
\(656\) −8972.67 −0.534031
\(657\) −4363.20 −0.259094
\(658\) −17069.7 −1.01132
\(659\) −2765.96 −0.163500 −0.0817500 0.996653i \(-0.526051\pi\)
−0.0817500 + 0.996653i \(0.526051\pi\)
\(660\) 0 0
\(661\) 27261.8 1.60418 0.802089 0.597204i \(-0.203722\pi\)
0.802089 + 0.597204i \(0.203722\pi\)
\(662\) −22373.8 −1.31357
\(663\) 32132.7 1.88225
\(664\) −4050.74 −0.236746
\(665\) 0 0
\(666\) −1842.73 −0.107214
\(667\) −16696.1 −0.969230
\(668\) 11594.4 0.671560
\(669\) 381.985 0.0220753
\(670\) 0 0
\(671\) 22002.7 1.26588
\(672\) 5357.00 0.307516
\(673\) 1048.17 0.0600356 0.0300178 0.999549i \(-0.490444\pi\)
0.0300178 + 0.999549i \(0.490444\pi\)
\(674\) −18891.2 −1.07961
\(675\) 0 0
\(676\) 56869.0 3.23560
\(677\) 34554.7 1.96166 0.980831 0.194860i \(-0.0624252\pi\)
0.980831 + 0.194860i \(0.0624252\pi\)
\(678\) 10292.2 0.582996
\(679\) 7221.89 0.408175
\(680\) 0 0
\(681\) 11532.4 0.648930
\(682\) 45399.9 2.54905
\(683\) −14711.6 −0.824192 −0.412096 0.911140i \(-0.635203\pi\)
−0.412096 + 0.911140i \(0.635203\pi\)
\(684\) −10036.2 −0.561026
\(685\) 0 0
\(686\) 1452.97 0.0808669
\(687\) −7610.85 −0.422667
\(688\) −9746.79 −0.540106
\(689\) −16397.4 −0.906666
\(690\) 0 0
\(691\) −24522.6 −1.35005 −0.675024 0.737796i \(-0.735867\pi\)
−0.675024 + 0.737796i \(0.735867\pi\)
\(692\) 25238.6 1.38646
\(693\) −2616.26 −0.143410
\(694\) −22290.1 −1.21919
\(695\) 0 0
\(696\) 3578.56 0.194892
\(697\) 24184.0 1.31425
\(698\) 4068.00 0.220596
\(699\) 11962.3 0.647291
\(700\) 0 0
\(701\) 19912.2 1.07286 0.536429 0.843946i \(-0.319773\pi\)
0.536429 + 0.843946i \(0.319773\pi\)
\(702\) 10175.9 0.547101
\(703\) 5420.11 0.290787
\(704\) 30036.1 1.60799
\(705\) 0 0
\(706\) 37810.3 2.01559
\(707\) 10130.4 0.538885
\(708\) 4519.72 0.239917
\(709\) 6208.79 0.328880 0.164440 0.986387i \(-0.447418\pi\)
0.164440 + 0.986387i \(0.447418\pi\)
\(710\) 0 0
\(711\) 7904.31 0.416927
\(712\) −3422.58 −0.180150
\(713\) −29751.0 −1.56267
\(714\) −10709.3 −0.561325
\(715\) 0 0
\(716\) 3900.69 0.203597
\(717\) 10101.5 0.526149
\(718\) −12946.6 −0.672927
\(719\) 13063.6 0.677593 0.338797 0.940860i \(-0.389980\pi\)
0.338797 + 0.940860i \(0.389980\pi\)
\(720\) 0 0
\(721\) 1144.97 0.0591411
\(722\) 24212.9 1.24807
\(723\) 2818.65 0.144989
\(724\) −29614.8 −1.52020
\(725\) 0 0
\(726\) −5001.49 −0.255678
\(727\) 12897.0 0.657940 0.328970 0.944340i \(-0.393298\pi\)
0.328970 + 0.944340i \(0.393298\pi\)
\(728\) −5129.37 −0.261136
\(729\) 729.000 0.0370370
