Properties

Label 538.2.b.b.537.12
Level $538$
Weight $2$
Character 538.537
Analytic conductor $4.296$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,2,Mod(537,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.537");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 538.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.29595162874\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 40 x^{16} + 656 x^{14} + 5672 x^{12} + 27720 x^{10} + 76589 x^{8} + 114310 x^{6} + 83081 x^{4} + \cdots + 784 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 537.12
Root \(0.919863i\) of defining polynomial
Character \(\chi\) \(=\) 538.537
Dual form 538.2.b.b.537.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -0.919863i q^{3} -1.00000 q^{4} -3.72117 q^{5} +0.919863 q^{6} +1.30781i q^{7} -1.00000i q^{8} +2.15385 q^{9} -3.72117i q^{10} +1.03413 q^{11} +0.919863i q^{12} +1.66196 q^{13} -1.30781 q^{14} +3.42297i q^{15} +1.00000 q^{16} -6.82187i q^{17} +2.15385i q^{18} -6.54429i q^{19} +3.72117 q^{20} +1.20300 q^{21} +1.03413i q^{22} +3.49794 q^{23} -0.919863 q^{24} +8.84710 q^{25} +1.66196i q^{26} -4.74084i q^{27} -1.30781i q^{28} +0.382780i q^{29} -3.42297 q^{30} -2.21107i q^{31} +1.00000i q^{32} -0.951260i q^{33} +6.82187 q^{34} -4.86656i q^{35} -2.15385 q^{36} +6.26054 q^{37} +6.54429 q^{38} -1.52878i q^{39} +3.72117i q^{40} -2.06152 q^{41} +1.20300i q^{42} -0.324584 q^{43} -1.03413 q^{44} -8.01485 q^{45} +3.49794i q^{46} -1.93107 q^{47} -0.919863i q^{48} +5.28965 q^{49} +8.84710i q^{50} -6.27518 q^{51} -1.66196 q^{52} -7.81065 q^{53} +4.74084 q^{54} -3.84818 q^{55} +1.30781 q^{56} -6.01985 q^{57} -0.382780 q^{58} -0.0368237i q^{59} -3.42297i q^{60} -13.6182 q^{61} +2.21107 q^{62} +2.81682i q^{63} -1.00000 q^{64} -6.18444 q^{65} +0.951260 q^{66} +9.44008 q^{67} +6.82187i q^{68} -3.21763i q^{69} +4.86656 q^{70} +5.82099i q^{71} -2.15385i q^{72} +3.62943 q^{73} +6.26054i q^{74} -8.13812i q^{75} +6.54429i q^{76} +1.35244i q^{77} +1.52878 q^{78} +7.49443 q^{79} -3.72117 q^{80} +2.10064 q^{81} -2.06152i q^{82} +4.15931i q^{83} -1.20300 q^{84} +25.3853i q^{85} -0.324584i q^{86} +0.352105 q^{87} -1.03413i q^{88} -9.17684 q^{89} -8.01485i q^{90} +2.17352i q^{91} -3.49794 q^{92} -2.03388 q^{93} -1.93107i q^{94} +24.3524i q^{95} +0.919863 q^{96} +13.3281 q^{97} +5.28965i q^{98} +2.22737 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 18 q^{4} - 4 q^{5} - 4 q^{6} - 26 q^{9} - 2 q^{11} + 10 q^{13} - 24 q^{14} + 18 q^{16} + 4 q^{20} - 6 q^{21} - 20 q^{23} + 4 q^{24} + 30 q^{25} + 26 q^{36} - 10 q^{37} + 14 q^{38} - 12 q^{41} - 22 q^{43}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0.919863i 0.531083i −0.964099 0.265542i \(-0.914449\pi\)
