Properties

Label 5355.2.a.w.1.1
Level $5355$
Weight $2$
Character 5355.1
Self dual yes
Analytic conductor $42.760$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5355,2,Mod(1,5355)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5355, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5355.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5355 = 3^{2} \cdot 5 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5355.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.7598902824\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1785)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 5355.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{2} +1.00000 q^{4} -1.00000 q^{5} -1.00000 q^{7} +1.73205 q^{8} +1.73205 q^{10} +2.00000 q^{11} +1.73205 q^{14} -5.00000 q^{16} -1.00000 q^{17} -5.46410 q^{19} -1.00000 q^{20} -3.46410 q^{22} +1.00000 q^{25} -1.00000 q^{28} -1.46410 q^{29} -2.00000 q^{31} +5.19615 q^{32} +1.73205 q^{34} +1.00000 q^{35} -4.92820 q^{37} +9.46410 q^{38} -1.73205 q^{40} +10.0000 q^{41} -8.00000 q^{43} +2.00000 q^{44} +6.92820 q^{47} +1.00000 q^{49} -1.73205 q^{50} +6.92820 q^{53} -2.00000 q^{55} -1.73205 q^{56} +2.53590 q^{58} -6.92820 q^{59} +6.53590 q^{61} +3.46410 q^{62} +1.00000 q^{64} -1.00000 q^{68} -1.73205 q^{70} +8.92820 q^{71} +11.4641 q^{73} +8.53590 q^{74} -5.46410 q^{76} -2.00000 q^{77} -4.00000 q^{79} +5.00000 q^{80} -17.3205 q^{82} -17.8564 q^{83} +1.00000 q^{85} +13.8564 q^{86} +3.46410 q^{88} -11.8564 q^{89} -12.0000 q^{94} +5.46410 q^{95} +0.535898 q^{97} -1.73205 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 2 q^{5} - 2 q^{7} + 4 q^{11} - 10 q^{16} - 2 q^{17} - 4 q^{19} - 2 q^{20} + 2 q^{25} - 2 q^{28} + 4 q^{29} - 4 q^{31} + 2 q^{35} + 4 q^{37} + 12 q^{38} + 20 q^{41} - 16 q^{43} + 4 q^{44}+ \cdots + 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 −1.22474 −0.612372 0.790569i \(-0.709785\pi\)
−0.612372 + 0.790569i \(0.709785\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) 1.73205 0.547723
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 1.73205 0.462910
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) −5.46410 −1.25355 −0.626775 0.779200i \(-0.715626\pi\)
−0.626775 + 0.779200i \(0.715626\pi\)
\(20\) −1.00000 −0.223607
\(21\) 0 0
\(22\) −3.46410 −0.738549
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) −1.46410 −0.271877 −0.135938 0.990717i \(-0.543405\pi\)
−0.135938 + 0.990717i \(0.543405\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 5.19615 0.918559
\(33\) 0 0
\(34\) 1.73205 0.297044
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −4.92820 −0.810192 −0.405096 0.914274i \(-0.632762\pi\)
−0.405096 + 0.914274i \(0.632762\pi\)
\(38\) 9.46410 1.53528
\(39\) 0 0
\(40\) −1.73205 −0.273861
\(41\) 10.0000 1.56174 0.780869 0.624695i \(-0.214777\pi\)
0.780869 + 0.624695i \(0.214777\pi\)
\(42\) 0 0
\(43\) −8.00000 −1.21999 −0.609994 0.792406i \(-0.708828\pi\)
−0.609994 + 0.792406i \(0.708828\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) 0 0
\(47\) 6.92820 1.01058 0.505291 0.862949i \(-0.331385\pi\)
0.505291 + 0.862949i \(0.331385\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) −1.73205 −0.244949
\(51\) 0 0
\(52\) 0 0
\(53\) 6.92820 0.951662 0.475831 0.879537i \(-0.342147\pi\)
0.475831 + 0.879537i \(0.342147\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) −1.73205 −0.231455
\(57\) 0 0
\(58\) 2.53590 0.332980
\(59\) −6.92820 −0.901975 −0.450988 0.892530i \(-0.648928\pi\)
−0.450988 + 0.892530i \(0.648928\pi\)
\(60\) 0 0
\(61\) 6.53590 0.836836 0.418418 0.908255i \(-0.362585\pi\)
0.418418 + 0.908255i \(0.362585\pi\)
\(62\) 3.46410 0.439941
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) −1.00000 −0.121268
\(69\) 0 0
\(70\) −1.73205 −0.207020
\(71\) 8.92820 1.05958 0.529791 0.848128i \(-0.322270\pi\)
0.529791 + 0.848128i \(0.322270\pi\)
\(72\) 0 0
\(73\) 11.4641 1.34177 0.670886 0.741561i \(-0.265914\pi\)
0.670886 + 0.741561i \(0.265914\pi\)
\(74\) 8.53590 0.992278
\(75\) 0 0
\(76\) −5.46410 −0.626775
\(77\) −2.00000 −0.227921
\(78\) 0 0
\(79\) −4.00000 −0.450035 −0.225018 0.974355i \(-0.572244\pi\)
−0.225018 + 0.974355i \(0.572244\pi\)
\(80\) 5.00000 0.559017
\(81\) 0 0
\(82\) −17.3205 −1.91273
\(83\) −17.8564 −1.96000 −0.979998 0.199009i \(-0.936228\pi\)
