Properties

Label 532.2.cj.a.409.9
Level $532$
Weight $2$
Character 532.409
Analytic conductor $4.248$
Analytic rank $0$
Dimension $78$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [532,2,Mod(33,532)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(532, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 15, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("532.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 532 = 2^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 532.cj (of order \(18\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24804138753\)
Analytic rank: \(0\)
Dimension: \(78\)
Relative dimension: \(13\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 409.9
Character \(\chi\) \(=\) 532.409
Dual form 532.2.cj.a.173.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.194048 + 1.10050i) q^{3} +(-1.74253 + 0.307255i) q^{5} +(2.62371 + 0.340814i) q^{7} +(1.64563 - 0.598960i) q^{9} -0.865134 q^{11} +(2.59449 + 2.17703i) q^{13} +(-0.676269 - 1.85803i) q^{15} +(-0.129993 + 0.357153i) q^{17} +(-0.996646 + 4.24343i) q^{19} +(0.134059 + 2.95353i) q^{21} +(0.845741 + 0.709661i) q^{23} +(-1.75646 + 0.639298i) q^{25} +(2.65470 + 4.59808i) q^{27} +(-0.146747 - 0.0258754i) q^{29} +(4.27871 + 7.41094i) q^{31} +(-0.167877 - 0.952080i) q^{33} +(-4.67661 + 0.212269i) q^{35} +(-2.38619 + 1.37767i) q^{37} +(-1.89237 + 3.27768i) q^{39} +(4.37905 - 3.67446i) q^{41} +(2.34755 + 0.854438i) q^{43} +(-2.68353 + 1.54933i) q^{45} +(-2.75359 - 7.56541i) q^{47} +(6.76769 + 1.78839i) q^{49} +(-0.418272 - 0.0737526i) q^{51} +(-9.81784 - 1.73115i) q^{53} +(1.50752 - 0.265817i) q^{55} +(-4.86330 - 0.273381i) q^{57} +(4.39079 + 1.59812i) q^{59} +(0.263460 - 0.313979i) q^{61} +(4.52179 - 1.01064i) q^{63} +(-5.18987 - 2.99637i) q^{65} +(3.95783 - 4.71676i) q^{67} +(-0.616868 + 1.06845i) q^{69} +(5.13337 - 14.1038i) q^{71} +(-11.7056 + 2.06401i) q^{73} +(-1.04439 - 1.80893i) q^{75} +(-2.26986 - 0.294850i) q^{77} +(4.04409 - 11.1110i) q^{79} +(-0.520464 + 0.436721i) q^{81} +(9.30187 + 5.37044i) q^{83} +(0.116780 - 0.662291i) q^{85} -0.166516i q^{87} +(-0.280994 + 1.59360i) q^{89} +(6.06521 + 6.59614i) q^{91} +(-7.32547 + 6.14680i) q^{93} +(0.432870 - 7.70053i) q^{95} +(-0.297381 - 1.68653i) q^{97} +(-1.42369 + 0.518181i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 78 q + 6 q^{7} - 6 q^{11} + 6 q^{13} - 3 q^{15} + 27 q^{17} + 21 q^{19} - 3 q^{21} - 24 q^{23} + 12 q^{27} - 18 q^{29} + 33 q^{35} + 36 q^{37} - 18 q^{39} - 18 q^{41} - 48 q^{43} - 18 q^{45} - 18 q^{49}+ \cdots + 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/532\mathbb{Z}\right)^\times\).

\(n\) \(267\) \(381\) \(477\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.194048 + 1.10050i 0.112034 + 0.635374i 0.988176 + 0.153322i \(0.0489973\pi\)
−0.876143 + 0.482052i \(0.839892\pi\)
\(4\) 0 0
\(5\) −1.74253 + 0.307255i −0.779283 + 0.137409i −0.549120 0.835743i \(-0.685037\pi\)
−0.230163 + 0.973152i \(0.573926\pi\)
\(6\) 0 0
\(7\) 2.62371 + 0.340814i 0.991669 + 0.128816i
\(8\) 0 0
\(9\) 1.64563 0.598960i 0.548543 0.199653i
\(10\) 0 0
\(11\) −0.865134 −0.260848 −0.130424 0.991458i \(-0.541634\pi\)
−0.130424 + 0.991458i \(0.541634\pi\)
\(12\) 0 0
\(13\) 2.59449 + 2.17703i 0.719581 + 0.603800i 0.927269 0.374395i \(-0.122150\pi\)
−0.207688 + 0.978195i \(0.566594\pi\)
\(14\) 0 0
\(15\) −0.676269 1.85803i −0.174612 0.479742i
\(16\) 0 0
\(17\) −0.129993 + 0.357153i −0.0315279 + 0.0866223i −0.954458 0.298346i \(-0.903565\pi\)
0.922930 + 0.384968i \(0.125787\pi\)
\(18\) 0 0
\(19\) −0.996646 + 4.24343i −0.228646 + 0.973510i
\(20\) 0 0
\(21\) 0.134059 + 2.95353i 0.0292541 + 0.644513i
\(22\) 0 0
\(23\) 0.845741 + 0.709661i 0.176349 + 0.147975i 0.726690 0.686966i \(-0.241058\pi\)
−0.550341 + 0.834940i \(0.685502\pi\)
\(24\) 0 0
\(25\) −1.75646 + 0.639298i −0.351292 + 0.127860i
\(26\) 0 0
\(27\) 2.65470 + 4.59808i 0.510898 + 0.884902i
\(28\) 0 0
\(29\) −0.146747 0.0258754i −0.0272502 0.00480494i 0.160006 0.987116i \(-0.448848\pi\)
−0.187257 + 0.982311i \(0.559960\pi\)
\(30\) 0 0
\(31\) 4.27871 + 7.41094i 0.768479 + 1.33104i 0.938388 + 0.345584i \(0.112319\pi\)
−0.169909 + 0.985460i \(0.554347\pi\)
\(32\) 0 0
\(33\) −0.167877 0.952080i −0.0292237 0.165736i
\(34\) 0 0
\(35\) −4.67661 + 0.212269i −0.790491 + 0.0358799i
\(36\) 0 0
\(37\) −2.38619 + 1.37767i −0.392288 + 0.226488i −0.683151 0.730277i \(-0.739391\pi\)
0.290863 + 0.956765i \(0.406058\pi\)
\(38\) 0 0
\(39\) −1.89237 + 3.27768i −0.303022 + 0.524849i
\(40\) 0 0
\(41\) 4.37905 3.67446i 0.683893 0.573854i −0.233248 0.972417i \(-0.574935\pi\)
0.917141 + 0.398563i \(0.130491\pi\)
\(42\) 0 0
\(43\) 2.34755 + 0.854438i 0.357998 + 0.130301i 0.514757 0.857336i \(-0.327882\pi\)
−0.156759 + 0.987637i \(0.550105\pi\)
\(44\) 0 0
\(45\) −2.68353 + 1.54933i −0.400036 + 0.230961i
\(46\) 0 0
\(47\) −2.75359 7.56541i −0.401652 1.10353i −0.961469 0.274913i \(-0.911351\pi\)
0.559817 0.828616i \(-0.310871\pi\)
\(48\) 0 0
\(49\) 6.76769 + 1.78839i 0.966813 + 0.255485i
\(50\) 0 0
\(51\) −0.418272 0.0737526i −0.0585698 0.0103274i
\(52\) 0 0
\(53\) −9.81784 1.73115i −1.34858 0.237792i −0.547732 0.836654i \(-0.684509\pi\)
−0.800852 + 0.598862i \(0.795620\pi\)
\(54\) 0 0
\(55\) 1.50752 0.265817i 0.203274 0.0358427i
\(56\) 0 0
\(57\) −4.86330 0.273381i −0.644159 0.0362102i
\(58\) 0 0
\(59\) 4.39079 + 1.59812i 0.571632 + 0.208057i 0.611632 0.791142i \(-0.290513\pi\)
−0.0399994 + 0.999200i \(0.512736\pi\)
\(60\) 0 0
\(61\) 0.263460 0.313979i 0.0337326 0.0402009i −0.748914 0.662667i \(-0.769425\pi\)
0.782647 + 0.622466i \(0.213869\pi\)
