Properties

Label 532.2.l.b.501.5
Level $532$
Weight $2$
Character 532.501
Analytic conductor $4.248$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [532,2,Mod(429,532)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(532, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("532.429");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 532 = 2^{2} \cdot 7 \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 532.l (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24804138753\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 501.5
Character \(\chi\) \(=\) 532.501
Dual form 532.2.l.b.429.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.07341 q^{3} +(-1.76093 + 3.05002i) q^{5} +(-1.25747 - 2.32783i) q^{7} -1.84780 q^{9} +(2.10632 - 3.64826i) q^{11} +(0.480174 - 0.831685i) q^{13} +(1.89019 - 3.27391i) q^{15} +4.91112 q^{17} +(2.82145 - 3.32256i) q^{19} +(1.34977 + 2.49870i) q^{21} +3.66925 q^{23} +(-3.70175 - 6.41162i) q^{25} +5.20366 q^{27} +(2.27123 - 3.93389i) q^{29} +(-3.20022 + 5.54294i) q^{31} +(-2.26094 + 3.91606i) q^{33} +(9.31423 + 0.263836i) q^{35} +(1.28136 + 2.21938i) q^{37} +(-0.515421 + 0.892735i) q^{39} +(-3.84650 - 6.66233i) q^{41} +(-5.27278 - 9.13272i) q^{43} +(3.25385 - 5.63583i) q^{45} -0.902080 q^{47} +(-3.83755 + 5.85433i) q^{49} -5.27162 q^{51} +(-6.91014 - 11.9687i) q^{53} +(7.41817 + 12.8486i) q^{55} +(-3.02856 + 3.56646i) q^{57} +7.62965 q^{59} -2.34374 q^{61} +(2.32355 + 4.30136i) q^{63} +(1.69110 + 2.92908i) q^{65} +(-5.49087 - 9.51046i) q^{67} -3.93859 q^{69} +(0.929896 + 1.61063i) q^{71} -9.95225 q^{73} +(3.97348 + 6.88227i) q^{75} +(-11.1411 - 0.315586i) q^{77} +(4.45483 - 7.71599i) q^{79} -0.0422331 q^{81} -0.481118 q^{83} +(-8.64814 + 14.9790i) q^{85} +(-2.43795 + 4.22265i) q^{87} +17.2609 q^{89} +(-2.53982 - 0.0719434i) q^{91} +(3.43513 - 5.94982i) q^{93} +(5.16550 + 14.4563i) q^{95} +(2.65545 + 4.59937i) q^{97} +(-3.89206 + 6.74125i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 2 q^{3} - 6 q^{5} - 6 q^{7} + 30 q^{9} + q^{11} - 7 q^{13} - 2 q^{15} - 6 q^{17} + 17 q^{19} - 18 q^{21} - 16 q^{23} - 8 q^{25} + 20 q^{27} - 22 q^{29} - 7 q^{31} + 7 q^{33} - 21 q^{35} + 9 q^{37}+ \cdots - 27 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/532\mathbb{Z}\right)^\times\).

\(n\) \(267\) \(381\) \(477\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.07341 −0.619731 −0.309866 0.950780i \(-0.600284\pi\)
−0.309866 + 0.950780i \(0.600284\pi\)
\(4\) 0 0
\(5\) −1.76093 + 3.05002i −0.787512 + 1.36401i 0.139975 + 0.990155i \(0.455298\pi\)
−0.927487 + 0.373855i \(0.878036\pi\)
\(6\) 0 0
\(7\) −1.25747 2.32783i −0.475278 0.879836i
\(8\) 0 0
\(9\) −1.84780 −0.615933
\(10\) 0 0
\(11\) 2.10632 3.64826i 0.635080 1.09999i −0.351418 0.936218i \(-0.614301\pi\)
0.986498 0.163772i \(-0.0523661\pi\)
\(12\) 0 0
\(13\) 0.480174 0.831685i 0.133176 0.230668i −0.791723 0.610880i \(-0.790816\pi\)
0.924899 + 0.380212i \(0.124149\pi\)
\(14\) 0 0
\(15\) 1.89019 3.27391i 0.488046 0.845320i
\(16\) 0 0
\(17\) 4.91112 1.19112 0.595561 0.803310i \(-0.296930\pi\)
0.595561 + 0.803310i \(0.296930\pi\)
\(18\) 0 0
\(19\) 2.82145 3.32256i 0.647285 0.762248i
\(20\) 0 0
\(21\) 1.34977 + 2.49870i 0.294545 + 0.545261i
\(22\) 0 0
\(23\) 3.66925 0.765091 0.382546 0.923937i \(-0.375047\pi\)
0.382546 + 0.923937i \(0.375047\pi\)
\(24\) 0 0
\(25\) −3.70175 6.41162i −0.740350 1.28232i
\(26\) 0 0
\(27\) 5.20366 1.00144
\(28\) 0 0
\(29\) 2.27123 3.93389i 0.421757 0.730504i −0.574355 0.818607i \(-0.694747\pi\)
0.996111 + 0.0881024i \(0.0280803\pi\)
\(30\) 0 0
\(31\) −3.20022 + 5.54294i −0.574776 + 0.995541i 0.421290 + 0.906926i \(0.361577\pi\)
−0.996066 + 0.0886152i \(0.971756\pi\)
\(32\) 0 0
\(33\) −2.26094 + 3.91606i −0.393579 + 0.681698i
\(34\) 0 0
\(35\) 9.31423 + 0.263836i 1.57439 + 0.0445965i
\(36\) 0 0
\(37\) 1.28136 + 2.21938i 0.210654 + 0.364864i 0.951920 0.306348i \(-0.0991072\pi\)
−0.741265 + 0.671212i \(0.765774\pi\)
\(38\) 0 0
\(39\) −0.515421 + 0.892735i −0.0825334 + 0.142952i
\(40\) 0 0
\(41\) −3.84650 6.66233i −0.600722 1.04048i −0.992712 0.120512i \(-0.961546\pi\)
0.391990 0.919970i \(-0.371787\pi\)
\(42\) 0 0
\(43\) −5.27278 9.13272i −0.804091 1.39273i −0.916903 0.399110i \(-0.869319\pi\)
0.112812 0.993616i \(-0.464014\pi\)
\(44\) 0 0
\(45\) 3.25385 5.63583i 0.485055 0.840140i
\(46\) 0 0
\(47\) −0.902080 −0.131582 −0.0657910 0.997833i \(-0.520957\pi\)
−0.0657910 + 0.997833i \(0.520957\pi\)
\(48\) 0 0
\(49\) −3.83755 + 5.85433i −0.548221 + 0.836333i
\(50\) 0 0
\(51\) −5.27162 −0.738175
\(52\) 0 0
\(53\) −6.91014 11.9687i −0.949181 1.64403i −0.747156 0.664649i \(-0.768581\pi\)
−0.202025 0.979380i \(-0.564752\pi\)
\(54\) 0 0
\(55\) 7.41817 + 12.8486i 1.00027 + 1.73251i
\(56\) 0 0
\(57\) −3.02856 + 3.56646i −0.401143 + 0.472389i
\(58\) 0 0
\(59\) 7.62965 0.993295 0.496648 0.867952i \(-0.334564\pi\)
0.496648 + 0.867952i \(0.334564\pi\)
\(60\) 0 0
\(61\) −2.34374 −0.300086 −0.150043 0.988680i \(-0.547941\pi\)
−0.150043 + 0.988680i \(0.547941\pi\)
\(62\) 0 0
\(63\) 2.32355 + 4.30136i 0.292740 + 0.541920i
\(64\) 0 0
\(65\) 1.69110 + 2.92908i 0.209756 + 0.363307i
\(66\) 0 0
\(67\) −5.49087 9.51046i −0.670816 1.16189i −0.977673 0.210132i \(-0.932611\pi\)
0.306857 0.951756i \(-0.400723\pi\)