−0.979998 + 0.199009i \(0.936228\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 13.8564 1.49417
\(87\) 0 0
\(88\) 3.46410 0.369274
\(89\) −11.8564 −1.25678 −0.628388 0.777900i \(-0.716285\pi\)
−0.628388 + 0.777900i \(0.716285\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) −12.0000 −1.23771
\(95\) 5.46410 0.560605
\(96\) 0 0
\(97\) 0.535898 0.0544122 0.0272061 0.999630i \(-0.491339\pi\)
0.0272061 + 0.999630i \(0.491339\pi\)
\(98\) −1.73205 −0.174964
\(99\) 0 0
\(100\) 1.00000 0.100000
\(101\) 14.0000 1.39305 0.696526 0.717532i \(-0.254728\pi\)
0.696526 + 0.717532i \(0.254728\pi\)
\(102\) 0 0
\(103\) −18.3923 −1.81225 −0.906124 0.423013i \(-0.860973\pi\)
−0.906124 + 0.423013i \(0.860973\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −12.0000 −1.16554
\(107\) 8.00000 0.773389 0.386695 0.922208i \(-0.373617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(108\) 0 0
\(109\) −4.92820 −0.472036 −0.236018 0.971749i \(-0.575842\pi\)
−0.236018 + 0.971749i \(0.575842\pi\)
\(110\) 3.46410 0.330289
\(111\) 0 0
\(112\) 5.00000 0.472456
\(113\) −10.3923 −0.977626 −0.488813 0.872389i \(-0.662570\pi\)
−0.488813 + 0.872389i \(0.662570\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.46410 −0.135938
\(117\) 0 0
\(118\) 12.0000 1.10469
\(119\) 1.00000 0.0916698
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) −11.3205 −1.02491
\(123\) 0 0
\(124\) −2.00000 −0.179605
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 4.00000 0.354943 0.177471 0.984126i \(-0.443208\pi\)
0.177471 + 0.984126i \(0.443208\pi\)
\(128\) −12.1244 −1.07165
\(129\) 0 0
\(130\) 0 0
\(131\) 6.92820 0.605320 0.302660 0.953099i \(-0.402125\pi\)
0.302660 + 0.953099i \(0.402125\pi\)
\(132\) 0 0
\(133\) 5.46410 0.473798
\(134\) 0 0
\(135\) 0 0
\(136\) −1.73205 −0.148522
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) 7.85641 0.666372 0.333186 0.942861i \(-0.391876\pi\)
0.333186 + 0.942861i \(0.391876\pi\)
\(140\) 1.00000 0.0845154
\(141\) 0 0
\(142\) −15.4641 −1.29772
\(143\) 0 0
\(144\) 0 0
\(145\) 1.46410 0.121587
\(146\) −19.8564 −1.64333
\(147\) 0 0
\(148\) −4.92820 −0.405096
\(149\) 7.07180 0.579344 0.289672 0.957126i \(-0.406454\pi\)
0.289672 + 0.957126i \(0.406454\pi\)
\(150\) 0 0
\(151\) −21.8564 −1.77865 −0.889325 0.457277i \(-0.848825\pi\)
−0.889325 + 0.457277i \(0.848825\pi\)
\(152\) −9.46410 −0.767640
\(153\) 0 0
\(154\) 3.46410 0.279145
\(155\) 2.00000 0.160644
\(156\) 0 0
\(157\) 2.92820 0.233696 0.116848 0.993150i \(-0.462721\pi\)
0.116848 + 0.993150i \(0.462721\pi\)
\(158\) 6.92820 0.551178
\(159\) 0 0
\(160\) −5.19615 −0.410792
\(161\) 0 0
\(162\) 0 0
\(163\) −1.07180 −0.0839496 −0.0419748 0.999119i \(-0.513365\pi\)
−0.0419748 + 0.999119i \(0.513365\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) 30.9282 2.40049
\(167\) −16.7846 −1.29883 −0.649416 0.760433i \(-0.724987\pi\)
−0.649416 + 0.760433i \(0.724987\pi\)
\(168\) 0 0
\(169\) −13.0000 −1.00000
\(170\) −1.73205 −0.132842
\(171\) 0 0
\(172\) −8.00000 −0.609994
\(173\) −18.0000 −1.36851 −0.684257 0.729241i \(-0.739873\pi\)
−0.684257 + 0.729241i \(0.739873\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) −10.0000 −0.753778
\(177\) 0 0
\(178\) 20.5359 1.53923
\(179\) 6.53590 0.488516 0.244258 0.969710i \(-0.421456\pi\)
0.244258 + 0.969710i \(0.421456\pi\)
\(180\) 0 0
\(181\) 24.3923 1.81307 0.906533 0.422135i \(-0.138719\pi\)
0.906533 + 0.422135i \(0.138719\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.92820 0.362329
\(186\) 0 0
\(187\) −2.00000 −0.146254
\(188\) 6.92820 0.505291
\(189\) 0 0
\(190\) −9.46410 −0.686598
\(191\) 2.53590 0.183491 0.0917456 0.995782i \(-0.470755\pi\)
0.0917456 + 0.995782i \(0.470755\pi\)
\(192\) 0 0
\(193\) 8.92820 0.642666 0.321333 0.946966i \(-0.395869\pi\)
0.321333 + 0.946966i \(0.395869\pi\)
\(194\) −0.928203 −0.0666411
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) −27.4641 −1.95674 −0.978368 0.206872i \(-0.933672\pi\)
−0.978368 + 0.206872i \(0.933672\pi\)
\(198\) 0 0
\(199\) 12.9282 0.916456 0.458228 0.888835i \(-0.348484\pi\)
0.458228 + 0.888835i \(0.348484\pi\)
\(200\) 1.73205 0.122474
\(201\) 0 0
\(202\) −24.2487 −1.70613
\(203\) 1.46410 0.102760
\(204\) 0 0
\(205\) −10.0000 −0.698430
\(206\) 31.8564 2.21954
\(207\) 0 0
\(208\) 0 0
\(209\) −10.9282 −0.755920