\(62\) 0 0
\(63\) 4.52179 1.01064i 0.569692 0.127329i
\(64\) 0 0
\(65\) −5.18987 2.99637i −0.643725 0.371655i
\(66\) 0 0
\(67\) 3.95783 4.71676i 0.483526 0.576244i −0.468033 0.883711i \(-0.655037\pi\)
0.951559 + 0.307467i \(0.0994815\pi\)
\(68\) 0 0
\(69\) −0.616868 + 1.06845i −0.0742622 + 0.128626i
\(70\) 0 0
\(71\) 5.13337 14.1038i 0.609219 1.67382i −0.122717 0.992442i \(-0.539161\pi\)
0.731936 0.681374i \(-0.238617\pi\)
\(72\) 0 0
\(73\) −11.7056 + 2.06401i −1.37003 + 0.241574i −0.809773 0.586744i \(-0.800410\pi\)
−0.560259 + 0.828317i \(0.689298\pi\)
\(74\) 0 0
\(75\) −1.04439 1.80893i −0.120595 0.208877i
\(76\) 0 0
\(77\) −2.26986 0.294850i −0.258674 0.0336013i
\(78\) 0 0
\(79\) 4.04409 11.1110i 0.454995 1.25009i −0.474173 0.880432i \(-0.657253\pi\)
0.929168 0.369657i \(-0.120525\pi\)
\(80\) 0 0
\(81\) −0.520464 + 0.436721i −0.0578294 + 0.0485246i
\(82\) 0 0
\(83\) 9.30187 + 5.37044i 1.02101 + 0.589482i 0.914397 0.404818i \(-0.132665\pi\)
0.106616 + 0.994300i \(0.465999\pi\)
\(84\) 0 0
\(85\) 0.116780 0.662291i 0.0126665 0.0718355i
\(86\) 0 0
\(87\) 0.166516i 0.0178524i
\(88\) 0 0
\(89\) −0.280994 + 1.59360i −0.0297853 + 0.168921i −0.996072 0.0885479i \(-0.971777\pi\)
0.966287 + 0.257469i \(0.0828885\pi\)
\(90\) 0 0
\(91\) 6.06521 + 6.59614i 0.635807 + 0.691463i
\(92\) 0 0
\(93\) −7.32547 + 6.14680i −0.759616 + 0.637393i
\(94\) 0 0
\(95\) 0.432870 7.70053i 0.0444116 0.790058i
\(96\) 0 0
\(97\) −0.297381 1.68653i −0.0301944 0.171241i 0.965981 0.258611i \(-0.0832648\pi\)
−0.996176 + 0.0873701i \(0.972154\pi\)
\(98\) 0 0
\(99\) −1.42369 + 0.518181i −0.143086 + 0.0520791i
\(100\) 0 0
\(101\) −2.10765 5.79071i −0.209719 0.576197i 0.789580 0.613648i \(-0.210299\pi\)
−0.999298 + 0.0374507i \(0.988076\pi\)
\(102\) 0 0
\(103\) 1.20476 2.08670i 0.118708 0.205609i −0.800548 0.599269i \(-0.795458\pi\)
0.919256 + 0.393660i \(0.128791\pi\)
\(104\) 0 0
\(105\) −1.14109 5.10542i −0.111359 0.498238i
\(106\) 0 0
\(107\) 10.9072i 1.05444i 0.849728 + 0.527221i \(0.176766\pi\)
−0.849728 + 0.527221i \(0.823234\pi\)
\(108\) 0 0
\(109\) −2.22794 2.65516i −0.213398 0.254318i 0.648718 0.761029i \(-0.275306\pi\)
−0.862116 + 0.506711i \(0.830861\pi\)
\(110\) 0 0
\(111\) −1.97916 2.35868i −0.187854 0.223876i
\(112\) 0 0
\(113\) 2.37339i 0.223270i 0.993749 + 0.111635i \(0.0356087\pi\)
−0.993749 + 0.111635i \(0.964391\pi\)
\(114\) 0 0
\(115\) −1.69178 0.976748i −0.157759 0.0910822i
\(116\) 0 0
\(117\) 5.57352 + 2.02860i 0.515272 + 0.187544i
\(118\) 0 0
\(119\) −0.462787 + 0.892762i −0.0424236 + 0.0818393i
\(120\) 0 0
\(121\) −10.2515 −0.931959
\(122\) 0 0
\(123\) 4.89349 + 4.10613i 0.441231 + 0.370237i
\(124\) 0 0
\(125\) 10.5260 6.07721i 0.941477 0.543562i
\(126\) 0 0
\(127\) 10.4642 12.4708i 0.928552 1.10661i −0.0655168 0.997851i \(-0.520870\pi\)
0.994069 0.108754i \(-0.0346860\pi\)
\(128\) 0 0
\(129\) −0.484773 + 2.74928i −0.0426818 + 0.242061i
\(130\) 0 0
\(131\) −5.77569 6.88320i −0.504625 0.601388i 0.452249 0.891892i \(-0.350622\pi\)
−0.956874 + 0.290503i \(0.906177\pi\)
\(132\) 0 0
\(133\) −4.06113 + 10.7939i −0.352145 + 0.935946i
\(134\) 0 0
\(135\) −6.03869 7.19663i −0.519727 0.619387i
\(136\) 0 0
\(137\) 1.68518 9.55715i 0.143975 0.816522i −0.824210 0.566285i \(-0.808380\pi\)
0.968184 0.250237i \(-0.0805087\pi\)
\(138\) 0 0
\(139\) 4.44188 5.29362i 0.376755 0.448999i −0.544032 0.839064i \(-0.683103\pi\)
0.920787 + 0.390065i \(0.127548\pi\)
\(140\) 0 0
\(141\) 7.79142 4.49838i 0.656156 0.378832i
\(142\) 0 0
\(143\) −2.24458 1.88342i −0.187701 0.157500i
\(144\) 0 0
\(145\) 0.263661 0.0218959
\(146\) 0 0
\(147\) −0.654873 + 7.79488i −0.0540130 + 0.642911i
\(148\) 0 0
\(149\) −21.7982 7.93389i −1.78578 0.649969i −0.999484 0.0321146i \(-0.989776\pi\)
−0.786292 0.617855i \(-0.788002\pi\)
\(150\) 0 0
\(151\) −4.39509 2.53750i −0.357667 0.206499i 0.310390 0.950609i \(-0.399540\pi\)
−0.668057 + 0.744110i \(0.732874\pi\)
\(152\) 0 0
\(153\) 0.665602i 0.0538108i
\(154\) 0 0
\(155\) −9.73283 11.5991i −0.781759 0.931664i
\(156\) 0 0
\(157\) −8.45556 10.0769i −0.674827 0.804228i 0.314605 0.949223i \(-0.398128\pi\)
−0.989432 + 0.144995i \(0.953684\pi\)
\(158\) 0 0
\(159\) 11.1405i 0.883496i
\(160\) 0 0
\(161\) 1.97712 + 2.15018i 0.155819 + 0.169458i
\(162\) 0 0
\(163\) 0.0161036 0.0278923i 0.00126133 0.00218469i −0.865394 0.501092i \(-0.832932\pi\)
0.866655 + 0.498907i \(0.166265\pi\)
\(164\) 0 0
\(165\) 0.585063 + 1.60745i 0.0455471 + 0.125140i
\(166\) 0 0
\(167\) −16.4005 + 5.96928i −1.26910 + 0.461916i −0.886814 0.462126i \(-0.847087\pi\)
−0.382291 + 0.924042i \(0.624865\pi\)
\(168\) 0 0
\(169\) −0.265538 1.50594i −0.0204260 0.115842i
\(170\) 0 0
\(171\) 0.901536 + 7.58007i 0.0689422 + 0.579662i
\(172\) 0 0
\(173\) −4.18857 + 3.51463i −0.318451 + 0.267212i −0.787975 0.615708i \(-0.788870\pi\)
0.469523 + 0.882920i \(0.344426\pi\)
\(174\) 0 0
\(175\) −4.82632 + 1.07871i −0.364835 + 0.0815426i
\(176\) 0 0
\(177\) −0.906706 + 5.14218i −0.0681522 + 0.386510i
\(178\) 0 0
\(179\) 0.978463i 0.0731337i 0.999331 + 0.0365669i \(0.0116422\pi\)
−0.999331 + 0.0365669i \(0.988358\pi\)
\(180\) 0 0
\(181\) 0.958806 5.43766i 0.0712675 0.404178i −0.928216 0.372042i \(-0.878658\pi\)
0.999483 0.0321363i \(-0.0102311\pi\)
\(182\) 0 0
\(183\) 0.396659 + 0.229011i 0.0293218 + 0.0169290i
\(184\) 0 0
\(185\) 3.73472 3.13380i 0.274582 0.230402i
\(186\) 0 0
\(187\) 0.112461 0.308985i 0.00822399 0.0225952i
\(188\) 0 0
\(189\) 5.39808 + 12.9688i 0.392652 + 0.943341i
\(190\) 0 0
\(191\) 11.3881 + 19.7247i 0.824011 + 1.42723i 0.902673 + 0.430328i \(0.141602\pi\)