\(730\) 0 0
\(731\) 26270.5 1.32920
\(732\) 15806.3 0.798112
\(733\) −11699.6 −0.589540 −0.294770 0.955568i \(-0.595243\pi\)
−0.294770 + 0.955568i \(0.595243\pi\)
\(734\) 7682.19 0.386315
\(735\) 0 0
\(736\) −29407.0 −1.47277
\(737\) 53.3571 0.00266681
\(738\) 7658.68 0.382005
\(739\) 14974.0 0.745368 0.372684 0.927958i \(-0.378438\pi\)
0.372684 + 0.927958i \(0.378438\pi\)
\(740\) 0 0
\(741\) −29930.9 −1.48386
\(742\) 5465.01 0.270386
\(743\) −18500.7 −0.913492 −0.456746 0.889597i \(-0.650985\pi\)
−0.456746 + 0.889597i \(0.650985\pi\)
\(744\) 6376.67 0.314220
\(745\) 0 0
\(746\) 19136.3 0.939184
\(747\) −4426.47 −0.216809
\(748\) −49715.5 −2.43019
\(749\) 907.572 0.0442750
\(750\) 0 0
\(751\) −26348.4 −1.28025 −0.640125 0.768271i \(-0.721117\pi\)
−0.640125 + 0.768271i \(0.721117\pi\)
\(752\) 25712.2 1.24684
\(753\) 4211.88 0.203837
\(754\) 54585.4 2.63645
\(755\) 0 0
\(756\) −1879.47 −0.0904174
\(757\) 28061.7 1.34732 0.673659 0.739042i \(-0.264722\pi\)
0.673659 + 0.739042i \(0.264722\pi\)
\(758\) −20889.1 −1.00096
\(759\) 14361.8 0.686826
\(760\) 0 0
\(761\) −3579.22 −0.170495 −0.0852476 0.996360i \(-0.527168\pi\)
−0.0852476 + 0.996360i \(0.527168\pi\)
\(762\) −32841.2 −1.56130
\(763\) 3966.77 0.188213
\(764\) −10912.5 −0.516757
\(765\) 0 0
\(766\) 6279.44 0.296195
\(767\) 13479.2 0.634557
\(768\) −4357.07 −0.204716
\(769\) 4339.61 0.203499 0.101749 0.994810i \(-0.467556\pi\)
0.101749 + 0.994810i \(0.467556\pi\)
\(770\) 0 0
\(771\) −5894.58 −0.275341
\(772\) −34808.0 −1.62276
\(773\) −10005.1 −0.465537 −0.232769 0.972532i \(-0.574778\pi\)
−0.232769 + 0.972532i \(0.574778\pi\)
\(774\) 8319.43 0.386351
\(775\) 0 0
\(776\) 8497.14 0.393079
\(777\) 1015.02 0.0468645
\(778\) −23082.3 −1.06368
\(779\) −22526.8 −1.03608
\(780\) 0 0
\(781\) 2550.75 0.116867
\(782\) 58788.4 2.68832
\(783\) 3910.49 0.178479
\(784\) −2188.62 −0.0997001
\(785\) 0 0
\(786\) 18059.7 0.819550
\(787\) −17826.8 −0.807443 −0.403721 0.914882i \(-0.632284\pi\)
−0.403721 + 0.914882i \(0.632284\pi\)
\(788\) −15651.8 −0.707581
\(789\) −1181.46 −0.0533094
\(790\) 0 0
\(791\) −5669.23 −0.254835
\(792\) −3078.24 −0.138107
\(793\) 47139.3 2.11093
\(794\) 57932.2 2.58934
\(795\) 0 0
\(796\) −33777.0 −1.50401
\(797\) −36723.0 −1.63211 −0.816057 0.577971i \(-0.803845\pi\)
−0.816057 + 0.577971i \(0.803845\pi\)
\(798\) 9975.49 0.442517
\(799\) −69301.9 −3.06849
\(800\) 0 0
\(801\) −3740.04 −0.164979
\(802\) 59770.4 2.63163