\(210\) 0 0
\(211\) 17.8564 1.22929 0.614643 0.788806i \(-0.289300\pi\)
0.614643 + 0.788806i \(0.289300\pi\)
\(212\) 6.92820 0.475831
\(213\) 0 0
\(214\) −13.8564 −0.947204
\(215\) 8.00000 0.545595
\(216\) 0 0
\(217\) 2.00000 0.135769
\(218\) 8.53590 0.578124
\(219\) 0 0
\(220\) −2.00000 −0.134840
\(221\) 0 0
\(222\) 0 0
\(223\) 22.3923 1.49950 0.749750 0.661721i \(-0.230174\pi\)
0.749750 + 0.661721i \(0.230174\pi\)
\(224\) −5.19615 −0.347183
\(225\) 0 0
\(226\) 18.0000 1.19734
\(227\) 22.9282 1.52180 0.760899 0.648870i \(-0.224758\pi\)
0.760899 + 0.648870i \(0.224758\pi\)
\(228\) 0 0
\(229\) 20.9282 1.38297 0.691487 0.722389i \(-0.256956\pi\)
0.691487 + 0.722389i \(0.256956\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2.53590 −0.166490
\(233\) 3.46410 0.226941 0.113470 0.993541i \(-0.463803\pi\)
0.113470 + 0.993541i \(0.463803\pi\)
\(234\) 0 0
\(235\) −6.92820 −0.451946
\(236\) −6.92820 −0.450988
\(237\) 0 0
\(238\) −1.73205 −0.112272
\(239\) 7.60770 0.492101 0.246050 0.969257i \(-0.420867\pi\)
0.246050 + 0.969257i \(0.420867\pi\)
\(240\) 0 0
\(241\) 19.3205 1.24454 0.622272 0.782801i \(-0.286210\pi\)
0.622272 + 0.782801i \(0.286210\pi\)
\(242\) 12.1244 0.779383
\(243\) 0 0
\(244\) 6.53590 0.418418
\(245\) −1.00000 −0.0638877
\(246\) 0 0
\(247\) 0 0
\(248\) −3.46410 −0.219971
\(249\) 0 0
\(250\) 1.73205 0.109545
\(251\) 14.9282 0.942260 0.471130 0.882064i \(-0.343846\pi\)
0.471130 + 0.882064i \(0.343846\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −6.92820 −0.434714
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 18.7846 1.17175 0.585876 0.810401i \(-0.300751\pi\)
0.585876 + 0.810401i \(0.300751\pi\)
\(258\) 0 0
\(259\) 4.92820 0.306224
\(260\) 0 0
\(261\) 0 0
\(262\) −12.0000 −0.741362
\(263\) −17.3205 −1.06803 −0.534014 0.845476i \(-0.679317\pi\)
−0.534014 + 0.845476i \(0.679317\pi\)
\(264\) 0 0
\(265\) −6.92820 −0.425596
\(266\) −9.46410 −0.580281
\(267\) 0 0
\(268\) 0 0
\(269\) 12.9282 0.788246 0.394123 0.919058i \(-0.371048\pi\)
0.394123 + 0.919058i \(0.371048\pi\)
\(270\) 0 0
\(271\) −13.4641 −0.817886 −0.408943 0.912560i \(-0.634103\pi\)
−0.408943 + 0.912560i \(0.634103\pi\)
\(272\) 5.00000 0.303170
\(273\) 0 0
\(274\) −13.8564 −0.837096
\(275\) 2.00000 0.120605
\(276\) 0 0
\(277\) −7.07180 −0.424903 −0.212452 0.977172i \(-0.568145\pi\)
−0.212452 + 0.977172i \(0.568145\pi\)
\(278\) −13.6077 −0.816135
\(279\) 0 0
\(280\) 1.73205 0.103510
\(281\) 16.9282 1.00985 0.504926 0.863163i \(-0.331520\pi\)
0.504926 + 0.863163i \(0.331520\pi\)
\(282\) 0 0
\(283\) 17.8564 1.06145 0.530727 0.847543i \(-0.321919\pi\)
0.530727 + 0.847543i \(0.321919\pi\)
\(284\) 8.92820 0.529791
\(285\) 0 0
\(286\) 0 0
\(287\) −10.0000 −0.590281
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) −2.53590 −0.148913
\(291\) 0 0
\(292\) 11.4641 0.670886
\(293\) 3.07180 0.179456 0.0897281 0.995966i \(-0.471400\pi\)
0.0897281 + 0.995966i \(0.471400\pi\)
\(294\) 0 0
\(295\) 6.92820 0.403376
\(296\) −8.53590 −0.496139
\(297\) 0 0
\(298\) −12.2487 −0.709549
\(299\) 0 0
\(300\) 0 0
\(301\) 8.00000 0.461112
\(302\) 37.8564 2.17839
\(303\) 0 0
\(304\) 27.3205 1.56694
\(305\) −6.53590 −0.374244
\(306\) 0 0
\(307\) 18.3923 1.04970 0.524852 0.851193i \(-0.324121\pi\)
0.524852 + 0.851193i \(0.324121\pi\)
\(308\) −2.00000 −0.113961
\(309\) 0 0
\(310\) −3.46410 −0.196748
\(311\) −10.9282 −0.619682 −0.309841 0.950788i \(-0.600276\pi\)
−0.309841 + 0.950788i \(0.600276\pi\)
\(312\) 0 0
\(313\) −28.2487 −1.59671 −0.798356 0.602186i \(-0.794297\pi\)
−0.798356 + 0.602186i \(0.794297\pi\)
\(314\) −5.07180 −0.286218
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) −7.46410 −0.419226 −0.209613 0.977784i \(-0.567220\pi\)
−0.209613 + 0.977784i \(0.567220\pi\)
\(318\) 0 0
\(319\) −2.92820 −0.163948
\(320\) −1.00000 −0.0559017
\(321\) 0 0
\(322\) 0 0
\(323\) 5.46410 0.304031
\(324\) 0 0
\(325\) 0 0
\(326\) 1.85641 0.102817
\(327\) 0 0
\(328\) 17.3205 0.956365
\(329\) −6.92820 −0.381964
\(330\) 0 0
\(331\) 9.07180 0.498631 0.249316 0.968422i \(-0.419794\pi\)
0.249316 + 0.968422i \(0.419794\pi\)
\(332\) −17.8564 −0.979998
\(333\) 0 0
\(334\) 29.0718 1.59074
\(335\) 0 0
\(336\) 0 0
\(337\) −11.8564 −0.645860 −0.322930 0.946423i \(-0.604668\pi\)
−0.322930 + 0.946423i \(0.604668\pi\)
\(338\) 22.5167 1.22474