−0.0786614 + 0.996901i \(0.525065\pi\)
\(192\) 0 0
\(193\) 7.38621 1.30239i 0.531671 0.0937479i 0.0986333 0.995124i \(-0.468553\pi\)
0.433037 + 0.901376i \(0.357442\pi\)
\(194\) 0 0
\(195\) 2.29043 6.29290i 0.164021 0.450644i
\(196\) 0 0
\(197\) 4.59338 7.95597i 0.327265 0.566839i −0.654703 0.755886i \(-0.727206\pi\)
0.981968 + 0.189047i \(0.0605398\pi\)
\(198\) 0 0
\(199\) −4.58703 + 5.46661i −0.325166 + 0.387518i −0.903718 0.428128i \(-0.859173\pi\)
0.578552 + 0.815645i \(0.303618\pi\)
\(200\) 0 0
\(201\) 5.95881 + 3.44032i 0.420302 + 0.242661i
\(202\) 0 0
\(203\) −0.376202 0.117903i −0.0264042 0.00827516i
\(204\) 0 0
\(205\) −6.50163 + 7.74834i −0.454094 + 0.541168i
\(206\) 0 0
\(207\) 1.81684 + 0.661274i 0.126279 + 0.0459617i
\(208\) 0 0
\(209\) 0.862232 3.67113i 0.0596418 0.253938i
\(210\) 0 0
\(211\) −2.40840 + 0.424665i −0.165801 + 0.0292351i −0.255932 0.966695i \(-0.582382\pi\)
0.0901315 + 0.995930i \(0.471271\pi\)
\(212\) 0 0
\(213\) 16.5174 + 2.91246i 1.13175 + 0.199559i
\(214\) 0 0
\(215\) −4.35320 0.767587i −0.296886 0.0523490i
\(216\) 0 0
\(217\) 8.70033 + 20.9024i 0.590617 + 1.41895i
\(218\) 0 0
\(219\) −4.54288 12.4815i −0.306979 0.843419i
\(220\) 0 0
\(221\) −1.11480 + 0.643629i −0.0749895 + 0.0432952i
\(222\) 0 0
\(223\) 19.0027 + 6.91640i 1.27251 + 0.463156i 0.887949 0.459942i \(-0.152130\pi\)
0.384563 + 0.923099i \(0.374352\pi\)
\(224\) 0 0
\(225\) −2.50757 + 2.10410i −0.167171 + 0.140273i
\(226\) 0 0
\(227\) −3.19958 + 5.54184i −0.212364 + 0.367825i −0.952454 0.304683i \(-0.901449\pi\)
0.740090 + 0.672508i \(0.234783\pi\)
\(228\) 0 0
\(229\) −11.1646 + 6.44586i −0.737775 + 0.425955i −0.821260 0.570554i \(-0.806728\pi\)
0.0834847 + 0.996509i \(0.473395\pi\)
\(230\) 0 0
\(231\) −0.115979 2.55520i −0.00763085 0.168120i
\(232\) 0 0
\(233\) 3.92342 + 22.2508i 0.257032 + 1.45770i 0.790804 + 0.612070i \(0.209663\pi\)
−0.533772 + 0.845628i \(0.679226\pi\)
\(234\) 0 0
\(235\) 7.12272 + 12.3369i 0.464635 + 0.804771i
\(236\) 0 0
\(237\) 13.0125 + 2.29445i 0.845249 + 0.149040i
\(238\) 0 0
\(239\) −13.4314 23.2639i −0.868805 1.50481i −0.863219 0.504830i \(-0.831555\pi\)
−0.00558567 0.999984i \(-0.501778\pi\)
\(240\) 0 0
\(241\) 23.4473 8.53411i 1.51037 0.549730i 0.551650 0.834076i \(-0.313999\pi\)
0.958722 + 0.284346i \(0.0917763\pi\)
\(242\) 0 0
\(243\) 11.6201 + 9.75044i 0.745431 + 0.625491i
\(244\) 0 0
\(245\) −12.3424 1.03692i −0.788527 0.0662466i
\(246\) 0 0
\(247\) −11.8239 + 8.83979i −0.752335 + 0.562462i
\(248\) 0 0
\(249\) −4.10516 + 11.2788i −0.260154 + 0.714767i
\(250\) 0 0
\(251\) 8.83095 + 24.2628i 0.557405 + 1.53146i 0.823388 + 0.567479i \(0.192081\pi\)
−0.265984 + 0.963978i \(0.585697\pi\)
\(252\) 0 0
\(253\) −0.731679 0.613952i −0.0460003 0.0385988i
\(254\) 0 0
\(255\) 0.751512 0.0470615
\(256\) 0 0
\(257\) −2.86673 + 1.04340i −0.178822 + 0.0650858i −0.429879 0.902886i \(-0.641444\pi\)
0.251058 + 0.967972i \(0.419222\pi\)
\(258\) 0 0
\(259\) −6.73021 + 2.80136i −0.418195 + 0.174068i
\(260\) 0 0
\(261\) −0.256989 + 0.0453141i −0.0159072 + 0.00280488i
\(262\) 0 0
\(263\) −2.89405 16.4130i −0.178455 1.01207i −0.934080 0.357064i \(-0.883778\pi\)
0.755625 0.655004i \(-0.227333\pi\)
\(264\) 0 0
\(265\) 17.6398 1.08360
\(266\) 0 0
\(267\) −1.80828 −0.110665
\(268\) 0 0
\(269\) −5.29998 30.0577i −0.323145 1.83265i −0.522399 0.852701i \(-0.674963\pi\)
0.199254 0.979948i \(-0.436148\pi\)
\(270\) 0 0
\(271\) 14.7843 2.60688i 0.898084 0.158356i 0.294496 0.955653i \(-0.404848\pi\)
0.603588 + 0.797296i \(0.293737\pi\)
\(272\) 0 0
\(273\) −6.08211 + 7.95474i −0.368106 + 0.481443i
\(274\) 0 0
\(275\) 1.51957 0.553079i 0.0916336 0.0333519i
\(276\) 0 0
\(277\) −20.5918 −1.23724 −0.618622 0.785689i \(-0.712309\pi\)
−0.618622 + 0.785689i \(0.712309\pi\)
\(278\) 0 0
\(279\) 11.4800 + 9.63289i 0.687291 + 0.576706i
\(280\) 0 0
\(281\) 2.93459 + 8.06273i 0.175063 + 0.480982i 0.995929 0.0901385i \(-0.0287310\pi\)
−0.820866 + 0.571121i \(0.806509\pi\)
\(282\) 0 0
\(283\) −6.53417 + 17.9525i −0.388416 + 1.06716i 0.579299 + 0.815115i \(0.303326\pi\)
−0.967715 + 0.252048i \(0.918896\pi\)
\(284\) 0 0
\(285\) 8.55844 1.01790i 0.506958 0.0602951i
\(286\) 0 0
\(287\) 12.7417 8.14827i 0.752117 0.480977i
\(288\) 0 0
\(289\) 12.9121 + 10.8345i 0.759535 + 0.637326i
\(290\) 0 0
\(291\) 1.79832 0.654535i 0.105419 0.0383695i
\(292\) 0 0
\(293\) 7.01055 + 12.1426i 0.409561 + 0.709380i 0.994841 0.101451i \(-0.0323486\pi\)
−0.585280 + 0.810831i \(0.699015\pi\)
\(294\) 0 0
\(295\) −8.14212 1.43567i −0.474052 0.0835882i
\(296\) 0 0
\(297\) −2.29667 3.97796i −0.133267 0.230824i
\(298\) 0 0
\(299\) 0.649309 + 3.68241i 0.0375505 + 0.212959i
\(300\) 0 0
\(301\) 5.86808 + 3.04187i 0.338230 + 0.175331i
\(302\) 0 0
\(303\) 5.96370 3.44314i 0.342605 0.197803i
\(304\) 0 0
\(305\) −0.362615 + 0.628068i −0.0207633 + 0.0359631i
\(306\) 0 0
\(307\) 10.6114 8.90398i 0.605622 0.508177i −0.287625 0.957743i \(-0.592866\pi\)
0.893247 + 0.449566i \(0.148421\pi\)
\(308\) 0 0
\(309\) 2.53020 + 0.920917i 0.143938 + 0.0523891i
\(310\) 0 0
\(311\) −9.63561 + 5.56312i −0.546386 + 0.315456i −0.747663 0.664078i \(-0.768824\pi\)
0.201277 + 0.979534i \(0.435491\pi\)
\(312\) 0 0
\(313\) −4.63531 12.7354i −0.262003 0.719848i −0.999032 0.0439865i \(-0.985994\pi\)
0.737029 0.675861i \(-0.236228\pi\)
\(314\) 0 0
\(315\) −7.56883 + 3.15042i −0.426455 + 0.177506i
\(316\) 0 0
\(317\) 14.6387 + 2.58120i 0.822191 + 0.144974i 0.568891 0.822413i \(-0.307373\pi\)
0.253300 + 0.967388i \(0.418484\pi\)
\(318\) 0 0
\(319\) 0.126956 + 0.0223857i 0.00710815 + 0.00125336i
\(320\) 0 0
