Properties

Label 5376.2.c.bl
Level $5376$
Weight $2$
Character orbit 5376.c
Analytic conductor $42.928$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5376,2,Mod(2689,5376)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5376, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5376.2689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5376 = 2^{8} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5376.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.9275761266\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 2688)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} + (\beta_{2} - \beta_1) q^{5} + q^{7} - q^{9} + (\beta_{2} + \beta_1) q^{11} + ( - 2 \beta_{2} + 2 \beta_1) q^{13} + (\beta_{3} - 1) q^{15} + ( - \beta_{3} + 3) q^{17} + ( - 2 \beta_{2} - 2 \beta_1) q^{19}+ \cdots + ( - \beta_{2} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} - 4 q^{9} - 4 q^{15} + 12 q^{17} + 4 q^{23} - 4 q^{25} + 16 q^{31} + 4 q^{33} + 8 q^{39} - 4 q^{41} + 16 q^{47} + 4 q^{49} - 16 q^{55} - 8 q^{57} - 4 q^{63} + 48 q^{65} + 12 q^{71} + 40 q^{79}+ \cdots + 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{3} + 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{3} + 4\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{2} + 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5376\mathbb{Z}\right)^\times\).

\(n\) \(1793\) \(2815\) \(4609\) \(5125\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2689.1
1.61803i
0.618034i
0.618034i
1.61803i
0 1.00000i 0 3.23607i 0 1.00000 0 −1.00000 0
2689.2 0 1.00000i 0 1.23607i 0 1.00000 0 −1.00000 0
2689.3 0 1.00000i 0 1.23607i 0 1.00000 0 −1.00000 0
2689.4 0 1.00000i 0 3.23607i 0 1.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5376.2.c.bl 4
4.b odd 2 1 5376.2.c.bj 4
8.b even 2 1 inner 5376.2.c.bl 4
8.d odd 2 1 5376.2.c.bj 4
16.e even 4 1 2688.2.a.bd yes 2
16.e even 4 1 2688.2.a.bf yes 2
16.f odd 4 1 2688.2.a.z 2
16.f odd 4 1 2688.2.a.bj yes 2
48.i odd 4 1 8064.2.a.bc 2
48.i odd 4 1 8064.2.a.bn 2
48.k even 4 1 8064.2.a.bg 2
48.k even 4 1 8064.2.a.bp 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2688.2.a.z 2 16.f odd 4 1
2688.2.a.bd yes 2 16.e even 4 1
2688.2.a.bf yes 2 16.e even 4 1
2688.2.a.bj yes 2 16.f odd 4 1
5376.2.c.bj 4 4.b odd 2 1
5376.2.c.bj 4 8.d odd 2 1
5376.2.c.bl 4 1.a even 1 1 trivial
5376.2.c.bl 4 8.b even 2 1 inner
8064.2.a.bc 2 48.i odd 4 1
8064.2.a.bg 2 48.k even 4 1
8064.2.a.bn 2 48.i odd 4 1
8064.2.a.bp 2 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5376, [\chi])\):

\( T_{5}^{4} + 12T_{5}^{2} + 16 \) Copy content Toggle raw display
\( T_{11}^{4} + 12T_{11}^{2} + 16 \) Copy content Toggle raw display
\( T_{13}^{4} + 48T_{13}^{2} + 256 \) Copy content Toggle raw display
\( T_{17}^{2} - 6T_{17} + 4 \) Copy content Toggle raw display
\( T_{23}^{2} - 2T_{23} - 4 \) Copy content Toggle raw display
\( T_{31} - 4 \) Copy content Toggle raw display
\( T_{47}^{2} - 8T_{47} - 64 \) Copy content Toggle raw display
\( T_{71}^{2} - 6T_{71} + 4 \) Copy content Toggle raw display
\( T_{79}^{2} - 20T_{79} + 80 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 12T^{2} + 16 \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 12T^{2} + 16 \) Copy content Toggle raw display
$13$ \( T^{4} + 48T^{2} + 256 \) Copy content Toggle raw display
$17$ \( (T^{2} - 6 T + 4)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} + 48T^{2} + 256 \) Copy content Toggle raw display
$23$ \( (T^{2} - 2 T - 4)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 20)^{2} \) Copy content Toggle raw display
$31$ \( (T - 4)^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 168T^{2} + 5776 \) Copy content Toggle raw display
$41$ \( (T^{2} + 2 T - 4)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 20)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 8 T - 64)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 20)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 6 T + 4)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 20 T + 80)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 368 T^{2} + 30976 \) Copy content Toggle raw display
$89$ \( (T^{2} + 2 T - 44)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} - 180)^{2} \) Copy content Toggle raw display
show more
show less