\(339\) 0 0
\(340\) 1.00000 0.0542326
\(341\) −4.00000 −0.216612
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) −13.8564 −0.747087
\(345\) 0 0
\(346\) 31.1769 1.67608
\(347\) 8.78461 0.471583 0.235791 0.971804i \(-0.424232\pi\)
0.235791 + 0.971804i \(0.424232\pi\)
\(348\) 0 0
\(349\) −7.85641 −0.420544 −0.210272 0.977643i \(-0.567435\pi\)
−0.210272 + 0.977643i \(0.567435\pi\)
\(350\) 1.73205 0.0925820
\(351\) 0 0
\(352\) 10.3923 0.553912
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) 0 0
\(355\) −8.92820 −0.473860
\(356\) −11.8564 −0.628388
\(357\) 0 0
\(358\) −11.3205 −0.598307
\(359\) 16.3923 0.865153 0.432576 0.901597i \(-0.357605\pi\)
0.432576 + 0.901597i \(0.357605\pi\)
\(360\) 0 0
\(361\) 10.8564 0.571390
\(362\) −42.2487 −2.22054
\(363\) 0 0
\(364\) 0 0
\(365\) −11.4641 −0.600059
\(366\) 0 0
\(367\) −17.8564 −0.932097 −0.466048 0.884759i \(-0.654323\pi\)
−0.466048 + 0.884759i \(0.654323\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) −8.53590 −0.443760
\(371\) −6.92820 −0.359694
\(372\) 0 0
\(373\) 36.6410 1.89720 0.948600 0.316478i \(-0.102500\pi\)
0.948600 + 0.316478i \(0.102500\pi\)
\(374\) 3.46410 0.179124
\(375\) 0 0
\(376\) 12.0000 0.618853
\(377\) 0 0
\(378\) 0 0
\(379\) −2.14359 −0.110109 −0.0550545 0.998483i \(-0.517533\pi\)
−0.0550545 + 0.998483i \(0.517533\pi\)
\(380\) 5.46410 0.280302
\(381\) 0 0
\(382\) −4.39230 −0.224730
\(383\) −12.7846 −0.653263 −0.326632 0.945152i \(-0.605914\pi\)
−0.326632 + 0.945152i \(0.605914\pi\)
\(384\) 0 0
\(385\) 2.00000 0.101929
\(386\) −15.4641 −0.787102
\(387\) 0 0
\(388\) 0.535898 0.0272061
\(389\) −8.92820 −0.452678 −0.226339 0.974049i \(-0.572676\pi\)
−0.226339 + 0.974049i \(0.572676\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.73205 0.0874818
\(393\) 0 0
\(394\) 47.5692 2.39650
\(395\) 4.00000 0.201262
\(396\) 0 0
\(397\) −1.32051 −0.0662744 −0.0331372 0.999451i \(-0.510550\pi\)
−0.0331372 + 0.999451i \(0.510550\pi\)
\(398\) −22.3923 −1.12242
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) 29.1769 1.45703 0.728513 0.685032i \(-0.240212\pi\)
0.728513 + 0.685032i \(0.240212\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 14.0000 0.696526
\(405\) 0 0
\(406\) −2.53590 −0.125855
\(407\) −9.85641 −0.488564
\(408\) 0 0
\(409\) −11.8564 −0.586262 −0.293131 0.956072i \(-0.594697\pi\)
−0.293131 + 0.956072i \(0.594697\pi\)
\(410\) 17.3205 0.855399
\(411\) 0 0
\(412\) −18.3923 −0.906124
\(413\) 6.92820 0.340915
\(414\) 0 0
\(415\) 17.8564 0.876537
\(416\) 0 0
\(417\) 0 0
\(418\) 18.9282 0.925809
\(419\) 28.7846 1.40622 0.703110 0.711081i \(-0.251794\pi\)
0.703110 + 0.711081i \(0.251794\pi\)
\(420\) 0 0
\(421\) −19.8564 −0.967742 −0.483871 0.875139i \(-0.660770\pi\)
−0.483871 + 0.875139i \(0.660770\pi\)
\(422\) −30.9282 −1.50556
\(423\) 0 0
\(424\) 12.0000 0.582772
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) −6.53590 −0.316294
\(428\) 8.00000 0.386695
\(429\) 0 0
\(430\) −13.8564 −0.668215
\(431\) 29.7128 1.43122 0.715608 0.698502i \(-0.246150\pi\)
0.715608 + 0.698502i \(0.246150\pi\)
\(432\) 0 0
\(433\) 31.7128 1.52402 0.762010 0.647565i \(-0.224213\pi\)
0.762010 + 0.647565i \(0.224213\pi\)
\(434\) −3.46410 −0.166282
\(435\) 0 0
\(436\) −4.92820 −0.236018
\(437\) 0 0
\(438\) 0 0
\(439\) −7.85641 −0.374966 −0.187483 0.982268i \(-0.560033\pi\)
−0.187483 + 0.982268i \(0.560033\pi\)
\(440\) −3.46410 −0.165145
\(441\) 0 0
\(442\) 0 0
\(443\) −13.6077 −0.646521 −0.323261 0.946310i \(-0.604779\pi\)
−0.323261 + 0.946310i \(0.604779\pi\)
\(444\) 0 0
\(445\) 11.8564 0.562048
\(446\) −38.7846 −1.83650
\(447\) 0 0
\(448\) −1.00000 −0.0472456
\(449\) −11.3205 −0.534248 −0.267124 0.963662i \(-0.586073\pi\)
−0.267124 + 0.963662i \(0.586073\pi\)
\(450\) 0 0
\(451\) 20.0000 0.941763
\(452\) −10.3923 −0.488813
\(453\) 0 0
\(454\) −39.7128 −1.86381
\(455\) 0 0
\(456\) 0 0
\(457\) −4.92820 −0.230532 −0.115266 0.993335i \(-0.536772\pi\)
−0.115266 + 0.993335i \(0.536772\pi\)
\(458\) −36.2487 −1.69379
\(459\) 0 0
\(460\) 0 0
\(461\) 25.7128 1.19757 0.598783 0.800912i \(-0.295651\pi\)
0.598783 + 0.800912i \(0.295651\pi\)
\(462\) 0 0
\(463\) −13.0718 −0.607498 −0.303749 0.952752i \(-0.598238\pi\)
−0.303749 + 0.952752i \(0.598238\pi\)
\(464\) 7.32051 0.339846
\(465\) 0 0
\(466\) −6.00000 −0.277945