\(321\) −12.0034 + 2.11653i −0.669965 + 0.118133i
\(322\) 0 0
\(323\) −1.38600 0.907571i −0.0771189 0.0504986i
\(324\) 0 0
\(325\) −5.94888 2.16522i −0.329984 0.120105i
\(326\) 0 0
\(327\) 2.48968 2.96708i 0.137679 0.164080i
\(328\) 0 0
\(329\) −4.64620 20.7879i −0.256154 1.14607i
\(330\) 0 0
\(331\) −2.59275 1.49693i −0.142511 0.0822785i 0.427049 0.904228i \(-0.359553\pi\)
−0.569560 + 0.821950i \(0.692886\pi\)
\(332\) 0 0
\(333\) −3.10162 + 3.69637i −0.169968 + 0.202560i
\(334\) 0 0
\(335\) −5.44739 + 9.43516i −0.297623 + 0.515498i
\(336\) 0 0
\(337\) 0.773904 2.12628i 0.0421572 0.115826i −0.916828 0.399283i \(-0.869259\pi\)
0.958985 + 0.283457i \(0.0914813\pi\)
\(338\) 0 0
\(339\) −2.61192 + 0.460552i −0.141860 + 0.0250138i
\(340\) 0 0
\(341\) −3.70165 6.41145i −0.200456 0.347200i
\(342\) 0 0
\(343\) 17.1469 + 6.99875i 0.925848 + 0.377897i
\(344\) 0 0
\(345\) 0.746626 2.05134i 0.0401970 0.110440i
\(346\) 0 0
\(347\) 5.10198 4.28107i 0.273889 0.229820i −0.495489 0.868614i \(-0.665011\pi\)
0.769377 + 0.638794i \(0.220567\pi\)
\(348\) 0 0
\(349\) −8.51870 4.91828i −0.455996 0.263269i 0.254363 0.967109i \(-0.418134\pi\)
−0.710359 + 0.703839i \(0.751467\pi\)
\(350\) 0 0
\(351\) −3.12258 + 17.7090i −0.166671 + 0.945239i
\(352\) 0 0
\(353\) 14.4828i 0.770840i 0.922741 + 0.385420i \(0.125943\pi\)
−0.922741 + 0.385420i \(0.874057\pi\)
\(354\) 0 0
\(355\) −4.61158 + 26.1536i −0.244757 + 1.38809i
\(356\) 0 0
\(357\) −1.07229 0.336058i −0.0567515 0.0177861i
\(358\) 0 0
\(359\) −15.1212 + 12.6882i −0.798066 + 0.669657i −0.947728 0.319080i \(-0.896626\pi\)
0.149662 + 0.988737i \(0.452182\pi\)
\(360\) 0 0
\(361\) −17.0134 8.45839i −0.895442 0.445179i
\(362\) 0 0
\(363\) −1.98929 11.2818i −0.104411 0.592143i
\(364\) 0 0
\(365\) 19.7631 7.19318i 1.03445 0.376508i
\(366\) 0 0
\(367\) 1.09506 + 3.00864i 0.0571615 + 0.157050i 0.964987 0.262299i \(-0.0844807\pi\)
−0.907825 + 0.419349i \(0.862258\pi\)
\(368\) 0 0
\(369\) 5.00544 8.66968i 0.260573 0.451326i
\(370\) 0 0
\(371\) −25.1691 7.88809i −1.30672 0.409529i
\(372\) 0 0
\(373\) 21.3570i 1.10582i −0.833241 0.552911i \(-0.813517\pi\)
0.833241 0.552911i \(-0.186483\pi\)
\(374\) 0 0
\(375\) 8.73053 + 10.4046i 0.450842 + 0.537293i
\(376\) 0 0
\(377\) −0.324401 0.386606i −0.0167075 0.0199112i
\(378\) 0 0
\(379\) 13.7741i 0.707530i −0.935334 0.353765i \(-0.884901\pi\)
0.935334 0.353765i \(-0.115099\pi\)
\(380\) 0 0
\(381\) 15.7547 + 9.09598i 0.807138 + 0.466001i
\(382\) 0 0
\(383\) −10.5763 3.84944i −0.540422 0.196697i 0.0573640 0.998353i \(-0.481730\pi\)
−0.597786 + 0.801656i \(0.703953\pi\)
\(384\) 0 0
\(385\) 4.04589 0.183641i 0.206198 0.00935919i
\(386\) 0 0
\(387\) 4.37497 0.222392
\(388\) 0 0
\(389\) −16.2275 13.6165i −0.822766 0.690383i 0.130852 0.991402i \(-0.458229\pi\)
−0.953618 + 0.301019i \(0.902673\pi\)
\(390\) 0 0
\(391\) −0.363398 + 0.209808i −0.0183778 + 0.0106104i
\(392\) 0 0
\(393\) 6.45421 7.69183i 0.325572 0.388001i
\(394\) 0 0
\(395\) −3.63302 + 20.6039i −0.182797 + 1.03669i
\(396\) 0 0
\(397\) 21.9657 + 26.1777i 1.10243 + 1.31382i 0.945285 + 0.326245i \(0.105783\pi\)
0.157141 + 0.987576i \(0.449772\pi\)
\(398\) 0 0
\(399\) −12.6667 2.37475i −0.634128 0.118886i
\(400\) 0 0
\(401\) −6.46569 7.70550i −0.322881 0.384795i 0.580049 0.814581i \(-0.303033\pi\)
−0.902930 + 0.429787i \(0.858589\pi\)
\(402\) 0 0
\(403\) −5.03281 + 28.5425i −0.250702 + 1.42180i
\(404\) 0 0
\(405\) 0.772740 0.920916i 0.0383978 0.0457607i
\(406\) 0 0
\(407\) 2.06438 1.19187i 0.102327 0.0590788i
\(408\) 0 0
\(409\) −18.7789 15.7573i −0.928554 0.779150i 0.0470028 0.998895i \(-0.485033\pi\)
−0.975557 + 0.219745i \(0.929477\pi\)
\(410\) 0 0
\(411\) 10.8447 0.534928
\(412\) 0 0
\(413\) 10.9755 + 5.68944i 0.540069 + 0.279959i
\(414\) 0 0
\(415\) −17.8589 6.50010i −0.876658 0.319077i
\(416\) 0 0
\(417\) 6.68757 + 3.86107i 0.327492 + 0.189077i
\(418\) 0 0
\(419\) 14.1798i 0.692727i −0.938100 0.346363i \(-0.887416\pi\)
0.938100 0.346363i \(-0.112584\pi\)
\(420\) 0 0
\(421\) 25.1679 + 29.9939i 1.22661 + 1.46181i 0.842648 + 0.538466i \(0.180996\pi\)
0.383961 + 0.923349i \(0.374560\pi\)
\(422\) 0 0
\(423\) −9.06277 10.8006i −0.440647 0.525142i
\(424\) 0 0
\(425\) 0.710428i 0.0344608i
\(426\) 0 0
\(427\) 0.798251 0.734000i 0.0386301 0.0355207i
\(428\) 0 0
\(429\) 1.63715 2.83563i 0.0790425 0.136906i
\(430\) 0 0
\(431\) 0.132315 + 0.363532i 0.00637337 + 0.0175107i 0.942839 0.333250i \(-0.108145\pi\)
−0.936465 + 0.350761i \(0.885923\pi\)
\(432\) 0 0
\(433\) −28.5547 + 10.3931i −1.37225 + 0.499459i −0.919821 0.392339i \(-0.871666\pi\)
−0.452433 + 0.891798i \(0.649444\pi\)
\(434\) 0 0
\(435\) 0.0511629 + 0.290159i 0.00245307 + 0.0139121i
\(436\) 0 0
\(437\) −3.85430 + 2.88156i −0.184376 + 0.137844i
\(438\) 0 0
\(439\) −2.16028 + 1.81269i −0.103105 + 0.0865150i −0.692883 0.721050i \(-0.743660\pi\)
0.589778 + 0.807565i \(0.299215\pi\)
\(440\) 0 0
\(441\) 12.2083 1.11054i 0.581347 0.0528830i
\(442\) 0 0
\(443\) −1.24944 + 7.08592i −0.0593627 + 0.336662i −0.999996 0.00276150i \(-0.999121\pi\)
0.940634 + 0.339424i \(0.110232\pi\)
\(444\) 0 0
\(445\) 2.86323i 0.135730i
\(446\) 0 0
\(447\) 4.50136 25.5285i 0.212907 1.20746i
\(448\) 0 0
\(449\) −11.0263 6.36606i −0.520365 0.300433i 0.216719 0.976234i \(-0.430465\pi\)
−0.737084 + 0.675801i \(0.763798\pi\)
\(450\) 0 0
\(451\) −3.78846 + 3.17890i −0.178392 + 0.149689i
\(452\) 0 0
\(453\) 1.93967 5.32919i 0.0911335 0.250387i
\(454\) 0 0
\(455\) −12.5955 9.63040i −0.590486 0.451480i
\(456\) 0 0
\(457\) 9.57961 + 16.5924i 0.448115 + 0.776158i 0.998263 0.0589088i \(-0.0187621\pi\)