\(68\) 0 0
\(69\) −3.93859 −0.474151
\(70\) 0 0
\(71\) 0.929896 + 1.61063i 0.110358 + 0.191146i 0.915915 0.401373i \(-0.131467\pi\)
−0.805556 + 0.592519i \(0.798133\pi\)
\(72\) 0 0
\(73\) −9.95225 −1.16482 −0.582411 0.812894i \(-0.697891\pi\)
−0.582411 + 0.812894i \(0.697891\pi\)
\(74\) 0 0
\(75\) 3.97348 + 6.88227i 0.458818 + 0.794696i
\(76\) 0 0
\(77\) −11.1411 0.315586i −1.26965 0.0359643i
\(78\) 0 0
\(79\) 4.45483 7.71599i 0.501207 0.868116i −0.498792 0.866722i \(-0.666223\pi\)
0.999999 0.00139443i \(-0.000443862\pi\)
\(80\) 0 0
\(81\) −0.0422331 −0.00469256
\(82\) 0 0
\(83\) −0.481118 −0.0528096 −0.0264048 0.999651i \(-0.508406\pi\)
−0.0264048 + 0.999651i \(0.508406\pi\)
\(84\) 0 0
\(85\) −8.64814 + 14.9790i −0.938022 + 1.62470i
\(86\) 0 0
\(87\) −2.43795 + 4.22265i −0.261376 + 0.452716i
\(88\) 0 0
\(89\) 17.2609 1.82965 0.914824 0.403852i \(-0.132329\pi\)
0.914824 + 0.403852i \(0.132329\pi\)
\(90\) 0 0
\(91\) −2.53982 0.0719434i −0.266246 0.00754171i
\(92\) 0 0
\(93\) 3.43513 5.94982i 0.356207 0.616968i
\(94\) 0 0
\(95\) 5.16550 + 14.4563i 0.529969 + 1.48318i
\(96\) 0 0
\(97\) 2.65545 + 4.59937i 0.269620 + 0.466995i 0.968764 0.247986i \(-0.0797686\pi\)
−0.699144 + 0.714981i \(0.746435\pi\)
\(98\) 0 0
\(99\) −3.89206 + 6.74125i −0.391167 + 0.677521i
\(100\) 0 0
\(101\) −0.256882 0.444932i −0.0255607 0.0442724i 0.852962 0.521973i \(-0.174804\pi\)
−0.878523 + 0.477700i \(0.841470\pi\)
\(102\) 0 0
\(103\) 1.97370 + 3.41855i 0.194474 + 0.336840i 0.946728 0.322034i \(-0.104367\pi\)
−0.752254 + 0.658874i \(0.771033\pi\)
\(104\) 0 0
\(105\) −9.99795 0.283203i −0.975700 0.0276378i
\(106\) 0 0
\(107\) 6.55897 + 11.3605i 0.634080 + 1.09826i 0.986709 + 0.162496i \(0.0519543\pi\)
−0.352629 + 0.935763i \(0.614712\pi\)
\(108\) 0 0
\(109\) 13.5930 1.30197 0.650986 0.759090i \(-0.274356\pi\)
0.650986 + 0.759090i \(0.274356\pi\)
\(110\) 0 0
\(111\) −1.37542 2.38230i −0.130549 0.226118i
\(112\) 0 0
\(113\) −12.1668 −1.14456 −0.572278 0.820060i \(-0.693940\pi\)
−0.572278 + 0.820060i \(0.693940\pi\)
\(114\) 0 0
\(115\) −6.46129 + 11.1913i −0.602518 + 1.04359i
\(116\) 0 0
\(117\) −0.887265 + 1.53679i −0.0820277 + 0.142076i
\(118\) 0 0
\(119\) −6.17557 11.4322i −0.566114 1.04799i
\(120\) 0 0
\(121\) −3.37318 5.84252i −0.306653 0.531138i
\(122\) 0 0
\(123\) 4.12885 + 7.15138i 0.372286 + 0.644818i
\(124\) 0 0
\(125\) 8.46478 0.757113
\(126\) 0 0
\(127\) −8.99904 + 15.5868i −0.798536 + 1.38310i 0.122033 + 0.992526i \(0.461058\pi\)
−0.920569 + 0.390579i \(0.872275\pi\)
\(128\) 0 0
\(129\) 5.65983 + 9.80311i 0.498320 + 0.863116i
\(130\) 0 0
\(131\) 10.6005 18.3606i 0.926168 1.60417i 0.136497 0.990640i \(-0.456416\pi\)
0.789671 0.613530i \(-0.210251\pi\)
\(132\) 0 0
\(133\) −11.2822 2.38983i −0.978293 0.207225i
\(134\) 0 0
\(135\) −9.16327 + 15.8713i −0.788649 + 1.36598i
\(136\) 0 0
\(137\) −4.16789 7.21901i −0.356087 0.616761i 0.631216 0.775607i \(-0.282556\pi\)
−0.987303 + 0.158846i \(0.949223\pi\)
\(138\) 0 0
\(139\) 3.11485 5.39507i 0.264198 0.457604i −0.703155 0.711036i \(-0.748226\pi\)
0.967353 + 0.253432i \(0.0815595\pi\)
\(140\) 0 0
\(141\) 0.968298 0.0815454
\(142\) 0 0
\(143\) −2.02280 3.50359i −0.169155 0.292985i
\(144\) 0 0
\(145\) 7.99895 + 13.8546i 0.664277 + 1.15056i
\(146\) 0 0
\(147\) 4.11925 6.28407i 0.339750 0.518302i
\(148\) 0 0
\(149\) −4.77180 + 8.26501i −0.390921 + 0.677096i −0.992571 0.121664i \(-0.961177\pi\)
0.601650 + 0.798760i \(0.294510\pi\)
\(150\) 0 0
\(151\) 6.87274 11.9039i 0.559295 0.968728i −0.438260 0.898848i \(-0.644405\pi\)
0.997555 0.0698798i \(-0.0222616\pi\)
\(152\) 0 0
\(153\) −9.07477 −0.733651
\(154\) 0 0
\(155\) −11.2707 19.5215i −0.905286 1.56800i
\(156\) 0 0
\(157\) 1.71213 0.136643 0.0683216 0.997663i \(-0.478236\pi\)
0.0683216 + 0.997663i \(0.478236\pi\)
\(158\) 0 0
\(159\) 7.41738 + 12.8473i 0.588237 + 1.01886i
\(160\) 0 0
\(161\) −4.61396 8.54137i −0.363631 0.673155i
\(162\) 0 0
\(163\) −6.98910 12.1055i −0.547429 0.948174i −0.998450 0.0556609i \(-0.982273\pi\)
0.451021 0.892513i \(-0.351060\pi\)
\(164\) 0 0
\(165\) −7.96270 13.7918i −0.619896 1.07369i
\(166\) 0 0
\(167\) 4.31099 7.46686i 0.333595 0.577803i −0.649619 0.760260i \(-0.725072\pi\)
0.983214 + 0.182457i \(0.0584050\pi\)
\(168\) 0 0
\(169\) 6.03887 + 10.4596i 0.464528 + 0.804586i
\(170\) 0 0
\(171\) −5.21348 + 6.13943i −0.398685 + 0.469494i
\(172\) 0 0
\(173\) −6.08442 + 10.5385i −0.462590 + 0.801230i −0.999089 0.0426712i \(-0.986413\pi\)
0.536499 + 0.843901i \(0.319747\pi\)
\(174\) 0 0
\(175\) −10.2703 + 16.6794i −0.776362 + 1.26085i
\(176\) 0 0
\(177\) −8.18971 −0.615576
\(178\) 0 0
\(179\) 2.05077 3.55204i 0.153282 0.265492i −0.779150 0.626837i \(-0.784349\pi\)
0.932432 + 0.361345i \(0.117682\pi\)
\(180\) 0 0
\(181\) −7.33178 + 12.6990i −0.544967 + 0.943910i 0.453642 + 0.891184i \(0.350124\pi\)
−0.998609 + 0.0527261i \(0.983209\pi\)
\(182\) 0 0
\(183\) 2.51579 0.185972
\(184\) 0 0
\(185\) −9.02554 −0.663571
\(186\) 0 0
\(187\) 10.3444 17.9170i 0.756457 1.31022i
\(188\) 0 0
\(189\) −6.54343 12.1132i −0.475965 0.881106i
\(190\) 0 0
\(191\) −0.614388 1.06415i −0.0444556 0.0769993i 0.842941 0.538005i \(-0.180822\pi\)
−0.887397 + 0.461006i \(0.847489\pi\)
\(192\) 0 0
\(193\) 14.2993 1.02928 0.514641 0.857406i \(-0.327925\pi\)