\(467\) −1.85641 −0.0859042 −0.0429521 0.999077i \(-0.513676\pi\)
−0.0429521 + 0.999077i \(0.513676\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 12.0000 0.553519
\(471\) 0 0
\(472\) −12.0000 −0.552345
\(473\) −16.0000 −0.735681
\(474\) 0 0
\(475\) −5.46410 −0.250710
\(476\) 1.00000 0.0458349
\(477\) 0 0
\(478\) −13.1769 −0.602698
\(479\) 1.07180 0.0489716 0.0244858 0.999700i \(-0.492205\pi\)
0.0244858 + 0.999700i \(0.492205\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −33.4641 −1.52425
\(483\) 0 0
\(484\) −7.00000 −0.318182
\(485\) −0.535898 −0.0243339
\(486\) 0 0
\(487\) 24.7846 1.12310 0.561549 0.827444i \(-0.310206\pi\)
0.561549 + 0.827444i \(0.310206\pi\)
\(488\) 11.3205 0.512455
\(489\) 0 0
\(490\) 1.73205 0.0782461
\(491\) 18.2487 0.823553 0.411776 0.911285i \(-0.364908\pi\)
0.411776 + 0.911285i \(0.364908\pi\)
\(492\) 0 0
\(493\) 1.46410 0.0659398
\(494\) 0 0
\(495\) 0 0
\(496\) 10.0000 0.449013
\(497\) −8.92820 −0.400485
\(498\) 0 0
\(499\) 17.8564 0.799363 0.399681 0.916654i \(-0.369121\pi\)
0.399681 + 0.916654i \(0.369121\pi\)
\(500\) −1.00000 −0.0447214
\(501\) 0 0
\(502\) −25.8564 −1.15403
\(503\) 8.00000 0.356702 0.178351 0.983967i \(-0.442924\pi\)
0.178351 + 0.983967i \(0.442924\pi\)
\(504\) 0 0
\(505\) −14.0000 −0.622992
\(506\) 0 0
\(507\) 0 0
\(508\) 4.00000 0.177471
\(509\) 43.8564 1.94390 0.971951 0.235185i \(-0.0755697\pi\)
0.971951 + 0.235185i \(0.0755697\pi\)
\(510\) 0 0
\(511\) −11.4641 −0.507142
\(512\) −8.66025 −0.382733
\(513\) 0 0
\(514\) −32.5359 −1.43510
\(515\) 18.3923 0.810462
\(516\) 0 0
\(517\) 13.8564 0.609404
\(518\) −8.53590 −0.375046
\(519\) 0 0
\(520\) 0 0
\(521\) 14.7846 0.647726 0.323863 0.946104i \(-0.395018\pi\)
0.323863 + 0.946104i \(0.395018\pi\)
\(522\) 0 0
\(523\) −11.4641 −0.501290 −0.250645 0.968079i \(-0.580643\pi\)
−0.250645 + 0.968079i \(0.580643\pi\)
\(524\) 6.92820 0.302660
\(525\) 0 0
\(526\) 30.0000 1.30806
\(527\) 2.00000 0.0871214
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 12.0000 0.521247
\(531\) 0 0
\(532\) 5.46410 0.236899
\(533\) 0 0
\(534\) 0 0
\(535\) −8.00000 −0.345870
\(536\) 0 0
\(537\) 0 0
\(538\) −22.3923 −0.965401
\(539\) 2.00000 0.0861461
\(540\) 0 0
\(541\) 18.7846 0.807613 0.403807 0.914844i \(-0.367687\pi\)
0.403807 + 0.914844i \(0.367687\pi\)
\(542\) 23.3205 1.00170
\(543\) 0 0
\(544\) −5.19615 −0.222783
\(545\) 4.92820 0.211101
\(546\) 0 0
\(547\) −4.00000 −0.171028 −0.0855138 0.996337i \(-0.527253\pi\)
−0.0855138 + 0.996337i \(0.527253\pi\)
\(548\) 8.00000 0.341743
\(549\) 0 0
\(550\) −3.46410 −0.147710
\(551\) 8.00000 0.340811
\(552\) 0 0
\(553\) 4.00000 0.170097
\(554\) 12.2487 0.520398
\(555\) 0 0
\(556\) 7.85641 0.333186
\(557\) 28.7846 1.21964 0.609822 0.792539i \(-0.291241\pi\)
0.609822 + 0.792539i \(0.291241\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −5.00000 −0.211289
\(561\) 0 0
\(562\) −29.3205 −1.23681
\(563\) 23.7128 0.999376 0.499688 0.866205i \(-0.333448\pi\)
0.499688 + 0.866205i \(0.333448\pi\)
\(564\) 0 0
\(565\) 10.3923 0.437208
\(566\) −30.9282 −1.30001
\(567\) 0 0
\(568\) 15.4641 0.648859
\(569\) −38.7846 −1.62594 −0.812968 0.582309i \(-0.802149\pi\)
−0.812968 + 0.582309i \(0.802149\pi\)
\(570\) 0 0
\(571\) 4.00000 0.167395 0.0836974 0.996491i \(-0.473327\pi\)
0.0836974 + 0.996491i \(0.473327\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 17.3205 0.722944
\(575\) 0 0
\(576\) 0 0
\(577\) −2.92820 −0.121903 −0.0609513 0.998141i \(-0.519413\pi\)
−0.0609513 + 0.998141i \(0.519413\pi\)
\(578\) −1.73205 −0.0720438
\(579\) 0 0
\(580\) 1.46410 0.0607935
\(581\) 17.8564 0.740809
\(582\) 0 0
\(583\) 13.8564 0.573874
\(584\) 19.8564 0.821664
\(585\) 0 0
\(586\) −5.32051 −0.219788
\(587\) −2.92820 −0.120860 −0.0604299 0.998172i \(-0.519247\pi\)
−0.0604299 + 0.998172i \(0.519247\pi\)
\(588\) 0 0
\(589\) 10.9282 0.450289
\(590\) −12.0000 −0.494032
\(591\) 0 0
\(592\) 24.6410 1.01274
\(593\) 46.7846 1.92121 0.960607 0.277911i \(-0.0896420\pi\)
0.960607 + 0.277911i \(0.0896420\pi\)
\(594\) 0 0
\(595\) −1.00000 −0.0409960
\(596\) 7.07180 0.289672
\(597\) 0 0
\(598\) 0 0
\(599\) 33.4641 1.36731 0.683653 0.729807i \(-0.260390\pi\)
0.683653 + 0.729807i \(0.260390\pi\)
\(600\) 0 0
\(601\) 19.3205 0.788100 0.394050 0.919089i \(-0.371074\pi\)