−0.550148 + 0.835067i \(0.685429\pi\)
\(458\) 0 0
\(459\) −1.98731 + 0.350417i −0.0927598 + 0.0163561i
\(460\) 0 0
\(461\) 10.8948 29.9332i 0.507421 1.39413i −0.376467 0.926430i \(-0.622861\pi\)
0.883888 0.467699i \(-0.154917\pi\)
\(462\) 0 0
\(463\) 5.78780 10.0248i 0.268982 0.465890i −0.699617 0.714518i \(-0.746646\pi\)
0.968599 + 0.248628i \(0.0799795\pi\)
\(464\) 0 0
\(465\) 10.8762 12.9618i 0.504372 0.601088i
\(466\) 0 0
\(467\) −18.4632 10.6597i −0.854375 0.493274i 0.00774933 0.999970i \(-0.497533\pi\)
−0.862125 + 0.506696i \(0.830867\pi\)
\(468\) 0 0
\(469\) 11.9917 11.0265i 0.553727 0.509157i
\(470\) 0 0
\(471\) 9.44891 11.2608i 0.435383 0.518869i
\(472\) 0 0
\(473\) −2.03094 0.739203i −0.0933829 0.0339886i
\(474\) 0 0
\(475\) −0.962251 8.09056i −0.0441511 0.371220i
\(476\) 0 0
\(477\) −17.1934 + 3.03166i −0.787233 + 0.138810i
\(478\) 0 0
\(479\) −21.6472 3.81698i −0.989084 0.174402i −0.344377 0.938832i \(-0.611910\pi\)
−0.644708 + 0.764429i \(0.723021\pi\)
\(480\) 0 0
\(481\) −9.19018 1.62048i −0.419036 0.0738874i
\(482\) 0 0
\(483\) −1.98262 + 2.59306i −0.0902126 + 0.117988i
\(484\) 0 0
\(485\) 1.03639 + 2.84746i 0.0470600 + 0.129296i
\(486\) 0 0
\(487\) 34.9209 20.1616i 1.58242 0.913609i 0.587911 0.808926i \(-0.299951\pi\)
0.994506 0.104683i \(-0.0333827\pi\)
\(488\) 0 0
\(489\) 0.0338203 + 0.0123096i 0.00152941 + 0.000556659i
\(490\) 0 0
\(491\) −20.6413 + 17.3201i −0.931527 + 0.781644i −0.976091 0.217363i \(-0.930255\pi\)
0.0445639 + 0.999007i \(0.485810\pi\)
\(492\) 0 0
\(493\) 0.0283175 0.0490474i 0.00127536 0.00220898i
\(494\) 0 0
\(495\) 2.32161 1.34038i 0.104349 0.0602457i
\(496\) 0 0
\(497\) 18.2752 35.2548i 0.819757 1.58139i
\(498\) 0 0
\(499\) −5.84935 33.1733i −0.261853 1.48504i −0.777850 0.628450i \(-0.783690\pi\)
0.515997 0.856590i \(-0.327422\pi\)
\(500\) 0 0
\(501\) −9.75167 16.8904i −0.435672 0.754607i
\(502\) 0 0
\(503\) −33.2085 5.85556i −1.48069 0.261086i −0.625839 0.779952i \(-0.715243\pi\)
−0.854856 + 0.518866i \(0.826354\pi\)
\(504\) 0 0
\(505\) 5.45186 + 9.44290i 0.242605 + 0.420204i
\(506\) 0 0
\(507\) 1.60576 0.584450i 0.0713144 0.0259563i
\(508\) 0 0
\(509\) −10.5921 8.88779i −0.469485 0.393945i 0.377122 0.926164i \(-0.376914\pi\)
−0.846607 + 0.532219i \(0.821358\pi\)
\(510\) 0 0
\(511\) −31.4154 + 1.42593i −1.38974 + 0.0630793i
\(512\) 0 0
\(513\) −22.1574 + 6.68239i −0.978275 + 0.295035i
\(514\) 0 0
\(515\) −1.45818 + 4.00631i −0.0642550 + 0.176539i
\(516\) 0 0
\(517\) 2.38222 + 6.54509i 0.104770 + 0.287853i
\(518\) 0 0
\(519\) −4.68064 3.92752i −0.205457 0.172399i
\(520\) 0 0
\(521\) 32.1850 1.41005 0.705024 0.709183i \(-0.250936\pi\)
0.705024 + 0.709183i \(0.250936\pi\)
\(522\) 0 0
\(523\) 19.2201 6.99556i 0.840438 0.305895i 0.114303 0.993446i \(-0.463537\pi\)
0.726136 + 0.687551i \(0.241314\pi\)
\(524\) 0 0
\(525\) −2.12365 5.10204i −0.0926839 0.222671i
\(526\) 0 0
\(527\) −3.20304 + 0.564782i −0.139527 + 0.0246023i
\(528\) 0 0
\(529\) −3.78225 21.4502i −0.164446 0.932617i
\(530\) 0 0
\(531\) 8.18283 0.355105
\(532\) 0 0
\(533\) 19.3608 0.838610
\(534\) 0 0
\(535\) −3.35130 19.0062i −0.144889 0.821708i
\(536\) 0 0
\(537\) −1.07680 + 0.189869i −0.0464673 + 0.00819344i
\(538\) 0 0
\(539\) −5.85496 1.54720i −0.252191 0.0666426i
\(540\) 0 0
\(541\) 22.2699 8.10559i 0.957459 0.348486i 0.184421 0.982847i \(-0.440959\pi\)
0.773037 + 0.634361i \(0.218737\pi\)
\(542\) 0 0
\(543\) 6.17020 0.264789
\(544\) 0 0
\(545\) 4.69806 + 3.94214i 0.201243 + 0.168863i
\(546\) 0 0
\(547\) 7.49092 + 20.5811i 0.320288 + 0.879985i 0.990463 + 0.137781i \(0.0439972\pi\)
−0.670174 + 0.742204i \(0.733781\pi\)
\(548\) 0 0
\(549\) 0.245497 0.674496i 0.0104775 0.0287868i
\(550\) 0 0
\(551\) 0.256055 0.596921i 0.0109083 0.0254297i
\(552\) 0 0
\(553\) 14.3973 27.7738i 0.612236 1.18106i
\(554\) 0 0
\(555\) 4.17347 + 3.50195i 0.177154 + 0.148650i
\(556\) 0 0
\(557\) 18.1889 6.62022i 0.770688 0.280508i 0.0734040 0.997302i \(-0.476614\pi\)
0.697284 + 0.716795i \(0.254392\pi\)
\(558\) 0 0
\(559\) 4.23054 + 7.32752i 0.178933 + 0.309921i
\(560\) 0 0
\(561\) 0.361861 + 0.0638059i 0.0152778 + 0.00269389i
\(562\) 0 0
\(563\) 15.8506 + 27.4540i 0.668023 + 1.15705i 0.978456 + 0.206455i \(0.0661926\pi\)
−0.310433 + 0.950595i \(0.600474\pi\)
\(564\) 0 0
\(565\) −0.729237 4.13571i −0.0306792 0.173991i
\(566\) 0 0
\(567\) −1.51439 + 0.968448i −0.0635983 + 0.0406710i
\(568\) 0 0
\(569\) 31.7623 18.3380i 1.33154 0.768768i 0.346008 0.938231i \(-0.387537\pi\)
0.985536 + 0.169464i \(0.0542035\pi\)
\(570\) 0 0
\(571\) −9.32073 + 16.1440i −0.390060 + 0.675604i −0.992457 0.122593i \(-0.960879\pi\)
0.602397 + 0.798197i \(0.294212\pi\)
\(572\) 0 0
\(573\) −19.4972 + 16.3601i −0.814508 + 0.683453i
\(574\) 0 0
\(575\) −1.93919 0.705809i −0.0808700 0.0294343i
\(576\) 0 0
\(577\) −28.8750 + 16.6710i −1.20208 + 0.694023i −0.961018 0.276486i \(-0.910830\pi\)
−0.241065 + 0.970509i \(0.577497\pi\)
\(578\) 0 0
\(579\) 2.86656 + 7.87580i 0.119130 + 0.327307i
\(580\) 0 0
\(581\) 22.5751 + 17.2607i 0.936572 + 0.716093i
\(582\) 0 0
\(583\) 8.49374 + 1.49768i 0.351775 + 0.0620274i
\(584\) 0 0
\(585\) −10.3353 1.82240i −0.427313 0.0753468i
\(586\) 0 0
\(587\) −33.1655 + 5.84798i −1.36889 + 0.241372i −0.809298 0.587398i \(-0.800152\pi\)
−0.559589 + 0.828770i \(0.689041\pi\)
\(588\) 0 0
\(589\) −35.7122 + 10.7703i −1.47149 + 0.443783i
\(590\) 0 0
\(591\) 9.64689 + 3.51118i 0.396820 + 0.144431i
\(592\) 0 0
\(593\) 4.35242 5.18701i 0.178732 0.213005i −0.669239 0.743047i \(-0.733380\pi\)
0.847971 + 0.530043i \(0.177824\pi\)
\(594\) 0 0