0.514641 + 0.857406i \(0.327925\pi\)
\(194\) 0 0
\(195\) −1.81524 3.14409i −0.129992 0.225153i
\(196\) 0 0
\(197\) 4.74408 0.338002 0.169001 0.985616i \(-0.445946\pi\)
0.169001 + 0.985616i \(0.445946\pi\)
\(198\) 0 0
\(199\) −7.30530 12.6532i −0.517859 0.896958i −0.999785 0.0207462i \(-0.993396\pi\)
0.481926 0.876212i \(-0.339938\pi\)
\(200\) 0 0
\(201\) 5.89393 + 10.2086i 0.415726 + 0.720058i
\(202\) 0 0
\(203\) −12.0134 0.340293i −0.843175 0.0238839i
\(204\) 0 0
\(205\) 27.0937 1.89230
\(206\) 0 0
\(207\) −6.78004 −0.471245
\(208\) 0 0
\(209\) −6.17867 17.2918i −0.427388 1.19610i
\(210\) 0 0
\(211\) 5.21725 + 9.03653i 0.359170 + 0.622101i 0.987822 0.155586i \(-0.0497265\pi\)
−0.628652 + 0.777686i \(0.716393\pi\)
\(212\) 0 0
\(213\) −0.998156 1.72886i −0.0683925 0.118459i
\(214\) 0 0
\(215\) 37.1400 2.53292
\(216\) 0 0
\(217\) 16.9272 + 0.479482i 1.14909 + 0.0325493i
\(218\) 0 0
\(219\) 10.6828 0.721877
\(220\) 0 0
\(221\) 2.35819 4.08450i 0.158629 0.274753i
\(222\) 0 0
\(223\) 5.70940 + 9.88897i 0.382330 + 0.662214i 0.991395 0.130906i \(-0.0417885\pi\)
−0.609065 + 0.793120i \(0.708455\pi\)
\(224\) 0 0
\(225\) 6.84009 + 11.8474i 0.456006 + 0.789826i
\(226\) 0 0
\(227\) −4.18733 + 7.25267i −0.277923 + 0.481377i −0.970868 0.239613i \(-0.922979\pi\)
0.692945 + 0.720990i \(0.256313\pi\)
\(228\) 0 0
\(229\) −5.01465 8.68563i −0.331377 0.573963i 0.651405 0.758730i \(-0.274180\pi\)
−0.982782 + 0.184768i \(0.940847\pi\)
\(230\) 0 0
\(231\) 11.9590 + 0.338751i 0.786842 + 0.0222882i
\(232\) 0 0
\(233\) −0.174986 + 0.303084i −0.0114637 + 0.0198557i −0.871700 0.490039i \(-0.836982\pi\)
0.860237 + 0.509895i \(0.170316\pi\)
\(234\) 0 0
\(235\) 1.58850 2.75136i 0.103622 0.179479i
\(236\) 0 0
\(237\) −4.78184 + 8.28238i −0.310614 + 0.537999i
\(238\) 0 0
\(239\) 5.04052 0.326044 0.163022 0.986622i \(-0.447876\pi\)
0.163022 + 0.986622i \(0.447876\pi\)
\(240\) 0 0
\(241\) 9.00937 + 15.6047i 0.580344 + 1.00519i 0.995438 + 0.0954074i \(0.0304154\pi\)
−0.415094 + 0.909779i \(0.636251\pi\)
\(242\) 0 0
\(243\) −15.5656 −0.998536
\(244\) 0 0
\(245\) −11.0982 22.0137i −0.709037 1.40640i
\(246\) 0 0
\(247\) −1.40854 3.94196i −0.0896232 0.250821i
\(248\) 0 0
\(249\) 0.516435 0.0327278
\(250\) 0 0
\(251\) 12.7890 22.1511i 0.807233 1.39817i −0.107541 0.994201i \(-0.534298\pi\)
0.914774 0.403967i \(-0.132369\pi\)
\(252\) 0 0
\(253\) 7.72862 13.3864i 0.485894 0.841593i
\(254\) 0 0
\(255\) 9.28296 16.0786i 0.581321 1.00688i
\(256\) 0 0
\(257\) −5.72264 −0.356969 −0.178484 0.983943i \(-0.557119\pi\)
−0.178484 + 0.983943i \(0.557119\pi\)
\(258\) 0 0
\(259\) 3.55506 5.77359i 0.220901 0.358753i
\(260\) 0 0
\(261\) −4.19678 + 7.26903i −0.259774 + 0.449942i
\(262\) 0 0
\(263\) 3.47486 0.214269 0.107135 0.994245i \(-0.465832\pi\)
0.107135 + 0.994245i \(0.465832\pi\)
\(264\) 0 0
\(265\) 48.6731 2.98996
\(266\) 0 0
\(267\) −18.5279 −1.13389
\(268\) 0 0
\(269\) 16.5851 1.01121 0.505607 0.862764i \(-0.331269\pi\)
0.505607 + 0.862764i \(0.331269\pi\)
\(270\) 0 0
\(271\) −9.80196 + 16.9775i −0.595427 + 1.03131i 0.398060 + 0.917360i \(0.369684\pi\)
−0.993486 + 0.113950i \(0.963650\pi\)
\(272\) 0 0
\(273\) 2.72626 + 0.0772244i 0.165001 + 0.00467383i
\(274\) 0 0
\(275\) −31.1883 −1.88072
\(276\) 0 0
\(277\) 5.46542 9.46639i 0.328385 0.568780i −0.653806 0.756662i \(-0.726829\pi\)
0.982192 + 0.187882i \(0.0601622\pi\)
\(278\) 0 0
\(279\) 5.91336 10.2422i 0.354024 0.613187i
\(280\) 0 0
\(281\) −9.01439 + 15.6134i −0.537753 + 0.931416i 0.461271 + 0.887259i \(0.347394\pi\)
−0.999025 + 0.0441571i \(0.985940\pi\)
\(282\) 0 0
\(283\) −21.7749 −1.29438 −0.647190 0.762328i \(-0.724056\pi\)
−0.647190 + 0.762328i \(0.724056\pi\)
\(284\) 0 0
\(285\) −5.54468 15.5175i −0.328438 0.919175i
\(286\) 0 0
\(287\) −10.6719 + 17.3316i −0.629942 + 1.02305i
\(288\) 0 0
\(289\) 7.11909 0.418770
\(290\) 0 0
\(291\) −2.85037 4.93699i −0.167092 0.289412i
\(292\) 0 0
\(293\) −14.5570 −0.850426 −0.425213 0.905093i \(-0.639801\pi\)
−0.425213 + 0.905093i \(0.639801\pi\)
\(294\) 0 0
\(295\) −13.4353 + 23.2706i −0.782232 + 1.35487i
\(296\) 0 0
\(297\) 10.9606 18.9843i 0.635997 1.10158i
\(298\) 0 0
\(299\) 1.76188 3.05166i 0.101892 0.176482i
\(300\) 0 0
\(301\) −14.6290 + 23.7582i −0.843203 + 1.36940i
\(302\) 0 0
\(303\) 0.275738 + 0.477593i 0.0158407 + 0.0274370i
\(304\) 0 0
\(305\) 4.12717 7.14847i 0.236321 0.409320i
\(306\) 0 0
\(307\) −7.58731 13.1416i −0.433031 0.750032i 0.564102 0.825705i \(-0.309223\pi\)
−0.997133 + 0.0756738i \(0.975889\pi\)
\(308\) 0 0
\(309\) −2.11858 3.66949i −0.120522 0.208750i
\(310\) 0 0
\(311\) 8.30533 14.3853i 0.470952 0.815713i −0.528496 0.848936i \(-0.677244\pi\)
0.999448 + 0.0332227i \(0.0105771\pi\)
\(312\) 0 0
\(313\) −32.8437 −1.85644 −0.928218 0.372037i \(-0.878659\pi\)
−0.928218 + 0.372037i \(0.878659\pi\)
\(314\) 0 0
\(315\) −17.2108 0.487517i −0.969721 0.0274685i
\(316\) 0 0
\(317\) 27.0154 1.51734 0.758668 0.651477i \(-0.225850\pi\)
0.758668 + 0.651477i \(0.225850\pi\)
\(318\) 0 0
\(319\) −9.56788 16.5721i −0.535698 0.927857i
\(320\) 0 0
\(321\) −7.04044 12.1944i −0.392959 0.680625i
\(322\) 0 0
\(323\) 13.8565 16.3175i 0.770995 0.907930i
\(324\) 0 0
\(325\) −7.10993 −0.394388
\(326\) 0 0
\(327\) −14.5908 −0.806872