0.394050 + 0.919089i \(0.371074\pi\)
\(602\) −13.8564 −0.564745
\(603\) 0 0
\(604\) −21.8564 −0.889325
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) −16.7846 −0.681266 −0.340633 0.940196i \(-0.610641\pi\)
−0.340633 + 0.940196i \(0.610641\pi\)
\(608\) −28.3923 −1.15146
\(609\) 0 0
\(610\) 11.3205 0.458354
\(611\) 0 0
\(612\) 0 0
\(613\) −11.0718 −0.447186 −0.223593 0.974683i \(-0.571779\pi\)
−0.223593 + 0.974683i \(0.571779\pi\)
\(614\) −31.8564 −1.28562
\(615\) 0 0
\(616\) −3.46410 −0.139573
\(617\) −16.2487 −0.654148 −0.327074 0.944999i \(-0.606063\pi\)
−0.327074 + 0.944999i \(0.606063\pi\)
\(618\) 0 0
\(619\) −10.7846 −0.433470 −0.216735 0.976230i \(-0.569541\pi\)
−0.216735 + 0.976230i \(0.569541\pi\)
\(620\) 2.00000 0.0803219
\(621\) 0 0
\(622\) 18.9282 0.758952
\(623\) 11.8564 0.475017
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 48.9282 1.95556
\(627\) 0 0
\(628\) 2.92820 0.116848
\(629\) 4.92820 0.196500
\(630\) 0 0
\(631\) −40.7846 −1.62361 −0.811805 0.583929i \(-0.801515\pi\)
−0.811805 + 0.583929i \(0.801515\pi\)
\(632\) −6.92820 −0.275589
\(633\) 0 0
\(634\) 12.9282 0.513445
\(635\) −4.00000 −0.158735
\(636\) 0 0
\(637\) 0 0
\(638\) 5.07180 0.200794
\(639\) 0 0
\(640\) 12.1244 0.479257
\(641\) 12.3923 0.489467 0.244733 0.969590i \(-0.421300\pi\)
0.244733 + 0.969590i \(0.421300\pi\)
\(642\) 0 0
\(643\) 24.0000 0.946468 0.473234 0.880937i \(-0.343087\pi\)
0.473234 + 0.880937i \(0.343087\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −9.46410 −0.372360
\(647\) 30.9282 1.21591 0.607957 0.793970i \(-0.291989\pi\)
0.607957 + 0.793970i \(0.291989\pi\)
\(648\) 0 0
\(649\) −13.8564 −0.543912
\(650\) 0 0
\(651\) 0 0
\(652\) −1.07180 −0.0419748
\(653\) −24.2487 −0.948925 −0.474463 0.880276i \(-0.657358\pi\)
−0.474463 + 0.880276i \(0.657358\pi\)
\(654\) 0 0
\(655\) −6.92820 −0.270707
\(656\) −50.0000 −1.95217
\(657\) 0 0
\(658\) 12.0000 0.467809
\(659\) 10.5359 0.410420 0.205210 0.978718i \(-0.434212\pi\)
0.205210 + 0.978718i \(0.434212\pi\)
\(660\) 0 0
\(661\) 27.8564 1.08349 0.541744 0.840543i \(-0.317764\pi\)
0.541744 + 0.840543i \(0.317764\pi\)
\(662\) −15.7128 −0.610696
\(663\) 0 0
\(664\) −30.9282 −1.20025
\(665\) −5.46410 −0.211889
\(666\) 0 0
\(667\) 0 0
\(668\) −16.7846 −0.649416
\(669\) 0 0
\(670\) 0 0
\(671\) 13.0718 0.504631
\(672\) 0 0
\(673\) −16.9282 −0.652534 −0.326267 0.945278i \(-0.605791\pi\)
−0.326267 + 0.945278i \(0.605791\pi\)
\(674\) 20.5359 0.791013
\(675\) 0 0
\(676\) −13.0000 −0.500000
\(677\) 38.0000 1.46046 0.730229 0.683202i \(-0.239413\pi\)
0.730229 + 0.683202i \(0.239413\pi\)
\(678\) 0 0
\(679\) −0.535898 −0.0205659
\(680\) 1.73205 0.0664211
\(681\) 0 0
\(682\) 6.92820 0.265295
\(683\) 6.14359 0.235078 0.117539 0.993068i \(-0.462499\pi\)
0.117539 + 0.993068i \(0.462499\pi\)
\(684\) 0 0
\(685\) −8.00000 −0.305664
\(686\) 1.73205 0.0661300
\(687\) 0 0
\(688\) 40.0000 1.52499
\(689\) 0 0
\(690\) 0 0
\(691\) 12.9282 0.491812 0.245906 0.969294i \(-0.420915\pi\)
0.245906 + 0.969294i \(0.420915\pi\)
\(692\) −18.0000 −0.684257
\(693\) 0 0
\(694\) −15.2154 −0.577568
\(695\) −7.85641 −0.298010
\(696\) 0 0
\(697\) −10.0000 −0.378777
\(698\) 13.6077 0.515059
\(699\) 0 0
\(700\) −1.00000 −0.0377964
\(701\) 15.8564 0.598888 0.299444 0.954114i \(-0.403199\pi\)
0.299444 + 0.954114i \(0.403199\pi\)
\(702\) 0 0
\(703\) 26.9282 1.01562
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) −10.3923 −0.391120
\(707\) −14.0000 −0.526524
\(708\) 0 0
\(709\) 30.0000 1.12667 0.563337 0.826227i \(-0.309517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) 15.4641 0.580357
\(711\) 0 0
\(712\) −20.5359 −0.769615
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 6.53590 0.244258
\(717\) 0 0
\(718\) −28.3923 −1.05959
\(719\) 18.9282 0.705903 0.352951 0.935642i \(-0.385178\pi\)
0.352951 + 0.935642i \(0.385178\pi\)
\(720\) 0 0
\(721\) 18.3923 0.684965
\(722\) −18.8038 −0.699807
\(723\) 0 0
\(724\) 24.3923 0.906533
\(725\) −1.46410 −0.0543754
\(726\) 0 0
\(727\) 23.4641 0.870235 0.435118 0.900374i \(-0.356707\pi\)
0.435118 + 0.900374i \(0.356707\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 19.8564 0.734919
\(731\) 8.00000 0.295891
\(732\) 0 0
\(733\) −19.7128 −0.728109 −0.364055 0.931378i \(-0.618608\pi\)
−0.364055 + 0.931378i \(0.618608\pi\)