\(803\) 20132.7 0.884767
\(804\) 38.3307 0.00168137
\(805\) 0 0
\(806\) 97266.2 4.25069
\(807\) 5631.08 0.245630
\(808\) 11919.2 0.518955
\(809\) 5657.55 0.245870 0.122935 0.992415i \(-0.460769\pi\)
0.122935 + 0.992415i \(0.460769\pi\)
\(810\) 0 0
\(811\) 7532.41 0.326139 0.163070 0.986615i \(-0.447861\pi\)
0.163070 + 0.986615i \(0.447861\pi\)
\(812\) −10081.8 −0.435716
\(813\) 2069.73 0.0892847
\(814\) 8502.73 0.366119
\(815\) 0 0
\(816\) 16131.5 0.692053
\(817\) −24470.3 −1.04787
\(818\) −59286.5 −2.53411
\(819\) −5605.15 −0.239145
\(820\) 0 0
\(821\) −6489.25 −0.275854 −0.137927 0.990442i \(-0.544044\pi\)
−0.137927 + 0.990442i \(0.544044\pi\)
\(822\) 1332.81 0.0565535
\(823\) −7901.57 −0.334668 −0.167334 0.985900i \(-0.553516\pi\)
−0.167334 + 0.985900i \(0.553516\pi\)
\(824\) 1347.15 0.0569539
\(825\) 0 0
\(826\) −4492.40 −0.189238
\(827\) 37815.8 1.59007 0.795033 0.606566i \(-0.207453\pi\)
0.795033 + 0.606566i \(0.207453\pi\)
\(828\) 10317.3 0.433031
\(829\) 26073.5 1.09236 0.546182 0.837667i \(-0.316081\pi\)
0.546182 + 0.837667i \(0.316081\pi\)
\(830\) 0 0
\(831\) 18867.4 0.787608
\(832\) 64350.2 2.68142
\(833\) 5898.96 0.245362
\(834\) 11604.6 0.481817
\(835\) 0 0
\(836\) 46308.9 1.91582
\(837\) 6968.13 0.287758
\(838\) −41685.5 −1.71838
\(839\) −15590.3 −0.641523 −0.320762 0.947160i \(-0.603939\pi\)
−0.320762 + 0.947160i \(0.603939\pi\)
\(840\) 0 0
\(841\) −3412.46 −0.139918
\(842\) −53630.8 −2.19506
\(843\) 5864.61 0.239606
\(844\) 33192.1 1.35370
\(845\) 0 0
\(846\) −21946.8 −0.891899
\(847\) 2754.94 0.111760
\(848\) −8231.96 −0.333357
\(849\) 15101.9 0.610477
\(850\) 0 0
\(851\) −5571.92 −0.224445
\(852\) 1832.41 0.0736823
\(853\) 17476.1 0.701488 0.350744 0.936471i \(-0.385929\pi\)
0.350744 + 0.936471i \(0.385929\pi\)
\(854\) −15710.8 −0.629521
\(855\) 0 0
\(856\) 1067.83 0.0426376
\(857\) 5694.54 0.226980 0.113490 0.993539i \(-0.463797\pi\)
0.113490 + 0.993539i \(0.463797\pi\)
\(858\) −46953.7 −1.86827
\(859\) 27313.6 1.08490 0.542448 0.840089i \(-0.317497\pi\)
0.542448 + 0.840089i \(0.317497\pi\)
\(860\) 0 0
\(861\) −4218.59 −0.166979
\(862\) −19396.6 −0.766415
\(863\) 9046.07 0.356815 0.178408 0.983957i \(-0.442905\pi\)
0.178408 + 0.983957i \(0.442905\pi\)
\(864\) 6887.57 0.271204
\(865\) 0 0
\(866\) 13893.8 0.545185
\(867\) −28740.1 −1.12580
\(868\) −17964.8 −0.702496
\(869\) −36472.1 −1.42374
\(870\) 0 0
\(871\) 114.314 0.00444705
\(872\) 4667.22 0.181252
\(873\) 9285.28 0.359976