\(328\) 0 0
\(329\) 1.13434 + 2.09989i 0.0625380 + 0.115770i
\(330\) 0 0
\(331\) 0.909047 + 1.57452i 0.0499657 + 0.0865432i 0.889927 0.456104i \(-0.150755\pi\)
−0.839961 + 0.542647i \(0.817422\pi\)
\(332\) 0 0
\(333\) −2.36770 4.10097i −0.129749 0.224732i
\(334\) 0 0
\(335\) 38.6761 2.11310
\(336\) 0 0
\(337\) −13.2866 23.0131i −0.723769 1.25360i −0.959479 0.281781i \(-0.909075\pi\)
0.235710 0.971823i \(-0.424258\pi\)
\(338\) 0 0
\(339\) 13.0599 0.709317
\(340\) 0 0
\(341\) 13.4814 + 23.3504i 0.730057 + 1.26450i
\(342\) 0 0
\(343\) 18.4535 + 1.57151i 0.996393 + 0.0848536i
\(344\) 0 0
\(345\) 6.93559 12.0128i 0.373399 0.646747i
\(346\) 0 0
\(347\) 21.0389 1.12943 0.564714 0.825287i \(-0.308986\pi\)
0.564714 + 0.825287i \(0.308986\pi\)
\(348\) 0 0
\(349\) −25.6088 −1.37081 −0.685403 0.728164i \(-0.740374\pi\)
−0.685403 + 0.728164i \(0.740374\pi\)
\(350\) 0 0
\(351\) 2.49866 4.32780i 0.133368 0.231001i
\(352\) 0 0
\(353\) −12.8782 + 22.3058i −0.685440 + 1.18722i 0.287859 + 0.957673i \(0.407057\pi\)
−0.973298 + 0.229543i \(0.926277\pi\)
\(354\) 0 0
\(355\) −6.54993 −0.347634
\(356\) 0 0
\(357\) 6.62890 + 12.2714i 0.350838 + 0.649473i
\(358\) 0 0
\(359\) 2.89365 5.01195i 0.152721 0.264521i −0.779506 0.626395i \(-0.784530\pi\)
0.932227 + 0.361874i \(0.117863\pi\)
\(360\) 0 0
\(361\) −3.07883 18.7489i −0.162044 0.986784i
\(362\) 0 0
\(363\) 3.62079 + 6.27139i 0.190042 + 0.329163i
\(364\) 0 0
\(365\) 17.5252 30.3546i 0.917312 1.58883i
\(366\) 0 0
\(367\) −3.54716 6.14385i −0.185160 0.320707i 0.758470 0.651707i \(-0.225947\pi\)
−0.943630 + 0.331001i \(0.892614\pi\)
\(368\) 0 0
\(369\) 7.10756 + 12.3107i 0.370005 + 0.640867i
\(370\) 0 0
\(371\) −19.1718 + 31.1359i −0.995350 + 1.61649i
\(372\) 0 0
\(373\) 10.6060 + 18.3702i 0.549159 + 0.951172i 0.998332 + 0.0577269i \(0.0183853\pi\)
−0.449173 + 0.893445i \(0.648281\pi\)
\(374\) 0 0
\(375\) −9.08614 −0.469206
\(376\) 0 0
\(377\) −2.18117 3.77790i −0.112336 0.194572i
\(378\) 0 0
\(379\) −9.73543 −0.500076 −0.250038 0.968236i \(-0.580443\pi\)
−0.250038 + 0.968236i \(0.580443\pi\)
\(380\) 0 0
\(381\) 9.65962 16.7310i 0.494878 0.857153i
\(382\) 0 0
\(383\) −8.60742 + 14.9085i −0.439818 + 0.761788i −0.997675 0.0681494i \(-0.978291\pi\)
0.557857 + 0.829937i \(0.311624\pi\)
\(384\) 0 0
\(385\) 20.5813 33.4250i 1.04892 1.70349i
\(386\) 0 0
\(387\) 9.74304 + 16.8754i 0.495266 + 0.857827i
\(388\) 0 0
\(389\) 14.6330 + 25.3451i 0.741922 + 1.28505i 0.951619 + 0.307280i \(0.0994187\pi\)
−0.209698 + 0.977766i \(0.567248\pi\)
\(390\) 0 0
\(391\) 18.0201 0.911317
\(392\) 0 0
\(393\) −11.3786 + 19.7083i −0.573975 + 0.994154i
\(394\) 0 0
\(395\) 15.6893 + 27.1746i 0.789413 + 1.36730i
\(396\) 0 0
\(397\) −0.579042 + 1.00293i −0.0290613 + 0.0503356i −0.880190 0.474621i \(-0.842585\pi\)
0.851129 + 0.524957i \(0.175918\pi\)
\(398\) 0 0
\(399\) 12.1104 + 2.56526i 0.606279 + 0.128424i
\(400\) 0 0
\(401\) 18.4412 31.9411i 0.920909 1.59506i 0.122896 0.992419i \(-0.460782\pi\)
0.798012 0.602641i \(-0.205885\pi\)
\(402\) 0 0
\(403\) 3.07332 + 5.32315i 0.153093 + 0.265165i
\(404\) 0 0
\(405\) 0.0743695 0.128812i 0.00369545 0.00640071i
\(406\) 0 0
\(407\) 10.7958 0.535129
\(408\) 0 0
\(409\) 16.7816 + 29.0667i 0.829799 + 1.43725i 0.898196 + 0.439596i \(0.144878\pi\)
−0.0683966 + 0.997658i \(0.521788\pi\)
\(410\) 0 0
\(411\) 4.47384 + 7.74892i 0.220678 + 0.382226i
\(412\) 0 0
\(413\) −9.59404 17.7605i −0.472092 0.873937i
\(414\) 0 0
\(415\) 0.847216 1.46742i 0.0415882 0.0720329i
\(416\) 0 0
\(417\) −3.34349 + 5.79110i −0.163732 + 0.283591i
\(418\) 0 0
\(419\) −34.4912 −1.68501 −0.842504 0.538691i \(-0.818919\pi\)
−0.842504 + 0.538691i \(0.818919\pi\)
\(420\) 0 0
\(421\) −15.2416 26.3992i −0.742829 1.28662i −0.951202 0.308568i \(-0.900150\pi\)
0.208373 0.978049i \(-0.433183\pi\)
\(422\) 0 0
\(423\) 1.66686 0.0810457
\(424\) 0 0
\(425\) −18.1797 31.4882i −0.881846 1.52740i
\(426\) 0 0
\(427\) 2.94718 + 5.45583i 0.142624 + 0.264026i
\(428\) 0 0
\(429\) 2.17128 + 3.76077i 0.104831 + 0.181572i
\(430\) 0 0
\(431\) −9.12562 15.8060i −0.439565 0.761350i 0.558090 0.829780i \(-0.311534\pi\)
−0.997656 + 0.0684304i \(0.978201\pi\)
\(432\) 0 0
\(433\) −5.46128 + 9.45922i −0.262452 + 0.454581i −0.966893 0.255182i \(-0.917865\pi\)
0.704441 + 0.709763i \(0.251198\pi\)
\(434\) 0 0
\(435\) −8.58612 14.8716i −0.411673 0.713039i
\(436\) 0 0
\(437\) 10.3526 12.1913i 0.495232 0.583189i
\(438\) 0 0
\(439\) −8.96074 + 15.5205i −0.427673 + 0.740751i −0.996666 0.0815911i \(-0.974000\pi\)
0.568993 + 0.822342i \(0.307333\pi\)
\(440\) 0 0
\(441\) 7.09102 10.8176i 0.337668 0.515126i
\(442\) 0 0
\(443\) −24.6164 −1.16956 −0.584780 0.811192i \(-0.698819\pi\)
−0.584780 + 0.811192i \(0.698819\pi\)
\(444\) 0 0
\(445\) −30.3952 + 52.6460i −1.44087 + 2.49566i
\(446\) 0 0
\(447\) 5.12208 8.87171i 0.242266 0.419617i
\(448\) 0 0
\(449\) 27.1518 1.28137 0.640687 0.767802i \(-0.278649\pi\)
0.640687 + 0.767802i \(0.278649\pi\)
\(450\) 0 0
\(451\) −32.4078 −1.52603
\(452\) 0 0
\(453\) −7.37723 + 12.7777i −0.346613 + 0.600351i
\(454\) 0 0
\(455\) 4.69188 7.61982i 0.219958 0.357223i
\(456\) 0 0
\(457\) −12.1336 21.0160i −0.567585 0.983085i −0.996804 0.0798852i \(-0.974545\pi\)
0.429219 0.903200i \(-0.358789\pi\)
\(458\) 0 0