\(734\) 30.9282 1.14158
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 9.85641 0.362574 0.181287 0.983430i \(-0.441974\pi\)
0.181287 + 0.983430i \(0.441974\pi\)
\(740\) 4.92820 0.181164
\(741\) 0 0
\(742\) 12.0000 0.440534
\(743\) −5.07180 −0.186066 −0.0930331 0.995663i \(-0.529656\pi\)
−0.0930331 + 0.995663i \(0.529656\pi\)
\(744\) 0 0
\(745\) −7.07180 −0.259091
\(746\) −63.4641 −2.32359
\(747\) 0 0
\(748\) −2.00000 −0.0731272
\(749\) −8.00000 −0.292314
\(750\) 0 0
\(751\) −28.0000 −1.02173 −0.510867 0.859660i \(-0.670676\pi\)
−0.510867 + 0.859660i \(0.670676\pi\)
\(752\) −34.6410 −1.26323
\(753\) 0 0
\(754\) 0 0
\(755\) 21.8564 0.795436
\(756\) 0 0
\(757\) 8.92820 0.324501 0.162251 0.986750i \(-0.448125\pi\)
0.162251 + 0.986750i \(0.448125\pi\)
\(758\) 3.71281 0.134855
\(759\) 0 0
\(760\) 9.46410 0.343299
\(761\) 6.00000 0.217500 0.108750 0.994069i \(-0.465315\pi\)
0.108750 + 0.994069i \(0.465315\pi\)
\(762\) 0 0
\(763\) 4.92820 0.178413
\(764\) 2.53590 0.0917456
\(765\) 0 0
\(766\) 22.1436 0.800081
\(767\) 0 0
\(768\) 0 0
\(769\) 44.9282 1.62015 0.810076 0.586325i \(-0.199426\pi\)
0.810076 + 0.586325i \(0.199426\pi\)
\(770\) −3.46410 −0.124838
\(771\) 0 0
\(772\) 8.92820 0.321333
\(773\) 33.7128 1.21257 0.606283 0.795249i \(-0.292660\pi\)
0.606283 + 0.795249i \(0.292660\pi\)
\(774\) 0 0
\(775\) −2.00000 −0.0718421
\(776\) 0.928203 0.0333206
\(777\) 0 0
\(778\) 15.4641 0.554415
\(779\) −54.6410 −1.95772
\(780\) 0 0
\(781\) 17.8564 0.638952
\(782\) 0 0
\(783\) 0 0
\(784\) −5.00000 −0.178571
\(785\) −2.92820 −0.104512
\(786\) 0 0
\(787\) −9.07180 −0.323375 −0.161687 0.986842i \(-0.551694\pi\)
−0.161687 + 0.986842i \(0.551694\pi\)
\(788\) −27.4641 −0.978368
\(789\) 0 0
\(790\) −6.92820 −0.246494
\(791\) 10.3923 0.369508
\(792\) 0 0
\(793\) 0 0
\(794\) 2.28719 0.0811692
\(795\) 0 0
\(796\) 12.9282 0.458228
\(797\) −36.9282 −1.30806 −0.654032 0.756467i \(-0.726924\pi\)
−0.654032 + 0.756467i \(0.726924\pi\)
\(798\) 0 0
\(799\) −6.92820 −0.245102
\(800\) 5.19615 0.183712
\(801\) 0 0
\(802\) −50.5359 −1.78448
\(803\) 22.9282 0.809119
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 24.2487 0.853067
\(809\) 48.1051 1.69129 0.845643 0.533749i \(-0.179217\pi\)
0.845643 + 0.533749i \(0.179217\pi\)
\(810\) 0 0
\(811\) −27.8564 −0.978171 −0.489085 0.872236i \(-0.662669\pi\)
−0.489085 + 0.872236i \(0.662669\pi\)
\(812\) 1.46410 0.0513799
\(813\) 0 0
\(814\) 17.0718 0.598366
\(815\) 1.07180 0.0375434
\(816\) 0 0
\(817\) 43.7128 1.52932
\(818\) 20.5359 0.718021
\(819\) 0 0
\(820\) −10.0000 −0.349215
\(821\) 36.3923 1.27010 0.635050 0.772471i \(-0.280979\pi\)
0.635050 + 0.772471i \(0.280979\pi\)
\(822\) 0 0
\(823\) 11.7128 0.408283 0.204141 0.978941i \(-0.434560\pi\)
0.204141 + 0.978941i \(0.434560\pi\)
\(824\) −31.8564 −1.10977
\(825\) 0 0
\(826\) −12.0000 −0.417533
\(827\) −16.0000 −0.556375 −0.278187 0.960527i \(-0.589734\pi\)
−0.278187 + 0.960527i \(0.589734\pi\)
\(828\) 0 0
\(829\) 40.9282 1.42150 0.710748 0.703447i \(-0.248357\pi\)
0.710748 + 0.703447i \(0.248357\pi\)
\(830\) −30.9282 −1.07353
\(831\) 0 0
\(832\) 0 0
\(833\) −1.00000 −0.0346479
\(834\) 0 0
\(835\) 16.7846 0.580855
\(836\) −10.9282 −0.377960
\(837\) 0 0
\(838\) −49.8564 −1.72226
\(839\) −7.21539 −0.249103 −0.124551 0.992213i \(-0.539749\pi\)
−0.124551 + 0.992213i \(0.539749\pi\)
\(840\) 0 0
\(841\) −26.8564 −0.926083
\(842\) 34.3923 1.18524
\(843\) 0 0
\(844\) 17.8564 0.614643
\(845\) 13.0000 0.447214
\(846\) 0 0
\(847\) 7.00000 0.240523
\(848\) −34.6410 −1.18958
\(849\) 0 0
\(850\) 1.73205 0.0594089
\(851\) 0 0
\(852\) 0 0
\(853\) −14.6795 −0.502616 −0.251308 0.967907i \(-0.580861\pi\)
−0.251308 + 0.967907i \(0.580861\pi\)
\(854\) 11.3205 0.387380
\(855\) 0 0
\(856\) 13.8564 0.473602
\(857\) −33.7128 −1.15161 −0.575804 0.817588i \(-0.695311\pi\)
−0.575804 + 0.817588i \(0.695311\pi\)
\(858\) 0 0
\(859\) −53.1769 −1.81437 −0.907186 0.420729i \(-0.861774\pi\)
−0.907186 + 0.420729i \(0.861774\pi\)
\(860\) 8.00000 0.272798
\(861\) 0 0
\(862\) −51.4641 −1.75287
\(863\) 34.1051 1.16095 0.580476 0.814277i \(-0.302867\pi\)
0.580476 + 0.814277i \(0.302867\pi\)
\(864\) 0 0
\(865\) 18.0000 0.612018
\(866\) −54.9282 −1.86654
\(867\) 0 0
\(868\) 2.00000 0.0678844
\(869\) −8.00000 −0.271381
\(870\) 0 0
\(871\) 0 0
\(872\) −8.53590 −0.289062