\(874\) −54760.0 −2.11932
\(875\) 0 0
\(876\) 14463.0 0.557829
\(877\) 2104.29 0.0810224 0.0405112 0.999179i \(-0.487101\pi\)
0.0405112 + 0.999179i \(0.487101\pi\)
\(878\) −1812.22 −0.0696576
\(879\) 19107.4 0.733192
\(880\) 0 0
\(881\) −22589.6 −0.863861 −0.431931 0.901907i \(-0.642167\pi\)
−0.431931 + 0.901907i \(0.642167\pi\)
\(882\) 1868.11 0.0713179
\(883\) 2419.71 0.0922193 0.0461096 0.998936i \(-0.485318\pi\)
0.0461096 + 0.998936i \(0.485318\pi\)
\(884\) −106512. −4.05248
\(885\) 0 0
\(886\) −65409.8 −2.48023
\(887\) −13177.0 −0.498806 −0.249403 0.968400i \(-0.580234\pi\)
−0.249403 + 0.968400i \(0.580234\pi\)
\(888\) 1194.26 0.0451313
\(889\) 18089.8 0.682464
\(890\) 0 0
\(891\) −3363.76 −0.126476
\(892\) −1266.19 −0.0475281
\(893\) 64553.2 2.41902
\(894\) −22639.0 −0.846937
\(895\) 0 0
\(896\) −7161.58 −0.267022
\(897\) 30769.2 1.14532
\(898\) 39742.9 1.47688
\(899\) 37378.3 1.38669
\(900\) 0 0
\(901\) 22187.5 0.820393
\(902\) −35338.7 −1.30449
\(903\) −4582.55 −0.168879
\(904\) −6670.31 −0.245411
\(905\) 0 0
\(906\) −17887.2 −0.655918
\(907\) −9189.14 −0.336406 −0.168203 0.985752i \(-0.553796\pi\)
−0.168203 + 0.985752i \(0.553796\pi\)
\(908\) −38227.0 −1.39714
\(909\) 13024.8 0.475252
\(910\) 0 0
\(911\) −17045.8 −0.619928 −0.309964 0.950748i \(-0.600317\pi\)
−0.309964 + 0.950748i \(0.600317\pi\)
\(912\) −15026.1 −0.545575
\(913\) 20424.6 0.740369
\(914\) −57485.0 −2.08034
\(915\) 0 0
\(916\) 25228.1 0.910001
\(917\) −9947.71 −0.358236
\(918\) −13769.1 −0.495042
\(919\) −30825.0 −1.10645 −0.553223 0.833033i \(-0.686602\pi\)
−0.553223 + 0.833033i \(0.686602\pi\)
\(920\) 0 0
\(921\) −19859.5 −0.710524
\(922\) 5303.06 0.189422
\(923\) 5464.81 0.194882
\(924\) 8672.25 0.308762
\(925\) 0 0
\(926\) −33610.5 −1.19277
\(927\) 1472.10 0.0521576
\(928\) 36946.2 1.30691
\(929\) −5785.88 −0.204336 −0.102168 0.994767i \(-0.532578\pi\)
−0.102168 + 0.994767i \(0.532578\pi\)
\(930\) 0 0
\(931\) −5494.75 −0.193430
\(932\) −39652.2 −1.39362
\(933\) 29727.7 1.04313
\(934\) −32125.3 −1.12545
\(935\) 0 0
\(936\) −6594.91 −0.230301
\(937\) 13680.9 0.476986 0.238493 0.971144i \(-0.423347\pi\)
0.238493 + 0.971144i \(0.423347\pi\)
\(938\) −38.0990 −0.00132620
\(939\) −1267.01 −0.0440333
\(940\) 0 0
\(941\) −45448.8 −1.57448 −0.787242 0.616644i \(-0.788492\pi\)
−0.787242 + 0.616644i \(0.788492\pi\)
\(942\) −20319.6 −0.702813
\(943\) 23157.8 0.799705
\(944\) 6766.91 0.233310
\(945\) 0 0
\(946\) −38387.6 −1.31933