\(595\) 0.532114 1.69786i 0.0218145 0.0696054i
\(596\) 0 0
\(597\) −6.90611 3.98725i −0.282648 0.163187i
\(598\) 0 0
\(599\) 16.6129 19.7984i 0.678783 0.808942i −0.311167 0.950355i \(-0.600720\pi\)
0.989951 + 0.141413i \(0.0451644\pi\)
\(600\) 0 0
\(601\) 1.57019 2.71966i 0.0640495 0.110937i −0.832222 0.554442i \(-0.812932\pi\)
0.896272 + 0.443505i \(0.146265\pi\)
\(602\) 0 0
\(603\) 3.68797 10.1326i 0.150186 0.412632i
\(604\) 0 0
\(605\) 17.8636 3.14984i 0.726260 0.128059i
\(606\) 0 0
\(607\) −12.2682 21.2491i −0.497951 0.862476i 0.502046 0.864841i \(-0.332581\pi\)
−0.999997 + 0.00236445i \(0.999247\pi\)
\(608\) 0 0
\(609\) 0.0567510 0.436889i 0.00229967 0.0177037i
\(610\) 0 0
\(611\) 9.32601 25.6230i 0.377290 1.03660i
\(612\) 0 0
\(613\) −9.96250 + 8.35953i −0.402382 + 0.337638i −0.821413 0.570333i \(-0.806814\pi\)
0.419032 + 0.907972i \(0.362370\pi\)
\(614\) 0 0
\(615\) −9.78869 5.65150i −0.394718 0.227891i
\(616\) 0 0
\(617\) −7.22491 + 40.9745i −0.290864 + 1.64957i 0.392691 + 0.919671i \(0.371544\pi\)
−0.683554 + 0.729900i \(0.739567\pi\)
\(618\) 0 0
\(619\) 3.67021i 0.147518i 0.997276 + 0.0737592i \(0.0234996\pi\)
−0.997276 + 0.0737592i \(0.976500\pi\)
\(620\) 0 0
\(621\) −1.01789 + 5.77273i −0.0408464 + 0.231652i
\(622\) 0 0
\(623\) −1.28037 + 4.08537i −0.0512968 + 0.163677i
\(624\) 0 0
\(625\) −9.31528 + 7.81645i −0.372611 + 0.312658i
\(626\) 0 0
\(627\) 4.20740 + 0.236511i 0.168027 + 0.00944534i
\(628\) 0 0
\(629\) −0.181850 1.03132i −0.00725084 0.0411216i
\(630\) 0 0
\(631\) −15.0312 + 5.47093i −0.598384 + 0.217794i −0.623413 0.781893i \(-0.714255\pi\)
0.0250287 + 0.999687i \(0.492032\pi\)
\(632\) 0 0
\(633\) −0.934688 2.56804i −0.0371505 0.102070i
\(634\) 0 0
\(635\) −14.4025 + 24.9459i −0.571548 + 0.989950i
\(636\) 0 0
\(637\) 13.6653 + 19.3734i 0.541438 + 0.767604i
\(638\) 0 0
\(639\) 26.2844i 1.03979i
\(640\) 0 0
\(641\) 5.65164 + 6.73537i 0.223227 + 0.266031i 0.866021 0.500008i \(-0.166670\pi\)
−0.642794 + 0.766039i \(0.722225\pi\)
\(642\) 0 0
\(643\) −12.4523 14.8401i −0.491070 0.585235i 0.462419 0.886662i \(-0.346982\pi\)
−0.953489 + 0.301427i \(0.902537\pi\)
\(644\) 0 0
\(645\) 4.93965i 0.194499i
\(646\) 0 0
\(647\) 21.9038 + 12.6461i 0.861126 + 0.497171i 0.864389 0.502823i \(-0.167705\pi\)
−0.00326323 + 0.999995i \(0.501039\pi\)
\(648\) 0 0
\(649\) −3.79862 1.38259i −0.149109 0.0542712i
\(650\) 0 0
\(651\) −21.3148 + 13.6308i −0.835394 + 0.534233i
\(652\) 0 0
\(653\) 37.4666 1.46618 0.733090 0.680131i \(-0.238077\pi\)
0.733090 + 0.680131i \(0.238077\pi\)
\(654\) 0 0
\(655\) 12.1792 + 10.2196i 0.475881 + 0.399312i
\(656\) 0 0
\(657\) −18.0268 + 10.4078i −0.703291 + 0.406045i
\(658\) 0 0
\(659\) −15.2125 + 18.1296i −0.592596 + 0.706228i −0.976103 0.217310i \(-0.930272\pi\)
0.383507 + 0.923538i \(0.374716\pi\)
\(660\) 0 0
\(661\) 1.27502 7.23102i 0.0495927 0.281254i −0.949919 0.312496i \(-0.898835\pi\)
0.999512 + 0.0312417i \(0.00994615\pi\)
\(662\) 0 0
\(663\) −0.924639 1.10194i −0.0359100 0.0427959i
\(664\) 0 0
\(665\) 3.76018 20.0564i 0.145813 0.777754i
\(666\) 0 0
\(667\) −0.105747 0.126024i −0.00409454 0.00487968i
\(668\) 0 0
\(669\) −3.92408 + 22.2546i −0.151714 + 0.860411i
\(670\) 0 0
\(671\) −0.227928 + 0.271634i −0.00879907 + 0.0104863i
\(672\) 0 0
\(673\) 17.8613 10.3122i 0.688503 0.397507i −0.114548 0.993418i \(-0.536542\pi\)
0.803051 + 0.595910i \(0.203209\pi\)
\(674\) 0 0
\(675\) −7.60243 6.37919i −0.292617 0.245535i
\(676\) 0 0
\(677\) −32.9182 −1.26515 −0.632574 0.774500i \(-0.718002\pi\)
−0.632574 + 0.774500i \(0.718002\pi\)
\(678\) 0 0
\(679\) −0.205447 4.52631i −0.00788432 0.173704i
\(680\) 0 0
\(681\) −6.71967 2.44576i −0.257498 0.0937217i
\(682\) 0 0
\(683\) 33.1695 + 19.1504i 1.26920 + 0.732771i 0.974836 0.222923i \(-0.0715600\pi\)
0.294361 + 0.955694i \(0.404893\pi\)
\(684\) 0 0
\(685\) 17.1714i 0.656085i
\(686\) 0 0
\(687\) −9.26014 11.0358i −0.353296 0.421042i
\(688\) 0 0
\(689\) −21.7035 25.8652i −0.826836 0.985385i
\(690\) 0 0
\(691\) 36.0983i 1.37324i −0.727014 0.686622i \(-0.759093\pi\)
0.727014 0.686622i \(-0.240907\pi\)
\(692\) 0 0
\(693\) −3.91195 + 0.874341i −0.148603 + 0.0332135i
\(694\) 0 0
\(695\) −6.11361 + 10.5891i −0.231902 + 0.401667i
\(696\) 0 0
\(697\) 0.743098 + 2.04165i 0.0281468 + 0.0773328i
\(698\) 0 0
\(699\) −23.7257 + 8.63545i −0.897388 + 0.326623i
\(700\) 0 0
\(701\) 6.76708 + 38.3780i 0.255589 + 1.44952i 0.794556 + 0.607190i \(0.207703\pi\)
−0.538967 + 0.842327i \(0.681185\pi\)
\(702\) 0 0
\(703\) −3.46786 11.4987i −0.130793 0.433682i
\(704\) 0 0
\(705\) −12.1946 + 10.2325i −0.459276 + 0.385379i
\(706\) 0 0
\(707\) −3.55629 15.9114i −0.133748 0.598412i
\(708\) 0 0
\(709\) 2.38137 13.5054i 0.0894343 0.507207i −0.906877 0.421395i \(-0.861541\pi\)
0.996311 0.0858118i \(-0.0273484\pi\)
\(710\) 0 0
\(711\) 20.7069i 0.776570i
\(712\) 0 0
\(713\) −1.64058 + 9.30417i −0.0614401 + 0.348444i
\(714\) 0 0
\(715\) 4.48993 + 2.59226i 0.167914 + 0.0969452i
\(716\) 0 0
\(717\) 22.9956 19.2956i 0.858785 0.720606i
\(718\) 0 0
\(719\) −11.4831 + 31.5495i −0.428246 + 1.17660i 0.518631 + 0.854998i \(0.326442\pi\)
−0.946876 + 0.321598i \(0.895780\pi\)
\(720\) 0 0
\(721\) 3.87211 5.06430i 0.144205 0.188604i
\(722\) 0 0
\(723\) 13.9417 + 24.1477i 0.518497 + 0.898063i
\(724\) 0 0
\(725\) 0.274297 0.0483659i 0.0101871 0.00179626i
\(726\) 0 0
\(727\) −8.06016 + 22.1451i −0.298935 + 0.821317i 0.695744 + 0.718290i \(0.255075\pi\)
−0.994679 + 0.103027i \(0.967147\pi\)
\(728\) 0 0
\(729\) −9.49463 + 16.4452i −0.351653 + 0.609081i
\(730\) 0 0
\(731\) −0.610330 + 0.727363i −0.0225739 + 0.0269025i