\(459\) 25.5558 1.19284
\(460\) 0 0
\(461\) 12.9069 + 22.3555i 0.601136 + 1.04120i 0.992649 + 0.121025i \(0.0386181\pi\)
−0.391514 + 0.920172i \(0.628049\pi\)
\(462\) 0 0
\(463\) 6.85695 0.318670 0.159335 0.987225i \(-0.449065\pi\)
0.159335 + 0.987225i \(0.449065\pi\)
\(464\) 0 0
\(465\) 12.0981 + 20.9544i 0.561034 + 0.971739i
\(466\) 0 0
\(467\) −2.21068 3.82901i −0.102298 0.177186i 0.810333 0.585970i \(-0.199286\pi\)
−0.912631 + 0.408784i \(0.865953\pi\)
\(468\) 0 0
\(469\) −15.2341 + 24.7409i −0.703446 + 1.14243i
\(470\) 0 0
\(471\) −1.83781 −0.0846820
\(472\) 0 0
\(473\) −44.4246 −2.04265
\(474\) 0 0
\(475\) −31.7473 5.79077i −1.45667 0.265699i
\(476\) 0 0
\(477\) 12.7686 + 22.1158i 0.584632 + 1.01261i
\(478\) 0 0
\(479\) 11.6272 + 20.1389i 0.531260 + 0.920170i 0.999334 + 0.0364804i \(0.0116147\pi\)
−0.468074 + 0.883689i \(0.655052\pi\)
\(480\) 0 0
\(481\) 2.46110 0.112217
\(482\) 0 0
\(483\) 4.95265 + 9.16836i 0.225354 + 0.417175i
\(484\) 0 0
\(485\) −18.7042 −0.849315
\(486\) 0 0
\(487\) −7.06232 + 12.2323i −0.320024 + 0.554299i −0.980493 0.196555i \(-0.937024\pi\)
0.660468 + 0.750854i \(0.270358\pi\)
\(488\) 0 0
\(489\) 7.50214 + 12.9941i 0.339259 + 0.587613i
\(490\) 0 0
\(491\) 8.72265 + 15.1081i 0.393648 + 0.681818i 0.992928 0.118722i \(-0.0378797\pi\)
−0.599280 + 0.800539i \(0.704546\pi\)
\(492\) 0 0
\(493\) 11.1543 19.3198i 0.502364 0.870119i
\(494\) 0 0
\(495\) −13.7073 23.7417i −0.616097 1.06711i
\(496\) 0 0
\(497\) 2.57995 4.18995i 0.115726 0.187945i
\(498\) 0 0
\(499\) 6.39276 11.0726i 0.286179 0.495677i −0.686715 0.726927i \(-0.740948\pi\)
0.972895 + 0.231249i \(0.0742813\pi\)
\(500\) 0 0
\(501\) −4.62744 + 8.01497i −0.206739 + 0.358082i
\(502\) 0 0
\(503\) −9.38455 + 16.2545i −0.418436 + 0.724753i −0.995782 0.0917464i \(-0.970755\pi\)
0.577346 + 0.816500i \(0.304088\pi\)
\(504\) 0 0
\(505\) 1.80940 0.0805174
\(506\) 0 0
\(507\) −6.48215 11.2274i −0.287883 0.498627i
\(508\) 0 0
\(509\) 25.5483 1.13241 0.566205 0.824265i \(-0.308411\pi\)
0.566205 + 0.824265i \(0.308411\pi\)
\(510\) 0 0
\(511\) 12.5146 + 23.1671i 0.553615 + 1.02485i
\(512\) 0 0
\(513\) 14.6819 17.2895i 0.648220 0.763349i
\(514\) 0 0
\(515\) −13.9022 −0.612603
\(516\) 0 0
\(517\) −1.90007 + 3.29102i −0.0835650 + 0.144739i
\(518\) 0 0
\(519\) 6.53106 11.3121i 0.286682 0.496547i
\(520\) 0 0
\(521\) −10.0099 + 17.3376i −0.438541 + 0.759576i −0.997577 0.0695677i \(-0.977838\pi\)
0.559036 + 0.829143i \(0.311171\pi\)
\(522\) 0 0
\(523\) 6.29628 0.275317 0.137659 0.990480i \(-0.456042\pi\)
0.137659 + 0.990480i \(0.456042\pi\)
\(524\) 0 0
\(525\) 11.0242 17.9038i 0.481135 0.781386i
\(526\) 0 0
\(527\) −15.7166 + 27.2220i −0.684628 + 1.18581i
\(528\) 0 0
\(529\) −9.53661 −0.414635
\(530\) 0 0
\(531\) −14.0981 −0.611804
\(532\) 0 0
\(533\) −7.38795 −0.320007
\(534\) 0 0
\(535\) −46.1996 −1.99738
\(536\) 0 0
\(537\) −2.20131 + 3.81278i −0.0949936 + 0.164534i
\(538\) 0 0
\(539\) 13.2750 + 26.3315i 0.571794 + 1.13418i
\(540\) 0 0
\(541\) −30.0241 −1.29084 −0.645418 0.763829i \(-0.723317\pi\)
−0.645418 + 0.763829i \(0.723317\pi\)
\(542\) 0 0
\(543\) 7.86997 13.6312i 0.337733 0.584970i
\(544\) 0 0
\(545\) −23.9363 + 41.4589i −1.02532 + 1.77590i
\(546\) 0 0
\(547\) 6.42453 11.1276i 0.274693 0.475782i −0.695365 0.718657i \(-0.744757\pi\)
0.970058 + 0.242875i \(0.0780904\pi\)
\(548\) 0 0
\(549\) 4.33077 0.184833
\(550\) 0 0
\(551\) −6.66241 18.6456i −0.283828 0.794328i
\(552\) 0 0
\(553\) −23.5633 0.667457i −1.00201 0.0283832i
\(554\) 0 0
\(555\) 9.68807 0.411236
\(556\) 0 0
\(557\) 2.69656 + 4.67057i 0.114257 + 0.197899i 0.917482 0.397776i \(-0.130218\pi\)
−0.803226 + 0.595675i \(0.796885\pi\)
\(558\) 0 0
\(559\) −10.1274 −0.428343
\(560\) 0 0
\(561\) −11.1037 + 19.2322i −0.468800 + 0.811985i
\(562\) 0 0
\(563\) 0.211462 0.366264i 0.00891208 0.0154362i −0.861535 0.507698i \(-0.830496\pi\)
0.870447 + 0.492262i \(0.163830\pi\)
\(564\) 0 0
\(565\) 21.4249 37.1090i 0.901352 1.56119i
\(566\) 0 0
\(567\) 0.0531067 + 0.0983113i 0.00223027 + 0.00412868i
\(568\) 0 0
\(569\) 12.9214 + 22.3805i 0.541692 + 0.938238i 0.998807 + 0.0488304i \(0.0155494\pi\)
−0.457115 + 0.889408i \(0.651117\pi\)
\(570\) 0 0
\(571\) −14.1729 + 24.5482i −0.593118 + 1.02731i 0.400691 + 0.916213i \(0.368770\pi\)
−0.993809 + 0.111098i \(0.964563\pi\)
\(572\) 0 0
\(573\) 0.659488 + 1.14227i 0.0275505 + 0.0477189i
\(574\) 0 0
\(575\) −13.5826 23.5258i −0.566435 0.981094i
\(576\) 0 0
\(577\) −12.2758 + 21.2623i −0.511047 + 0.885160i 0.488871 + 0.872356i \(0.337409\pi\)
−0.999918 + 0.0128036i \(0.995924\pi\)
\(578\) 0 0
\(579\) −15.3489 −0.637878
\(580\) 0 0
\(581\) 0.604991 + 1.11996i 0.0250993 + 0.0464638i
\(582\) 0 0
\(583\) −58.2199 −2.41122
\(584\) 0 0
\(585\) −3.12482 5.41235i −0.129195 0.223773i
\(586\) 0 0
\(587\) −11.1037 19.2321i −0.458298 0.793796i 0.540573 0.841297i \(-0.318207\pi\)
−0.998871 + 0.0475014i \(0.984874\pi\)
\(588\) 0 0
\(589\) 9.38750 + 26.2720i 0.386805 + 1.08252i
\(590\) 0 0
\(591\) −5.09232 −0.209470
\(592\) 0 0
\(593\) 9.25655 0.380121 0.190060 0.981772i \(-0.439132\pi\)
0.190060 + 0.981772i \(0.439132\pi\)
\(594\) 0 0
\(595\) 45.7433 + 1.29573i 1.87529 + 0.0531198i
\(596\) 0 0
\(597\) 7.84155 + 13.5820i 0.320933 + 0.555873i
\(598\) 0 0