\(947\) 7788.45 0.267255 0.133628 0.991032i \(-0.457337\pi\)
0.133628 + 0.991032i \(0.457337\pi\)
\(948\) −26200.9 −0.897642
\(949\) 43133.0 1.47540
\(950\) 0 0
\(951\) −14708.4 −0.501526
\(952\) 6940.61 0.236288
\(953\) −6149.43 −0.209024 −0.104512 0.994524i \(-0.533328\pi\)
−0.104512 + 0.994524i \(0.533328\pi\)
\(954\) 7026.44 0.238458
\(955\) 0 0
\(956\) −33484.2 −1.13280
\(957\) −18043.8 −0.609481
\(958\) −24693.5 −0.832788
\(959\) −734.144 −0.0247203
\(960\) 0 0
\(961\) 36813.7 1.23573
\(962\) 18216.5 0.610524
\(963\) 1166.88 0.0390469
\(964\) −9343.15 −0.312160
\(965\) 0 0
\(966\) −10254.9 −0.341559
\(967\) −23902.9 −0.794896 −0.397448 0.917625i \(-0.630104\pi\)
−0.397448 + 0.917625i \(0.630104\pi\)
\(968\) 3241.42 0.107627
\(969\) 40499.8 1.34266
\(970\) 0 0
\(971\) −8015.06 −0.264898 −0.132449 0.991190i \(-0.542284\pi\)
−0.132449 + 0.991190i \(0.542284\pi\)
\(972\) −2416.46 −0.0797407
\(973\) −6392.12 −0.210608
\(974\) 84306.7 2.77347
\(975\) 0 0
\(976\) 23665.2 0.776131
\(977\) 34861.1 1.14156 0.570780 0.821103i \(-0.306641\pi\)
0.570780 + 0.821103i \(0.306641\pi\)
\(978\) −2603.80 −0.0851334
\(979\) 17257.3 0.563378
\(980\) 0 0
\(981\) 5100.13 0.165988
\(982\) −71257.6 −2.31560
\(983\) −6620.83 −0.214824 −0.107412 0.994215i \(-0.534256\pi\)
−0.107412 + 0.994215i \(0.534256\pi\)
\(984\) −4963.52 −0.160804
\(985\) 0 0
\(986\) −73860.0 −2.38558
\(987\) 12088.8 0.389860
\(988\) 99213.6 3.19474
\(989\) 25155.7 0.808802
\(990\) 0 0
\(991\) 10360.1 0.332089 0.166045 0.986118i \(-0.446900\pi\)
0.166045 + 0.986118i \(0.446900\pi\)
\(992\) 65834.7 2.10711
\(993\) 15845.2 0.506377
\(994\) −1821.33 −0.0581179
\(995\) 0 0
\(996\) 14672.7 0.466788
\(997\) 40309.3 1.28045 0.640225 0.768188i \(-0.278841\pi\)
0.640225 + 0.768188i \(0.278841\pi\)
\(998\) 25551.3 0.810432
\(999\) 1305.03 0.0413306
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 525.4.a.o.1.2 2
3.2 odd 2 1575.4.a.n.1.1 2
5.2 odd 4 525.4.d.k.274.4 4
5.3 odd 4 525.4.d.k.274.1 4
5.4 even 2 105.4.a.d.1.1 2
15.14 odd 2 315.4.a.l.1.2 2
20.19 odd 2 1680.4.a.bd.1.1 2
35.34 odd 2 735.4.a.m.1.1 2
105.104 even 2 2205.4.a.be.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.4.a.d.1.1 2 5.4 even 2
315.4.a.l.1.2 2 15.14 odd 2
525.4.a.o.1.2 2 1.1 even 1 trivial
525.4.d.k.274.1 4 5.3 odd 4
525.4.d.k.274.4 4 5.2 odd 4
735.4.a.m.1.1 2 35.34 odd 2
1575.4.a.n.1.1 2 3.2 odd 2
1680.4.a.bd.1.1 2 20.19 odd 2
2205.4.a.be.1.2 2 105.104 even 2