Properties

Label 5376.2.c.bm
Level $5376$
Weight $2$
Character orbit 5376.c
Analytic conductor $42.928$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5376,2,Mod(2689,5376)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5376, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5376.2689");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5376 = 2^{8} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5376.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.9275761266\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 2688)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + \beta_{2} q^{5} + q^{7} - q^{9} + ( - \beta_{2} - 2 \beta_1) q^{11} - \beta_{3} q^{15} + ( - \beta_{3} + 2) q^{17} + \beta_1 q^{21} - \beta_{3} q^{23} - 3 q^{25} - \beta_1 q^{27}+ \cdots + (\beta_{2} + 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{7} - 4 q^{9} + 8 q^{17} - 12 q^{25} + 8 q^{33} - 8 q^{41} + 4 q^{49} + 32 q^{55} - 4 q^{63} + 16 q^{71} - 8 q^{73} + 16 q^{79} + 4 q^{81} + 8 q^{87} - 56 q^{89} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{8}^{2} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -2\zeta_{8}^{3} + 2\zeta_{8} \) Copy content Toggle raw display
\(\zeta_{8}\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\zeta_{8}^{2}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{8}^{3}\)\(=\) \( ( -\beta_{3} + \beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5376\mathbb{Z}\right)^\times\).

\(n\) \(1793\) \(2815\) \(4609\) \(5125\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2689.1
0.707107 0.707107i
−0.707107 + 0.707107i
−0.707107 0.707107i
0.707107 + 0.707107i
0 1.00000i 0 2.82843i 0 1.00000 0 −1.00000 0
2689.2 0 1.00000i 0 2.82843i 0 1.00000 0 −1.00000 0
2689.3 0 1.00000i 0 2.82843i 0 1.00000 0 −1.00000 0
2689.4 0 1.00000i 0 2.82843i 0 1.00000 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5376.2.c.bm 4
4.b odd 2 1 5376.2.c.bg 4
8.b even 2 1 inner 5376.2.c.bm 4
8.d odd 2 1 5376.2.c.bg 4
16.e even 4 1 2688.2.a.ba 2
16.e even 4 1 2688.2.a.bg yes 2
16.f odd 4 1 2688.2.a.bb yes 2
16.f odd 4 1 2688.2.a.bh yes 2
48.i odd 4 1 8064.2.a.bi 2
48.i odd 4 1 8064.2.a.bj 2
48.k even 4 1 8064.2.a.bk 2
48.k even 4 1 8064.2.a.bl 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2688.2.a.ba 2 16.e even 4 1
2688.2.a.bb yes 2 16.f odd 4 1
2688.2.a.bg yes 2 16.e even 4 1
2688.2.a.bh yes 2 16.f odd 4 1
5376.2.c.bg 4 4.b odd 2 1
5376.2.c.bg 4 8.d odd 2 1
5376.2.c.bm 4 1.a even 1 1 trivial
5376.2.c.bm 4 8.b even 2 1 inner
8064.2.a.bi 2 48.i odd 4 1
8064.2.a.bj 2 48.i odd 4 1
8064.2.a.bk 2 48.k even 4 1
8064.2.a.bl 2 48.k even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(5376, [\chi])\):

\( T_{5}^{2} + 8 \) Copy content Toggle raw display
\( T_{11}^{4} + 24T_{11}^{2} + 16 \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17}^{2} - 4T_{17} - 4 \) Copy content Toggle raw display
\( T_{23}^{2} - 8 \) Copy content Toggle raw display
\( T_{31}^{2} - 32 \) Copy content Toggle raw display
\( T_{47} \) Copy content Toggle raw display
\( T_{71}^{2} - 8T_{71} - 56 \) Copy content Toggle raw display
\( T_{79}^{2} - 8T_{79} - 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 8)^{2} \) Copy content Toggle raw display
$7$ \( (T - 1)^{4} \) Copy content Toggle raw display
$11$ \( T^{4} + 24T^{2} + 16 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 4 T - 4)^{2} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} - 8)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 32)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 136T^{2} + 16 \) Copy content Toggle raw display
$41$ \( (T^{2} + 4 T - 68)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + 136T^{2} + 16 \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} + 264 T^{2} + 15376 \) Copy content Toggle raw display
$59$ \( (T^{2} + 16)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 96T^{2} + 256 \) Copy content Toggle raw display
$67$ \( T^{4} + 264 T^{2} + 15376 \) Copy content Toggle raw display
$71$ \( (T^{2} - 8 T - 56)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 4 T - 28)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 8 T - 16)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 192T^{2} + 1024 \) Copy content Toggle raw display
$89$ \( (T^{2} + 28 T + 188)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 4 T - 28)^{2} \) Copy content Toggle raw display
show more
show less