\(599\) 14.6377 + 25.3532i 0.598079 + 1.03590i 0.993104 + 0.117234i \(0.0374026\pi\)
−0.395025 + 0.918670i \(0.629264\pi\)
\(600\) 0 0
\(601\) 21.0622 0.859146 0.429573 0.903032i \(-0.358664\pi\)
0.429573 + 0.903032i \(0.358664\pi\)
\(602\) 0 0
\(603\) 10.1460 + 17.5734i 0.413178 + 0.715646i
\(604\) 0 0
\(605\) 23.7597 0.965970
\(606\) 0 0
\(607\) 18.4078 + 31.8832i 0.747149 + 1.29410i 0.949184 + 0.314722i \(0.101911\pi\)
−0.202035 + 0.979378i \(0.564755\pi\)
\(608\) 0 0
\(609\) 12.8953 + 0.365273i 0.522542 + 0.0148016i
\(610\) 0 0
\(611\) −0.433155 + 0.750246i −0.0175236 + 0.0303517i
\(612\) 0 0
\(613\) 34.9124 1.41010 0.705050 0.709158i \(-0.250925\pi\)
0.705050 + 0.709158i \(0.250925\pi\)
\(614\) 0 0
\(615\) −29.0825 −1.17272
\(616\) 0 0
\(617\) 5.22802 9.05519i 0.210472 0.364548i −0.741390 0.671074i \(-0.765833\pi\)
0.951862 + 0.306526i \(0.0991666\pi\)
\(618\) 0 0
\(619\) 13.5466 23.4633i 0.544482 0.943070i −0.454157 0.890921i \(-0.650060\pi\)
0.998639 0.0521488i \(-0.0166070\pi\)
\(620\) 0 0
\(621\) 19.0935 0.766196
\(622\) 0 0
\(623\) −21.7050 40.1803i −0.869592 1.60979i
\(624\) 0 0
\(625\) 3.60286 6.24034i 0.144114 0.249613i
\(626\) 0 0
\(627\) 6.63222 + 18.5611i 0.264865 + 0.741258i
\(628\) 0 0
\(629\) 6.29291 + 10.8996i 0.250915 + 0.434597i
\(630\) 0 0
\(631\) 1.82048 3.15316i 0.0724721 0.125525i −0.827512 0.561448i \(-0.810244\pi\)
0.899984 + 0.435923i \(0.143578\pi\)
\(632\) 0 0
\(633\) −5.60022 9.69987i −0.222589 0.385535i
\(634\) 0 0
\(635\) −31.6934 54.8945i −1.25771 2.17842i
\(636\) 0 0
\(637\) 3.02627 + 6.00273i 0.119905 + 0.237837i
\(638\) 0 0
\(639\) −1.71826 2.97612i −0.0679734 0.117733i
\(640\) 0 0
\(641\) 14.1379 0.558413 0.279206 0.960231i \(-0.409929\pi\)
0.279206 + 0.960231i \(0.409929\pi\)
\(642\) 0 0
\(643\) −10.8348 18.7664i −0.427281 0.740073i 0.569349 0.822096i \(-0.307195\pi\)
−0.996630 + 0.0820231i \(0.973862\pi\)
\(644\) 0 0
\(645\) −39.8662 −1.56973
\(646\) 0 0
\(647\) 10.9743 19.0080i 0.431443 0.747281i −0.565555 0.824711i \(-0.691338\pi\)
0.996998 + 0.0774293i \(0.0246712\pi\)
\(648\) 0 0
\(649\) 16.0705 27.8349i 0.630822 1.09262i
\(650\) 0 0
\(651\) −18.1697 0.514678i −0.712127 0.0201718i
\(652\) 0 0
\(653\) 19.2052 + 33.2644i 0.751559 + 1.30174i 0.947067 + 0.321036i \(0.104031\pi\)
−0.195508 + 0.980702i \(0.562636\pi\)
\(654\) 0 0
\(655\) 37.3334 + 64.6634i 1.45874 + 2.52661i
\(656\) 0 0
\(657\) 18.3898 0.717453
\(658\) 0 0
\(659\) 3.94165 6.82714i 0.153545 0.265948i −0.778983 0.627045i \(-0.784264\pi\)
0.932528 + 0.361097i \(0.117598\pi\)
\(660\) 0 0
\(661\) −9.68672 16.7779i −0.376770 0.652584i 0.613820 0.789446i \(-0.289632\pi\)
−0.990590 + 0.136861i \(0.956299\pi\)
\(662\) 0 0
\(663\) −2.53129 + 4.38433i −0.0983073 + 0.170273i
\(664\) 0 0
\(665\) 27.1563 30.2027i 1.05307 1.17121i
\(666\) 0 0
\(667\) 8.33371 14.4344i 0.322682 0.558902i
\(668\) 0 0
\(669\) −6.12850 10.6149i −0.236942 0.410395i
\(670\) 0 0
\(671\) −4.93668 + 8.55058i −0.190578 + 0.330091i
\(672\) 0 0
\(673\) 30.3695 1.17066 0.585329 0.810796i \(-0.300965\pi\)
0.585329 + 0.810796i \(0.300965\pi\)
\(674\) 0 0
\(675\) −19.2626 33.3638i −0.741419 1.28418i
\(676\) 0 0
\(677\) 4.21573 + 7.30186i 0.162024 + 0.280633i 0.935594 0.353077i \(-0.114865\pi\)
−0.773571 + 0.633710i \(0.781531\pi\)
\(678\) 0 0
\(679\) 7.36740 11.9650i 0.282735 0.459174i
\(680\) 0 0
\(681\) 4.49471 7.78506i 0.172237 0.298324i
\(682\) 0 0
\(683\) 17.7336 30.7155i 0.678557 1.17529i −0.296859 0.954921i \(-0.595939\pi\)
0.975416 0.220373i \(-0.0707275\pi\)
\(684\) 0 0
\(685\) 29.3575 1.12169
\(686\) 0 0
\(687\) 5.38275 + 9.32320i 0.205365 + 0.355702i
\(688\) 0 0
\(689\) −13.2723 −0.505633
\(690\) 0 0
\(691\) 1.47490 + 2.55460i 0.0561077 + 0.0971814i 0.892715 0.450622i \(-0.148798\pi\)
−0.836607 + 0.547803i \(0.815464\pi\)
\(692\) 0 0
\(693\) 20.5866 + 0.583139i 0.782020 + 0.0221516i
\(694\) 0 0
\(695\) 10.9701 + 19.0007i 0.416118 + 0.720737i
\(696\) 0 0
\(697\) −18.8906 32.7195i −0.715533 1.23934i
\(698\) 0 0
\(699\) 0.187831 0.325333i 0.00710441 0.0123052i
\(700\) 0 0
\(701\) −17.7395 30.7257i −0.670011 1.16049i −0.977900 0.209071i \(-0.932956\pi\)
0.307889 0.951422i \(-0.400377\pi\)
\(702\) 0 0
\(703\) 10.9893 + 2.00448i 0.414470 + 0.0756003i
\(704\) 0 0
\(705\) −1.70510 + 2.95333i −0.0642180 + 0.111229i
\(706\) 0 0
\(707\) −0.712704 + 1.15746i −0.0268040 + 0.0435309i
\(708\) 0 0
\(709\) 45.4614 1.70734 0.853670 0.520815i \(-0.174372\pi\)
0.853670 + 0.520815i \(0.174372\pi\)
\(710\) 0 0
\(711\) −8.23163 + 14.2576i −0.308710 + 0.534702i
\(712\) 0 0
\(713\) −11.7424 + 20.3384i −0.439756 + 0.761680i
\(714\) 0 0
\(715\) 14.2480 0.532846
\(716\) 0 0
\(717\) −5.41052 −0.202060
\(718\) 0 0
\(719\) 3.25917 5.64505i 0.121547 0.210525i −0.798831 0.601555i \(-0.794548\pi\)
0.920378 + 0.391030i \(0.127881\pi\)
\(720\) 0 0
\(721\) 5.47592 8.89314i 0.203934 0.331198i
\(722\) 0 0
\(723\) −9.67071 16.7502i −0.359657 0.622945i
\(724\) 0 0
\(725\) −33.6301 −1.24899
\(726\) 0 0
\(727\) −24.6628 42.7172i −0.914693 1.58429i −0.807351 0.590072i \(-0.799099\pi\)
−0.107342 0.994222i \(-0.534234\pi\)
\(728\) 0 0
\(729\) 16.8349 0.623516
\(730\) 0 0
\(731\) −25.8952 44.8519i −0.957770 1.65891i
\(732\) 0 0
\(733\) −11.8066 20.4497i −0.436088 0.755327i 0.561295 0.827616i \(-0.310303\pi\)