0.964099 0.265542i \(-0.0855507\pi\)
\(4\) −1.00000 −0.500000
\(5\) −3.72117 −1.66416 −0.832079 0.554657i \(-0.812849\pi\)
−0.832079 + 0.554657i \(0.812849\pi\)
\(6\) 0.919863 0.375532
\(7\) 1.30781i 0.494304i 0.968977 + 0.247152i \(0.0794947\pi\)
−0.968977 + 0.247152i \(0.920505\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 2.15385 0.717951
\(10\) 3.72117i 1.17674i
\(11\) 1.03413 0.311803 0.155901 0.987773i \(-0.450172\pi\)
0.155901 + 0.987773i \(0.450172\pi\)
\(12\) 0.919863i 0.265542i
\(13\) 1.66196 0.460945 0.230472 0.973079i \(-0.425973\pi\)
0.230472 + 0.973079i \(0.425973\pi\)
\(14\) −1.30781 −0.349526
\(15\) 3.42297i 0.883806i
\(16\) 1.00000 0.250000
\(17\) 6.82187i 1.65455i −0.561801 0.827273i \(-0.689891\pi\)
0.561801 0.827273i \(-0.310109\pi\)
\(18\) 2.15385i 0.507668i
\(19\) 6.54429i 1.50136i −0.660664 0.750682i \(-0.729725\pi\)
0.660664 0.750682i \(-0.270275\pi\)
\(20\) 3.72117 0.832079
\(21\) 1.20300 0.262516
\(22\) 1.03413i 0.220478i
\(23\) 3.49794 0.729372 0.364686 0.931131i \(-0.381176\pi\)
0.364686 + 0.931131i \(0.381176\pi\)
\(24\) −0.919863 −0.187766
\(25\) 8.84710 1.76942
\(26\) 1.66196i 0.325937i
\(27\) 4.74084i 0.912375i
\(28\) 1.30781i 0.247152i
\(29\) 0.382780i 0.0710805i 0.999368 + 0.0355402i \(0.0113152\pi\)
−0.999368 + 0.0355402i \(0.988685\pi\)
\(30\) −3.42297 −0.624945
\(31\) 2.21107i 0.397119i −0.980089 0.198560i \(-0.936374\pi\)
0.980089 0.198560i \(-0.0636264\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0.951260i 0.165593i
\(34\) 6.82187 1.16994
\(35\) 4.86656i 0.822600i
\(36\) −2.15385 −0.358975
\(37\) 6.26054 1.02923 0.514613 0.857422i \(-0.327935\pi\)
0.514613 + 0.857422i \(0.327935\pi\)
\(38\) 6.54429 1.06162
\(39\) 1.52878i 0.244800i
\(40\) 3.72117i 0.588369i
\(41\) −2.06152 −0.321956 −0.160978 0.986958i \(-0.551465\pi\)
−0.160978 + 0.986958i \(0.551465\pi\)
\(42\) 1.20300i 0.185627i
\(43\) −0.324584 −0.0494986 −0.0247493 0.999694i \(-0.507879\pi\)
−0.0247493 + 0.999694i \(0.507879\pi\)
\(44\) −1.03413 −0.155901
\(45\) −8.01485 −1.19478
\(46\) 3.49794i 0.515744i
\(47\) −1.93107 −0.281676 −0.140838 0.990033i \(-0.544980\pi\)
−0.140838 + 0.990033i \(0.544980\pi\)
\(48\) 0.919863i 0.132771i
\(49\) 5.28965 0.755664
\(50\) 8.84710i 1.25117i
\(51\) −6.27518 −0.878701
\(52\) −1.66196 −0.230472
\(53\) −7.81065 −1.07288 −0.536438 0.843940i \(-0.680230\pi\)
−0.536438 + 0.843940i \(0.680230\pi\)
\(54\) 4.74084 0.645146
\(55\) −3.84818 −0.518889