\(873\) 0 0
\(874\) 0 0
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) 40.9282 1.38205 0.691024 0.722832i \(-0.257160\pi\)
0.691024 + 0.722832i \(0.257160\pi\)
\(878\) 13.6077 0.459237
\(879\) 0 0
\(880\) 10.0000 0.337100
\(881\) −47.8564 −1.61232 −0.806162 0.591695i \(-0.798459\pi\)
−0.806162 + 0.591695i \(0.798459\pi\)
\(882\) 0 0
\(883\) −42.6410 −1.43498 −0.717492 0.696567i \(-0.754710\pi\)
−0.717492 + 0.696567i \(0.754710\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 23.5692 0.791823
\(887\) −29.0718 −0.976135 −0.488068 0.872806i \(-0.662298\pi\)
−0.488068 + 0.872806i \(0.662298\pi\)
\(888\) 0 0
\(889\) −4.00000 −0.134156
\(890\) −20.5359 −0.688365
\(891\) 0 0
\(892\) 22.3923 0.749750
\(893\) −37.8564 −1.26682
\(894\) 0 0
\(895\) −6.53590 −0.218471
\(896\) 12.1244 0.405046
\(897\) 0 0
\(898\) 19.6077 0.654317
\(899\) 2.92820 0.0976610
\(900\) 0 0
\(901\) −6.92820 −0.230812
\(902\) −34.6410 −1.15342
\(903\) 0 0
\(904\) −18.0000 −0.598671
\(905\) −24.3923 −0.810828
\(906\) 0 0
\(907\) 14.9282 0.495683 0.247841 0.968801i \(-0.420279\pi\)
0.247841 + 0.968801i \(0.420279\pi\)
\(908\) 22.9282 0.760899
\(909\) 0 0
\(910\) 0 0
\(911\) −13.7128 −0.454326 −0.227163 0.973857i \(-0.572945\pi\)
−0.227163 + 0.973857i \(0.572945\pi\)
\(912\) 0 0
\(913\) −35.7128 −1.18192
\(914\) 8.53590 0.282342
\(915\) 0 0
\(916\) 20.9282 0.691487
\(917\) −6.92820 −0.228789
\(918\) 0 0
\(919\) 2.92820 0.0965925 0.0482963 0.998833i \(-0.484621\pi\)
0.0482963 + 0.998833i \(0.484621\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −44.5359 −1.46671
\(923\) 0 0
\(924\) 0 0
\(925\) −4.92820 −0.162038
\(926\) 22.6410 0.744030
\(927\) 0 0
\(928\) −7.60770 −0.249735
\(929\) −12.6410 −0.414738 −0.207369 0.978263i \(-0.566490\pi\)
−0.207369 + 0.978263i \(0.566490\pi\)
\(930\) 0 0
\(931\) −5.46410 −0.179079
\(932\) 3.46410 0.113470
\(933\) 0 0
\(934\) 3.21539 0.105211
\(935\) 2.00000 0.0654070
\(936\) 0 0
\(937\) −4.78461 −0.156306 −0.0781532 0.996941i \(-0.524902\pi\)
−0.0781532 + 0.996941i \(0.524902\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −6.92820 −0.225973
\(941\) 18.0000 0.586783 0.293392 0.955992i \(-0.405216\pi\)
0.293392 + 0.955992i \(0.405216\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 34.6410 1.12747
\(945\) 0 0
\(946\) 27.7128 0.901021
\(947\) −1.85641 −0.0603251 −0.0301626 0.999545i \(-0.509602\pi\)
−0.0301626 + 0.999545i \(0.509602\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 9.46410 0.307056
\(951\) 0 0
\(952\) 1.73205 0.0561361
\(953\) 44.0000 1.42530 0.712650 0.701520i \(-0.247495\pi\)
0.712650 + 0.701520i \(0.247495\pi\)
\(954\) 0 0
\(955\) −2.53590 −0.0820597
\(956\) 7.60770 0.246050
\(957\) 0 0
\(958\) −1.85641 −0.0599778
\(959\) −8.00000 −0.258333
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) 0 0
\(963\) 0 0
\(964\) 19.3205 0.622272
\(965\) −8.92820 −0.287409
\(966\) 0 0
\(967\) 7.21539 0.232031 0.116016 0.993247i \(-0.462988\pi\)
0.116016 + 0.993247i \(0.462988\pi\)
\(968\) −12.1244 −0.389692
\(969\) 0 0
\(970\) 0.928203 0.0298028
\(971\) 50.6410 1.62515 0.812574 0.582858i \(-0.198066\pi\)
0.812574 + 0.582858i \(0.198066\pi\)
\(972\) 0 0
\(973\) −7.85641 −0.251865
\(974\) −42.9282 −1.37551
\(975\) 0 0
\(976\) −32.6795 −1.04605
\(977\) −39.7128 −1.27053 −0.635263 0.772296i \(-0.719108\pi\)
−0.635263 + 0.772296i \(0.719108\pi\)
\(978\) 0 0
\(979\) −23.7128 −0.757865
\(980\) −1.00000 −0.0319438
\(981\) 0 0
\(982\) −31.6077 −1.00864
\(983\) −35.7128 −1.13906 −0.569531 0.821970i \(-0.692875\pi\)
−0.569531 + 0.821970i \(0.692875\pi\)
\(984\) 0 0
\(985\) 27.4641 0.875079
\(986\) −2.53590 −0.0807595
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 35.7128 1.13445 0.567227 0.823561i \(-0.308016\pi\)
0.567227 + 0.823561i \(0.308016\pi\)
\(992\) −10.3923 −0.329956
\(993\) 0 0
\(994\) 15.4641 0.490492
\(995\) −12.9282 −0.409852
\(996\) 0 0
\(997\) −34.3923 −1.08922 −0.544608 0.838691i \(-0.683321\pi\)
−0.544608 + 0.838691i \(0.683321\pi\)
\(998\) −30.9282 −0.979015
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5355.2.a.w.1.1 2
3.2 odd 2 1785.2.a.q.1.2 2
15.14 odd 2 8925.2.a.bh.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1785.2.a.q.1.2 2 3.2 odd 2
5355.2.a.w.1.1 2 1.1 even 1 trivial
8925.2.a.bh.1.1 2 15.14 odd 2