−0.997384 + 0.0722883i \(0.976970\pi\)
\(734\) 0 0
\(735\) 11.9128 + 23.6296i 0.439412 + 0.871591i
\(736\) 0 0
\(737\) −46.2621 −1.70409
\(738\) 0 0
\(739\) 35.4122 1.30266 0.651329 0.758796i \(-0.274212\pi\)
0.651329 + 0.758796i \(0.274212\pi\)
\(740\) 0 0
\(741\) 1.51193 + 4.23133i 0.0555423 + 0.155442i
\(742\) 0 0
\(743\) 16.5550 + 28.6740i 0.607342 + 1.05195i 0.991677 + 0.128754i \(0.0410977\pi\)
−0.384334 + 0.923194i \(0.625569\pi\)
\(744\) 0 0
\(745\) −16.8056 29.1082i −0.615711 1.06644i
\(746\) 0 0
\(747\) 0.889011 0.0325272
\(748\) 0 0
\(749\) 18.1975 29.5536i 0.664923 1.07986i
\(750\) 0 0
\(751\) −27.4985 −1.00344 −0.501718 0.865031i \(-0.667299\pi\)
−0.501718 + 0.865031i \(0.667299\pi\)
\(752\) 0 0
\(753\) −13.7278 + 23.7772i −0.500267 + 0.866488i
\(754\) 0 0
\(755\) 24.2048 + 41.9240i 0.880903 + 1.52577i
\(756\) 0 0
\(757\) 22.8550 + 39.5860i 0.830678 + 1.43878i 0.897502 + 0.441011i \(0.145380\pi\)
−0.0668237 + 0.997765i \(0.521287\pi\)
\(758\) 0 0
\(759\) −8.29594 + 14.3690i −0.301124 + 0.521561i
\(760\) 0 0
\(761\) −12.5144 21.6755i −0.453645 0.785737i 0.544964 0.838460i \(-0.316543\pi\)
−0.998609 + 0.0527227i \(0.983210\pi\)
\(762\) 0 0
\(763\) −17.0927 31.6421i −0.618799 1.14552i
\(764\) 0 0
\(765\) 15.9800 27.6782i 0.577759 1.00071i
\(766\) 0 0
\(767\) 3.66355 6.34546i 0.132283 0.229121i
\(768\) 0 0
\(769\) −3.24446 + 5.61958i −0.116998 + 0.202647i −0.918577 0.395243i \(-0.870661\pi\)
0.801578 + 0.597890i \(0.203994\pi\)
\(770\) 0 0
\(771\) 6.14271 0.221224
\(772\) 0 0
\(773\) −0.632982 1.09636i −0.0227668 0.0394332i 0.854418 0.519587i \(-0.173914\pi\)
−0.877184 + 0.480154i \(0.840581\pi\)
\(774\) 0 0
\(775\) 47.3856 1.70214
\(776\) 0 0
\(777\) −3.81603 + 6.19740i −0.136899 + 0.222330i
\(778\) 0 0
\(779\) −32.9887 6.01721i −1.18194 0.215589i
\(780\) 0 0
\(781\) 7.83464 0.280345
\(782\) 0 0
\(783\) 11.8187 20.4706i 0.422366 0.731559i
\(784\) 0 0
\(785\) −3.01495 + 5.22204i −0.107608 + 0.186383i
\(786\) 0 0
\(787\) 7.98184 13.8250i 0.284522 0.492807i −0.687971 0.725738i \(-0.741498\pi\)
0.972493 + 0.232932i \(0.0748318\pi\)
\(788\) 0 0
\(789\) −3.72993 −0.132789
\(790\) 0 0
\(791\) 15.2994 + 28.3222i 0.543983 + 1.00702i
\(792\) 0 0
\(793\) −1.12540 + 1.94926i −0.0399643 + 0.0692201i
\(794\) 0 0
\(795\) −52.2460 −1.85297
\(796\) 0 0
\(797\) −13.6435 −0.483277 −0.241638 0.970366i \(-0.577685\pi\)
−0.241638 + 0.970366i \(0.577685\pi\)
\(798\) 0 0
\(799\) −4.43022 −0.156730
\(800\) 0 0
\(801\) −31.8946 −1.12694
\(802\) 0 0
\(803\) −20.9626 + 36.3084i −0.739755 + 1.28129i
\(804\) 0 0
\(805\) 34.1762 + 0.968081i 1.20455 + 0.0341204i
\(806\) 0 0
\(807\) −17.8026 −0.626681
\(808\) 0 0
\(809\) −8.89282 + 15.4028i −0.312655 + 0.541534i −0.978936 0.204166i \(-0.934552\pi\)
0.666281 + 0.745701i \(0.267885\pi\)
\(810\) 0 0
\(811\) 5.79398 10.0355i 0.203454 0.352393i −0.746185 0.665739i \(-0.768117\pi\)
0.949639 + 0.313346i \(0.101450\pi\)
\(812\) 0 0
\(813\) 10.5215 18.2237i 0.369004 0.639134i
\(814\) 0 0
\(815\) 49.2293 1.72443
\(816\) 0 0
\(817\) −45.2209 8.24839i −1.58208 0.288575i
\(818\) 0 0
\(819\) 4.69308 + 0.132937i 0.163990 + 0.00464519i
\(820\) 0 0
\(821\) −2.58772 −0.0903122 −0.0451561 0.998980i \(-0.514379\pi\)
−0.0451561 + 0.998980i \(0.514379\pi\)
\(822\) 0 0
\(823\) −15.9894 27.6944i −0.557354 0.965365i −0.997716 0.0675450i \(-0.978483\pi\)
0.440362 0.897820i \(-0.354850\pi\)
\(824\) 0 0
\(825\) 33.4777 1.16554
\(826\) 0 0
\(827\) 14.4731 25.0681i 0.503279 0.871705i −0.496714 0.867914i \(-0.665460\pi\)
0.999993 0.00379046i \(-0.00120654\pi\)
\(828\) 0 0
\(829\) 9.84518 17.0524i 0.341937 0.592253i −0.642855 0.765988i \(-0.722250\pi\)
0.984792 + 0.173735i \(0.0555836\pi\)
\(830\) 0 0
\(831\) −5.86661 + 10.1613i −0.203511 + 0.352491i
\(832\) 0 0
\(833\) −18.8467 + 28.7513i −0.652998 + 0.996174i
\(834\) 0 0
\(835\) 15.1827 + 26.2972i 0.525419 + 0.910053i
\(836\) 0 0
\(837\) −16.6528 + 28.8435i −0.575606 + 0.996979i
\(838\) 0 0
\(839\) 8.22919 + 14.2534i 0.284103 + 0.492081i 0.972391 0.233356i \(-0.0749708\pi\)
−0.688288 + 0.725437i \(0.741638\pi\)
\(840\) 0 0
\(841\) 4.18303 + 7.24522i 0.144242 + 0.249835i
\(842\) 0 0
\(843\) 9.67610 16.7595i 0.333263 0.577228i
\(844\) 0 0
\(845\) −42.5361 −1.46329
\(846\) 0 0
\(847\) −9.35870 + 15.1990i −0.321569 + 0.522242i
\(848\) 0 0
\(849\) 23.3733 0.802168
\(850\) 0 0
\(851\) 4.70163 + 8.14346i 0.161170 + 0.279154i
\(852\) 0 0
\(853\) 24.6702 + 42.7301i 0.844692 + 1.46305i 0.885888 + 0.463899i \(0.153550\pi\)
−0.0411963 + 0.999151i \(0.513117\pi\)
\(854\) 0 0
\(855\) −9.54482 26.7123i −0.326426 0.913542i
\(856\) 0 0
\(857\) 29.2347 0.998637 0.499318 0.866419i \(-0.333584\pi\)
0.499318 + 0.866419i \(0.333584\pi\)
\(858\) 0 0
\(859\) 10.0460 0.342766 0.171383 0.985204i \(-0.445176\pi\)
0.171383 + 0.985204i \(0.445176\pi\)
\(860\) 0 0
\(861\) 11.4553 18.6039i 0.390395 0.634019i
\(862\) 0 0
\(863\) 6.76643 + 11.7198i 0.230332 + 0.398947i 0.957906 0.287083i \(-0.0926854\pi\)
−0.727574 + 0.686029i \(0.759352\pi\)
\(864\) 0 0
\(865\) −21.4285 37.1152i −0.728590 1.26196i
\(866\) 0 0
\(867\) −7.64167 −0.259525
\(868\) 0 0
\(869\) −18.7666 32.5047i −0.636613 1.10265i
\(870\) 0 0
\(871\) −10.5463 −0.357347
\(872\) 0 0
\(873\) −4.90674 8.49872i −0.166068 0.287638i