\(56\) 1.30781 0.174763
\(57\) −6.01985 −0.797349
\(58\) −0.382780 −0.0502615
\(59\) 0.0368237i 0.00479404i −0.999997 0.00239702i \(-0.999237\pi\)
0.999997 0.00239702i \(-0.000762996\pi\)
\(60\) 3.42297i 0.441903i
\(61\) −13.6182 −1.74363 −0.871814 0.489837i \(-0.837056\pi\)
−0.871814 + 0.489837i \(0.837056\pi\)
\(62\) 2.21107 0.280806
\(63\) 2.81682i 0.354886i
\(64\) −1.00000 −0.125000
\(65\) −6.18444 −0.767085
\(66\) 0.951260 0.117092
\(67\) 9.44008 1.15329 0.576645 0.816995i \(-0.304362\pi\)
0.576645 + 0.816995i \(0.304362\pi\)
\(68\) 6.82187i 0.827273i
\(69\) 3.21763i 0.387357i
\(70\) 4.86656 0.581666
\(71\) 5.82099i 0.690825i 0.938451 + 0.345412i \(0.112261\pi\)
−0.938451 + 0.345412i \(0.887739\pi\)
\(72\) 2.15385i 0.253834i
\(73\) 3.62943 0.424793 0.212396 0.977184i \(-0.431873\pi\)
0.212396 + 0.977184i \(0.431873\pi\)
\(74\) 6.26054i 0.727773i
\(75\) 8.13812i 0.939709i
\(76\) 6.54429i 0.750682i
\(77\) 1.35244i 0.154125i
\(78\) 1.52878 0.173100
\(79\) 7.49443 0.843190 0.421595 0.906784i \(-0.361470\pi\)
0.421595 + 0.906784i \(0.361470\pi\)
\(80\) −3.72117 −0.416039
\(81\) 2.10064 0.233404
\(82\) 2.06152i 0.227657i
\(83\) 4.15931i 0.456543i 0.973597 + 0.228272i \(0.0733075\pi\)
−0.973597 + 0.228272i \(0.926693\pi\)
\(84\) −1.20300 −0.131258
\(85\) 25.3853i 2.75342i
\(86\) 0.324584i 0.0350008i
\(87\) 0.352105 0.0377496
\(88\) 1.03413i 0.110239i
\(89\) −9.17684 −0.972743 −0.486371 0.873752i \(-0.661680\pi\)
−0.486371 + 0.873752i \(0.661680\pi\)
\(90\) 8.01485i 0.844839i
\(91\) 2.17352i 0.227847i
\(92\) −3.49794 −0.364686
\(93\) −2.03388 −0.210903
\(94\) 1.93107i 0.199175i
\(95\) 24.3524i 2.49851i
\(96\) 0.919863 0.0938831
\(97\) 13.3281 1.35326 0.676632 0.736321i \(-0.263439\pi\)
0.676632 + 0.736321i \(0.263439\pi\)
\(98\) 5.28965i 0.534335i
\(99\) 2.22737 0.223859
\(100\) −8.84710 −0.884710
\(101\) 18.0226i 1.79332i −0.442723 0.896659i \(-0.645987\pi\)
0.442723 0.896659i \(-0.354013\pi\)
\(102\) 6.27518i 0.621336i
\(103\) 7.79555 0.768118 0.384059 0.923309i \(-0.374526\pi\)
0.384059 + 0.923309i \(0.374526\pi\)
\(104\) 1.66196i 0.162969i
\(105\) −4.47657 −0.436869
\(106\) 7.81065i 0.758638i
\(107\) 11.8777i 1.14826i −0.818765 0.574128i \(-0.805341\pi\)
0.818765 0.574128i \(-0.194659\pi\)
\(108\) 4.74084i 0.456187i
\(109\) 1.71325i 0.164099i −0.996628 0.0820496i \(-0.973853\pi\)
0.996628 0.0820496i \(-0.0261466\pi\)
\(110\) 3.84818i 0.366910i
\(111\) 5.75884i 0.546605i
\(112\) 1.30781i 0.123576i
\(113\) 0.614627i 0.0578192i 0.999582 + 0.0289096i \(0.00920350\pi\)
−0.999582 + 0.0289096i \(0.990796\pi\)
\(114\) 6.01985i 0.563811i