\(732\) 0 0
\(733\) 30.8166 + 17.7920i 1.13824 + 0.657162i 0.945993 0.324186i \(-0.105090\pi\)
0.192244 + 0.981347i \(0.438424\pi\)
\(734\) 0 0
\(735\) −1.25388 13.7840i −0.0462501 0.508432i
\(736\) 0 0
\(737\) −3.42405 + 4.08063i −0.126127 + 0.150312i
\(738\) 0 0
\(739\) 29.2721 + 10.6542i 1.07679 + 0.391919i 0.818712 0.574205i \(-0.194689\pi\)
0.258078 + 0.966124i \(0.416911\pi\)
\(740\) 0 0
\(741\) −12.0226 11.2968i −0.441661 0.415000i
\(742\) 0 0
\(743\) 41.6348 7.34134i 1.52743 0.269328i 0.654083 0.756423i \(-0.273055\pi\)
0.873349 + 0.487095i \(0.161943\pi\)
\(744\) 0 0
\(745\) 40.4217 + 7.12744i 1.48094 + 0.261129i
\(746\) 0 0
\(747\) 18.5241 + 3.26630i 0.677762 + 0.119508i
\(748\) 0 0
\(749\) −3.71734 + 28.6174i −0.135829 + 1.04566i
\(750\) 0 0
\(751\) −0.457072 1.25579i −0.0166788 0.0458246i 0.931074 0.364831i \(-0.118873\pi\)
−0.947753 + 0.319006i \(0.896651\pi\)
\(752\) 0 0
\(753\) −24.9876 + 14.4266i −0.910600 + 0.525735i
\(754\) 0 0
\(755\) 8.43823 + 3.07126i 0.307099 + 0.111775i
\(756\) 0 0
\(757\) −6.53313 + 5.48195i −0.237451 + 0.199245i −0.753746 0.657166i \(-0.771755\pi\)
0.516295 + 0.856411i \(0.327311\pi\)
\(758\) 0 0
\(759\) 0.533674 0.924350i 0.0193711 0.0335518i
\(760\) 0 0
\(761\) −4.68599 + 2.70546i −0.169867 + 0.0980727i −0.582523 0.812814i \(-0.697934\pi\)
0.412656 + 0.910887i \(0.364601\pi\)
\(762\) 0 0
\(763\) −4.94055 7.72567i −0.178860 0.279688i
\(764\) 0 0
\(765\) −0.204510 1.15983i −0.00739406 0.0419338i
\(766\) 0 0
\(767\) 7.91270 + 13.7052i 0.285711 + 0.494866i
\(768\) 0 0
\(769\) −39.7233 7.00429i −1.43246 0.252581i −0.597047 0.802206i \(-0.703659\pi\)
−0.835411 + 0.549625i \(0.814771\pi\)
\(770\) 0 0
\(771\) −1.70455 2.95237i −0.0613879 0.106327i
\(772\) 0 0
\(773\) 2.05716 0.748744i 0.0739908 0.0269304i −0.304760 0.952429i \(-0.598576\pi\)
0.378750 + 0.925499i \(0.376354\pi\)
\(774\) 0 0
\(775\) −12.2532 10.2816i −0.440147 0.369327i
\(776\) 0 0
\(777\) −4.38888 6.86300i −0.157450 0.246209i
\(778\) 0 0
\(779\) 11.2280 + 22.2443i 0.402283 + 0.796986i
\(780\) 0 0
\(781\) −4.44105 + 12.2017i −0.158913 + 0.436611i
\(782\) 0 0
\(783\) −0.270592 0.743445i −0.00967017 0.0265686i
\(784\) 0 0
\(785\) 17.8303 + 14.9614i 0.636389 + 0.533994i
\(786\) 0 0
\(787\) 4.61867 0.164638 0.0823190 0.996606i \(-0.473767\pi\)
0.0823190 + 0.996606i \(0.473767\pi\)
\(788\) 0 0
\(789\) 17.5009 6.36981i 0.623049 0.226771i
\(790\) 0 0
\(791\) −0.808886 + 6.22709i −0.0287607 + 0.221410i
\(792\) 0 0
\(793\) 1.36709 0.241054i 0.0485467 0.00856009i
\(794\) 0 0
\(795\) 3.42296 + 19.4126i 0.121400 + 0.688494i
\(796\) 0 0
\(797\) −24.3832 −0.863697 −0.431849 0.901946i \(-0.642139\pi\)
−0.431849 + 0.901946i \(0.642139\pi\)
\(798\) 0 0
\(799\) 3.05996 0.108253
\(800\) 0 0
\(801\) 0.492089 + 2.79078i 0.0173871 + 0.0986072i
\(802\) 0 0
\(803\) 10.1269 1.78564i 0.357370 0.0630139i
\(804\) 0 0
\(805\) −4.10584 3.13928i −0.144712 0.110645i
\(806\) 0 0
\(807\) 32.0500 11.6653i 1.12822 0.410637i
\(808\) 0 0
\(809\) 37.4635 1.31714 0.658572 0.752517i \(-0.271161\pi\)
0.658572 + 0.752517i \(0.271161\pi\)
\(810\) 0 0
\(811\) −3.06379 2.57083i −0.107584 0.0902739i 0.587409 0.809290i \(-0.300148\pi\)
−0.694993 + 0.719016i \(0.744593\pi\)
\(812\) 0 0
\(813\) 5.73774 + 15.7643i 0.201231 + 0.552878i
\(814\) 0 0
\(815\) −0.0194910 + 0.0535510i −0.000682739 + 0.00187581i
\(816\) 0 0
\(817\) −5.96542 + 9.11009i −0.208704 + 0.318722i
\(818\) 0 0
\(819\) 13.9319 + 7.22198i 0.486821 + 0.252356i
\(820\) 0 0
\(821\) 1.16746 + 0.979615i 0.0407446 + 0.0341888i 0.662933 0.748679i \(-0.269312\pi\)
−0.622188 + 0.782868i \(0.713756\pi\)
\(822\) 0 0
\(823\) −30.4448 + 11.0810i −1.06124 + 0.386259i −0.812894 0.582412i \(-0.802109\pi\)
−0.248345 + 0.968672i \(0.579887\pi\)
\(824\) 0 0
\(825\) 0.903533 + 1.56497i 0.0314570 + 0.0544851i
\(826\) 0 0
\(827\) −0.288957 0.0509509i −0.0100480 0.00177174i 0.168622 0.985681i \(-0.446068\pi\)
−0.178670 + 0.983909i \(0.557179\pi\)
\(828\) 0 0
\(829\) −3.37999 5.85432i −0.117392 0.203329i 0.801341 0.598207i \(-0.204120\pi\)
−0.918733 + 0.394878i \(0.870787\pi\)
\(830\) 0 0
\(831\) −3.99581 22.6613i −0.138613 0.786113i
\(832\) 0 0
\(833\) −1.51848 + 2.18462i −0.0526123 + 0.0756927i
\(834\) 0 0
\(835\) 26.7442 15.4408i 0.925521 0.534350i
\(836\) 0 0
\(837\) −22.7174 + 39.3477i −0.785229 + 1.36006i
\(838\) 0 0
\(839\) 3.06761 2.57403i 0.105906 0.0888655i −0.588297 0.808645i \(-0.700201\pi\)
0.694203 + 0.719779i \(0.255757\pi\)
\(840\) 0 0
\(841\) −27.2302 9.91099i −0.938973 0.341758i
\(842\) 0 0
\(843\) −8.30359 + 4.79408i −0.285991 + 0.165117i
\(844\) 0 0
\(845\) 0.925416 + 2.54256i 0.0318353 + 0.0874668i
\(846\) 0 0
\(847\) −26.8971 3.49387i −0.924194 0.120051i
\(848\) 0 0
\(849\) −21.0247 3.70721i −0.721564 0.127231i
\(850\) 0 0
\(851\) −2.99578 0.528237i −0.102694 0.0181077i
\(852\) 0 0
\(853\) −13.1781 + 2.32366i −0.451210 + 0.0795605i −0.394635 0.918838i \(-0.629129\pi\)
−0.0565748 + 0.998398i \(0.518018\pi\)
\(854\) 0 0
\(855\) −3.89997 12.9315i −0.133376 0.442248i
\(856\) 0 0
\(857\) 26.6434 + 9.69739i 0.910120 + 0.331257i 0.754301 0.656529i \(-0.227976\pi\)
0.155819 + 0.987786i \(0.450198\pi\)
\(858\) 0 0
\(859\) −14.4153 + 17.1795i −0.491843 + 0.586156i −0.953685 0.300806i \(-0.902744\pi\)
0.461842 + 0.886962i \(0.347189\pi\)
\(860\) 0 0
\(861\) 11.4397 + 12.4411i 0.389863 + 0.423990i
\(862\) 0 0
\(863\) 43.3219 + 25.0119i 1.47470 + 0.851416i 0.999593 0.0285149i \(-0.00907780\pi\)
0.475102 + 0.879931i \(0.342411\pi\)
\(864\) 0 0
\(865\) 6.21883 7.41131i 0.211446 0.251992i
\(866\) 0 0