\(874\) 0 0
\(875\) −10.6442 19.7045i −0.359839 0.666135i
\(876\) 0 0
\(877\) −6.16748 + 10.6824i −0.208261 + 0.360718i −0.951167 0.308677i \(-0.900114\pi\)
0.742906 + 0.669396i \(0.233447\pi\)
\(878\) 0 0
\(879\) 15.6255 0.527036
\(880\) 0 0
\(881\) −46.1711 −1.55554 −0.777772 0.628547i \(-0.783650\pi\)
−0.777772 + 0.628547i \(0.783650\pi\)
\(882\) 0 0
\(883\) 0.291953 0.505678i 0.00982500 0.0170174i −0.861071 0.508485i \(-0.830206\pi\)
0.870896 + 0.491467i \(0.163539\pi\)
\(884\) 0 0
\(885\) 14.4215 24.9788i 0.484773 0.839652i
\(886\) 0 0
\(887\) 50.9872 1.71198 0.855992 0.516990i \(-0.172947\pi\)
0.855992 + 0.516990i \(0.172947\pi\)
\(888\) 0 0
\(889\) 47.5994 + 1.34831i 1.59643 + 0.0452208i
\(890\) 0 0
\(891\) −0.0889564 + 0.154077i −0.00298015 + 0.00516178i
\(892\) 0 0
\(893\) −2.54517 + 2.99722i −0.0851710 + 0.100298i
\(894\) 0 0
\(895\) 7.22254 + 12.5098i 0.241423 + 0.418157i
\(896\) 0 0
\(897\) −1.89121 + 3.27567i −0.0631456 + 0.109371i
\(898\) 0 0
\(899\) 14.5369 + 25.1786i 0.484831 + 0.839753i
\(900\) 0 0
\(901\) −33.9365 58.7798i −1.13059 1.95824i
\(902\) 0 0
\(903\) 15.7029 25.5022i 0.522559 0.848660i
\(904\) 0 0
\(905\) −25.8215 44.7241i −0.858335 1.48668i
\(906\) 0 0
\(907\) 54.1112 1.79673 0.898366 0.439247i \(-0.144755\pi\)
0.898366 + 0.439247i \(0.144755\pi\)
\(908\) 0 0
\(909\) 0.474666 + 0.822146i 0.0157437 + 0.0272689i
\(910\) 0 0
\(911\) 28.7695 0.953176 0.476588 0.879127i \(-0.341873\pi\)
0.476588 + 0.879127i \(0.341873\pi\)
\(912\) 0 0
\(913\) −1.01339 + 1.75524i −0.0335383 + 0.0580901i
\(914\) 0 0
\(915\) −4.43013 + 7.67320i −0.146455 + 0.253668i
\(916\) 0 0
\(917\) −56.0700 1.58825i −1.85159 0.0524485i
\(918\) 0 0
\(919\) −16.5467 28.6597i −0.545826 0.945398i −0.998554 0.0537494i \(-0.982883\pi\)
0.452729 0.891648i \(-0.350451\pi\)
\(920\) 0 0
\(921\) 8.14427 + 14.1063i 0.268363 + 0.464818i
\(922\) 0 0
\(923\) 1.78605 0.0587884
\(924\) 0 0
\(925\) 9.48655 16.4312i 0.311916 0.540254i
\(926\) 0 0
\(927\) −3.64700 6.31679i −0.119783 0.207471i
\(928\) 0 0
\(929\) 6.79934 11.7768i 0.223079 0.386384i −0.732662 0.680592i \(-0.761723\pi\)
0.955741 + 0.294208i \(0.0950559\pi\)
\(930\) 0 0
\(931\) 8.62393 + 29.2682i 0.282638 + 0.959227i
\(932\) 0 0
\(933\) −8.91499 + 15.4412i −0.291864 + 0.505523i
\(934\) 0 0
\(935\) 36.4315 + 63.1012i 1.19144 + 2.06363i
\(936\) 0 0
\(937\) −6.53650 + 11.3215i −0.213538 + 0.369859i −0.952819 0.303538i \(-0.901832\pi\)
0.739281 + 0.673397i \(0.235165\pi\)
\(938\) 0 0
\(939\) 35.2546 1.15049
\(940\) 0 0
\(941\) 3.35986 + 5.81945i 0.109528 + 0.189709i 0.915579 0.402138i \(-0.131733\pi\)
−0.806051 + 0.591846i \(0.798399\pi\)
\(942\) 0 0
\(943\) −14.1138 24.4457i −0.459607 0.796063i
\(944\) 0 0
\(945\) 48.4680 + 1.37291i 1.57667 + 0.0446609i
\(946\) 0 0
\(947\) −1.43347 + 2.48285i −0.0465817 + 0.0806818i −0.888376 0.459116i \(-0.848166\pi\)
0.841794 + 0.539798i \(0.181499\pi\)
\(948\) 0 0
\(949\) −4.77881 + 8.27714i −0.155127 + 0.268687i
\(950\) 0 0
\(951\) −28.9985 −0.940340
\(952\) 0 0
\(953\) 7.26488 + 12.5831i 0.235333 + 0.407608i 0.959369 0.282153i \(-0.0910487\pi\)
−0.724037 + 0.689761i \(0.757715\pi\)
\(954\) 0 0
\(955\) 4.32758 0.140037
\(956\) 0 0
\(957\) 10.2702 + 17.7885i 0.331989 + 0.575022i
\(958\) 0 0
\(959\) −11.5636 + 18.7798i −0.373408 + 0.606431i
\(960\) 0 0
\(961\) −4.98278 8.63043i −0.160735 0.278401i
\(962\) 0 0
\(963\) −12.1197 20.9919i −0.390551 0.676454i
\(964\) 0 0
\(965\) −25.1800 + 43.6130i −0.810572 + 1.40395i
\(966\) 0 0
\(967\) 24.2782 + 42.0510i 0.780733 + 1.35227i 0.931515 + 0.363703i \(0.118488\pi\)
−0.150782 + 0.988567i \(0.548179\pi\)
\(968\) 0 0
\(969\) −14.8736 + 17.5153i −0.477810 + 0.562672i
\(970\) 0 0
\(971\) 1.73628 3.00732i 0.0557198 0.0965095i −0.836820 0.547478i \(-0.815588\pi\)
0.892540 + 0.450968i \(0.148921\pi\)
\(972\) 0 0
\(973\) −16.4756 0.466691i −0.528184 0.0149614i
\(974\) 0 0
\(975\) 7.63183 0.244414
\(976\) 0 0
\(977\) −12.5888 + 21.8044i −0.402750 + 0.697584i −0.994057 0.108863i \(-0.965279\pi\)
0.591306 + 0.806447i \(0.298612\pi\)
\(978\) 0 0
\(979\) 36.3569 62.9721i 1.16197 2.01260i
\(980\) 0 0
\(981\) −25.1171 −0.801928
\(982\) 0 0
\(983\) 11.8334 0.377426 0.188713 0.982032i \(-0.439568\pi\)
0.188713 + 0.982032i \(0.439568\pi\)
\(984\) 0 0
\(985\) −8.35400 + 14.4695i −0.266180 + 0.461038i
\(986\) 0 0
\(987\) −1.21760 2.25403i −0.0387567 0.0717465i
\(988\) 0 0
\(989\) −19.3471 33.5102i −0.615203 1.06556i
\(990\) 0 0
\(991\) −15.1623 −0.481646 −0.240823 0.970569i \(-0.577417\pi\)
−0.240823 + 0.970569i \(0.577417\pi\)
\(992\) 0 0
\(993\) −0.975776 1.69009i −0.0309653 0.0536335i
\(994\) 0 0
\(995\) 51.4565 1.63128
\(996\) 0 0
\(997\) −5.07089 8.78305i −0.160597 0.278162i 0.774486 0.632591i \(-0.218009\pi\)
−0.935083 + 0.354429i \(0.884675\pi\)
\(998\) 0 0
\(999\) 6.66776 + 11.5489i 0.210959 + 0.365391i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 532.2.l.b.501.5 yes 24
7.2 even 3 532.2.k.b.121.8 24
19.11 even 3 532.2.k.b.277.8 yes 24
133.30 even 3 inner 532.2.l.b.429.5 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
532.2.k.b.121.8 24 7.2 even 3
532.2.k.b.277.8 yes 24 19.11 even 3
532.2.l.b.429.5 yes 24 133.30 even 3 inner
532.2.l.b.501.5 yes 24 1.1 even 1 trivial