\(115\) −13.0164 −1.21379
\(116\) 0.382780i 0.0355402i
\(117\) 3.57962 0.330936
\(118\) 0.0368237 0.00338990
\(119\) 8.92167 0.817848
\(120\) 3.42297 0.312473
\(121\) −9.93057 −0.902779
\(122\) 13.6182i 1.23293i
\(123\) 1.89632i 0.170985i
\(124\) 2.21107i 0.198560i
\(125\) −14.3157 −1.28044
\(126\) −2.81682 −0.250942
\(127\) −13.3370 −1.18347 −0.591734 0.806133i \(-0.701556\pi\)
−0.591734 + 0.806133i \(0.701556\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0.298573i 0.0262879i
\(130\) 6.18444i 0.542411i
\(131\) −13.0568 −1.14078 −0.570388 0.821376i \(-0.693207\pi\)
−0.570388 + 0.821376i \(0.693207\pi\)
\(132\) 0.951260i 0.0827966i
\(133\) 8.55866 0.742130
\(134\) 9.44008i 0.815499i
\(135\) 17.6415i 1.51834i
\(136\) −6.82187 −0.584970
\(137\) 19.9430i 1.70384i −0.523669 0.851922i \(-0.675437\pi\)
0.523669 0.851922i \(-0.324563\pi\)
\(138\) 3.21763 0.273903
\(139\) 13.5191i 1.14667i 0.819320 + 0.573336i \(0.194351\pi\)
−0.819320 + 0.573336i \(0.805649\pi\)
\(140\) 4.86656i 0.411300i
\(141\) 1.77632i 0.149593i
\(142\) −5.82099 −0.488487
\(143\) 1.71869 0.143724
\(144\) 2.15385 0.179488
\(145\) 1.42439i 0.118289i
\(146\) 3.62943i 0.300374i
\(147\) 4.86575i 0.401320i
\(148\) −6.26054 −0.514613
\(149\) −8.03999 −0.658662 −0.329331 0.944215i \(-0.606823\pi\)
−0.329331 + 0.944215i \(0.606823\pi\)
\(150\) 8.13812 0.664475
\(151\) 16.5679 1.34828 0.674139 0.738604i \(-0.264515\pi\)
0.674139 + 0.738604i \(0.264515\pi\)
\(152\) −6.54429 −0.530812
\(153\) 14.6933i 1.18788i
\(154\) −1.35244 −0.108983
\(155\) 8.22776i 0.660869i
\(156\) 1.52878i 0.122400i
\(157\) 0.364326i 0.0290764i 0.999894 + 0.0145382i \(0.00462782\pi\)
−0.999894 + 0.0145382i \(0.995372\pi\)
\(158\) 7.49443i 0.596225i
\(159\) 7.18473i 0.569786i
\(160\) 3.72117i 0.294184i
\(161\) 4.57463i 0.360531i
\(162\) 2.10064i 0.165042i
\(163\) 4.60521i 0.360708i 0.983602 + 0.180354i \(0.0577243\pi\)
−0.983602 + 0.180354i \(0.942276\pi\)
\(164\) 2.06152 0.160978
\(165\) 3.53980i 0.275573i
\(166\) −4.15931 −0.322825
\(167\) 5.91606i 0.457799i 0.973450 + 0.228899i \(0.0735127\pi\)
−0.973450 + 0.228899i \(0.926487\pi\)
\(168\) 1.20300i 0.0928136i
\(169\) −10.2379 −0.787530
\(170\) −25.3853 −1.94696
\(171\) 14.0954i 1.07791i
\(172\) 0.324584 0.0247493
\(173\) 7.27887 0.553403 0.276701 0.960956i \(-0.410759\pi\)
0.276701 + 0.960956i \(0.410759\pi\)
\(174\) 0.352105i 0.0266930i
\(175\) 11.5703i 0.874631i
\(176\) 1.03413 0.0779507
\(177\) −0.0338728 −0.00254603
\(178\) 9.17684i 0.687833i
\(179\) 9.12777i 0.682241i −0.940020 0.341121i \(-0.889194\pi\)