\(867\) −9.41785 + 16.3122i −0.319847 + 0.553991i
\(868\) 0 0
\(869\) −3.49868 + 9.61253i −0.118684 + 0.326083i
\(870\) 0 0
\(871\) 20.5371 3.62124i 0.695872 0.122701i
\(872\) 0 0
\(873\) −1.49954 2.59728i −0.0507518 0.0879048i
\(874\) 0 0
\(875\) 29.6884 12.3574i 1.00365 0.417756i
\(876\) 0 0
\(877\) 16.9218 46.4923i 0.571409 1.56993i −0.230869 0.972985i \(-0.574157\pi\)
0.802279 0.596950i \(-0.203621\pi\)
\(878\) 0 0
\(879\) −12.0026 + 10.0714i −0.404837 + 0.339699i
\(880\) 0 0
\(881\) 18.5459 + 10.7075i 0.624829 + 0.360745i 0.778747 0.627339i \(-0.215856\pi\)
−0.153918 + 0.988084i \(0.549189\pi\)
\(882\) 0 0
\(883\) −0.894478 + 5.07284i −0.0301016 + 0.170715i −0.996152 0.0876374i \(-0.972068\pi\)
0.966051 + 0.258352i \(0.0831794\pi\)
\(884\) 0 0
\(885\) 9.23900i 0.310565i
\(886\) 0 0
\(887\) −5.46759 + 31.0082i −0.183584 + 1.04115i 0.744178 + 0.667981i \(0.232841\pi\)
−0.927762 + 0.373173i \(0.878270\pi\)
\(888\) 0 0
\(889\) 31.7054 29.1534i 1.06336 0.977773i
\(890\) 0 0
\(891\) 0.450271 0.377822i 0.0150847 0.0126575i
\(892\) 0 0
\(893\) 34.8477 4.14461i 1.16613 0.138694i
\(894\) 0 0
\(895\) −0.300638 1.70500i −0.0100492 0.0569919i
\(896\) 0 0
\(897\) −3.92650 + 1.42913i −0.131102 + 0.0477172i
\(898\) 0 0
\(899\) −0.436125 1.19824i −0.0145456 0.0399637i
\(900\) 0 0
\(901\) 1.89454 3.28143i 0.0631161 0.109320i
\(902\) 0 0
\(903\) −2.20890 + 7.04810i −0.0735075 + 0.234546i
\(904\) 0 0
\(905\) 9.76988i 0.324762i
\(906\) 0 0
\(907\) −8.43843 10.0565i −0.280193 0.333922i 0.607532 0.794295i \(-0.292160\pi\)
−0.887725 + 0.460374i \(0.847715\pi\)
\(908\) 0 0
\(909\) −6.93681 8.26697i −0.230080 0.274198i
\(910\) 0 0
\(911\) 43.1832i 1.43072i 0.698755 + 0.715361i \(0.253738\pi\)
−0.698755 + 0.715361i \(0.746262\pi\)
\(912\) 0 0
\(913\) −8.04736 4.64615i −0.266329 0.153765i
\(914\) 0 0
\(915\) −0.761554 0.277183i −0.0251762 0.00916339i
\(916\) 0 0
\(917\) −12.8078 20.0280i −0.422952 0.661381i
\(918\) 0 0
\(919\) 55.8357 1.84185 0.920925 0.389739i \(-0.127435\pi\)
0.920925 + 0.389739i \(0.127435\pi\)
\(920\) 0 0
\(921\) 11.8580 + 9.95000i 0.390733 + 0.327864i
\(922\) 0 0
\(923\) 44.0229 25.4166i 1.44903 0.836599i
\(924\) 0 0
\(925\) 3.31051 3.94531i 0.108849 0.129721i
\(926\) 0 0
\(927\) 0.732734 4.15554i 0.0240662 0.136486i
\(928\) 0 0
\(929\) −4.54221 5.41319i −0.149025 0.177601i 0.686368 0.727255i \(-0.259204\pi\)
−0.835393 + 0.549654i \(0.814760\pi\)
\(930\) 0 0
\(931\) −14.3339 + 26.9358i −0.469775 + 0.882786i
\(932\) 0 0
\(933\) −7.99200 9.52449i −0.261646 0.311818i
\(934\) 0 0
\(935\) −0.101030 + 0.572970i −0.00330404 + 0.0187381i
\(936\) 0 0
\(937\) −14.6448 + 17.4529i −0.478423 + 0.570163i −0.950234 0.311537i \(-0.899156\pi\)
0.471811 + 0.881700i \(0.343601\pi\)
\(938\) 0 0
\(939\) 13.1158 7.57244i 0.428020 0.247117i
\(940\) 0 0
\(941\) −25.1121 21.0716i −0.818632 0.686914i 0.134019 0.990979i \(-0.457212\pi\)
−0.952651 + 0.304065i \(0.901656\pi\)
\(942\) 0 0
\(943\) 6.31117 0.205520
\(944\) 0 0
\(945\) −13.3910 20.9399i −0.435611 0.681176i
\(946\) 0 0
\(947\) −21.1120 7.68414i −0.686048 0.249701i −0.0246059 0.999697i \(-0.507833\pi\)
−0.661442 + 0.749996i \(0.730055\pi\)
\(948\) 0 0
\(949\) −34.8633 20.1283i −1.13171 0.653394i
\(950\) 0 0
\(951\) 16.6108i 0.538641i
\(952\) 0 0
\(953\) 25.4835 + 30.3700i 0.825490 + 0.983781i 1.00000 0.000874876i \(-0.000278482\pi\)
−0.174510 + 0.984655i \(0.555834\pi\)
\(954\) 0 0
\(955\) −25.9046 30.8718i −0.838252 0.998989i
\(956\) 0 0
\(957\) 0.144059i 0.00465675i
\(958\) 0 0
\(959\) 7.67864 24.5008i 0.247956 0.791173i
\(960\) 0 0
\(961\) −21.1147 + 36.5717i −0.681119 + 1.17973i
\(962\) 0 0
\(963\) 6.53300 + 17.9493i 0.210523 + 0.578407i
\(964\) 0 0
\(965\) −12.4705 + 4.53890i −0.401440 + 0.146112i
\(966\) 0 0
\(967\) −2.27212 12.8858i −0.0730664 0.414380i −0.999299 0.0374285i \(-0.988083\pi\)
0.926233 0.376952i \(-0.123028\pi\)
\(968\) 0 0
\(969\) 0.729833 1.70140i 0.0234456 0.0546569i
\(970\) 0 0
\(971\) −32.1504 + 26.9774i −1.03175 + 0.865745i −0.991059 0.133427i \(-0.957402\pi\)
−0.0406959 + 0.999172i \(0.512957\pi\)
\(972\) 0 0
\(973\) 13.4583 12.3751i 0.431454 0.396726i
\(974\) 0 0
\(975\) 1.22845 6.96690i 0.0393420 0.223119i
\(976\) 0 0
\(977\) 23.0409i 0.737143i −0.929599 0.368571i \(-0.879847\pi\)
0.929599 0.368571i \(-0.120153\pi\)
\(978\) 0 0
\(979\) 0.243098 1.37867i 0.00776943 0.0440626i
\(980\) 0 0
\(981\) −5.25670 3.03496i −0.167834 0.0968987i
\(982\) 0 0
\(983\) −39.1544 + 32.8545i −1.24883 + 1.04789i −0.252051 + 0.967714i \(0.581105\pi\)
−0.996780 + 0.0801805i \(0.974450\pi\)
\(984\) 0 0
\(985\) −5.55959 + 15.2749i −0.177143 + 0.486697i
\(986\) 0 0
\(987\) 21.9755 9.14700i 0.699488 0.291152i
\(988\) 0 0
\(989\) 1.37906 + 2.38860i 0.0438515 + 0.0759530i
\(990\) 0 0
\(991\) 5.63241 0.993146i 0.178919 0.0315483i −0.0834706 0.996510i \(-0.526600\pi\)
0.262390 + 0.964962i \(0.415489\pi\)
\(992\) 0 0
\(993\) 1.14425 3.14380i 0.0363117 0.0997656i
\(994\) 0 0
\(995\) 6.31339 10.9351i 0.200148 0.346667i
\(996\) 0 0
\(997\) −10.8448 + 12.9243i −0.343457 + 0.409316i −0.909928 0.414765i \(-0.863864\pi\)
0.566472 + 0.824081i \(0.308308\pi\)
\(998\) 0 0
\(999\) −12.6693 7.31462i −0.400838 0.231424i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 532.2.cj.a.409.9 yes 78
7.5 odd 6 532.2.bw.a.257.9 78
19.2 odd 18 532.2.bw.a.325.9 yes 78
133.40 even 18 inner 532.2.cj.a.173.9 yes 78
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.bw.a.257.9 78 7.5 odd 6
532.2.bw.a.325.9 yes 78 19.2 odd 18
532.2.cj.a.173.9 yes 78 133.40 even 18 inner
532.2.cj.a.409.9 yes 78 1.1 even 1 trivial