0.940020 0.341121i \(-0.110806\pi\)
\(180\) 8.01485 0.597392
\(181\) 23.3017i 1.73200i −0.500044 0.866000i \(-0.666683\pi\)
0.500044 0.866000i \(-0.333317\pi\)
\(182\) −2.17352 −0.161112
\(183\) 12.5268i 0.926011i
\(184\) 3.49794i 0.257872i
\(185\) −23.2965 −1.71280
\(186\) 2.03388i 0.149131i
\(187\) 7.05471i 0.515892i
\(188\) 1.93107 0.140838
\(189\) 6.20009 0.450990
\(190\) −24.3524 −1.76671
\(191\) 4.89860 0.354451 0.177225 0.984170i \(-0.443288\pi\)
0.177225 + 0.984170i \(0.443288\pi\)
\(192\) 0.919863i 0.0663854i
\(193\) 13.3856i 0.963518i 0.876304 + 0.481759i \(0.160002\pi\)
−0.876304 + 0.481759i \(0.839998\pi\)
\(194\) 13.3281i 0.956903i
\(195\) 5.68883i 0.407386i
\(196\) −5.28965 −0.377832
\(197\) 6.79324i 0.483998i −0.970276 0.241999i \(-0.922197\pi\)
0.970276 0.241999i \(-0.0778031\pi\)
\(198\) 2.22737i 0.158292i
\(199\) 12.1456 0.860981 0.430490 0.902595i \(-0.358341\pi\)
0.430490 + 0.902595i \(0.358341\pi\)
\(200\) 8.84710i 0.625585i
\(201\) 8.68358i 0.612493i
\(202\) 18.0226 1.26807
\(203\) −0.500602 −0.0351354
\(204\) 6.27518 0.439351
\(205\) 7.67128 0.535785
\(206\) 7.79555i 0.543142i
\(207\) 7.53406 0.523653
\(208\) 1.66196 0.115236
\(209\) 6.76767i 0.468129i
\(210\) 4.47657i 0.308913i
\(211\) −18.0139 −1.24013 −0.620063 0.784552i \(-0.712893\pi\)
−0.620063 + 0.784552i \(0.712893\pi\)
\(212\) 7.81065 0.536438
\(213\) 5.35452 0.366885
\(214\) 11.8777 0.811940
\(215\) 1.20783 0.0823735
\(216\) −4.74084 −0.322573
\(217\) 2.89165 0.196298
\(218\) 1.71325 0.116036
\(219\) 3.33858i 0.225600i
\(220\) 3.84818 0.259444
\(221\) 11.3377i 0.762654i
\(222\) 5.75884 0.386508
\(223\) 22.6418i 1.51620i 0.652136 + 0.758102i \(0.273873\pi\)
−0.652136 + 0.758102i \(0.726127\pi\)
\(224\) −1.30781 −0.0873814
\(225\) 19.0553 1.27036
\(226\) −0.614627 −0.0408844
\(227\) 17.2433i 1.14448i 0.820088 + 0.572238i \(0.193925\pi\)
−0.820088 + 0.572238i \(0.806075\pi\)
\(228\) 6.01985 0.398675
\(229\) 11.2567i 0.743861i −0.928261 0.371931i \(-0.878696\pi\)
0.928261 0.371931i \(-0.121304\pi\)
\(230\) 13.0164i 0.858279i
\(231\) 1.24406 0.0818533
\(232\) 0.382780 0.0251307
\(233\) −13.0664 −0.856008 −0.428004 0.903777i \(-0.640783\pi\)
−0.428004 + 0.903777i \(0.640783\pi\)
\(234\) 3.57962i 0.234007i
\(235\) 7.18585 0.468753
\(236\) 0.0368237i 0.00239702i
\(237\) 6.89385i 0.447804i
\(238\) 8.92167i 0.578306i
\(239\) 28.8237 1.86445 0.932225 0.361880i \(-0.117865\pi\)
0.932225 + 0.361880i \(0.117865\pi\)
\(240\) 3.42297i 0.220951i
\(241\) 13.7305i 0.884457i 0.896902 + 0.442229i \(0.145812\pi\)
−0.896902 + 0.442229i \(0.854188\pi\)
\(242\) 9.93057i 0.638361i
\(243\) 16.1548i 1.03633i
\(244\) 13.6182 0.871814
\(245\) −19.6837 −1.25754
\(246\) −1.89632 −0.120905
\(247\) 10.8764i 0.692046i
\(248\) −2.21107 −0.140403
\(249\) 3.82599 0.242463
\(250\) 14.3157i 0.905405i
\(251\) 25.6111i 1.61656i 0.588800 + 0.808279i \(0.299600\pi\)
−0.588800 + 0.808279i \(0.700400\pi\)
\(252\) 2.81682i 0.177443i
\(253\) 3.61734 0.227420
\(254\) 13.3370i 0.836838i
\(255\) 23.3510 1.46230
\(256\) 1.00000 0.0625000
\(257\) 8.89335i 0.554752i −0.960761 0.277376i \(-0.910535\pi\)
0.960761 0.277376i \(-0.0894648\pi\)
\(258\) −0.298573 −0.0185883
\(259\) 8.18757i 0.508751i
\(260\) 6.18444 0.383542
\(261\) 0.824452i 0.0510323i
\(262\) 13.0568i 0.806650i
\(263\) 18.1107 1.11676 0.558378 0.829587i \(-0.311424\pi\)
0.558378 + 0.829587i \(0.311424\pi\)
\(264\) −0.951260 −0.0585460
\(265\) 29.0648 1.78543
\(266\) 8.55866i 0.524765i
\(267\) 8.44143i 0.516607i
\(268\) −9.44008 −0.576645
\(269\) −8.02478 + 14.3039i −0.489280 + 0.872127i
\(270\) −17.6415 −1.07363
\(271\) 23.3751i 1.41994i 0.704233 + 0.709969i \(0.251291\pi\)
−0.704233 + 0.709969i \(0.748709\pi\)
\(272\) 6.82187i 0.413636i
\(273\) 1.99934 0.121006
\(274\) 19.9430 1.20480
\(275\) 9.14908 0.551710
\(276\) 3.21763i 0.193679i
\(277\) 9.44473i 0.567479i 0.958901 + 0.283739i \(0.0915751\pi\)
−0.958901 + 0.283739i \(0.908425\pi\)
\(278\) −13.5191 −0.810819
\(279\) 4.76231i 0.285112i
\(280\) −4.86656 −0.290833
\(281\) 6.68455i 0.398767i −0.979922 0.199383i \(-0.936106\pi\)
0.979922 0.199383i \(-0.0638939\pi\)
\(282\) −1.77632 −0.105779
\(283\) 30.4554 1.81039 0.905193 0.425000i \(-0.139726\pi\)
0.905193 + 0.425000i \(0.139726\pi\)
\(284\) 5.82099i 0.345412i
\(285\) 22.4009 1.32691
\(286\) 1.71869i 0.101628i
\(287\) 2.69607i 0.159144i
\(288\) 2.15385i 0.126917i
\(289\) −29.5378 −1.73752
\(290\) 1.42439 0.0836431
\(291\) 12.2600i 0.718696i
\(292\) −3.62943 −0.212396
\(293\) −5.74177 −0.335438 −0.167719 0.985835i \(-0.553640\pi\)
−0.167719 + 0.985835i \(0.553640\pi\)
\(294\) 4.86575 0.283776
\(295\) 0.137027i 0.00797803i
\(296\) 6.26054i 0.363887i
\(297\) 4.90266i 0.284481i
\(298\) 8.03999i 0.465744i
\(299\) 5.81345 0.336200
\(300\) 8.13812i 0.469855i
\(301\) 0.424493i 0.0244674i
\(302\) 16.5679i 0.953377i
\(303\) −16.5783 −0.952401
\(304\) 6.54429i 0.375341i
\(305\) 50.6755 2.90167
\(306\) 14.6933 0.839959
\(307\) 9.25181 0.528029 0.264014 0.964519i \(-0.414953\pi\)
0.264014 + 0.964519i \(0.414953\pi\)
\(308\) 1.35244i 0.0770627i
\(309\) 7.17084i 0.407935i
\(310\) −8.22776 −0.467305
\(311\) 23.2300i 1.31725i 0.752471 + 0.658626i \(0.228862\pi\)
−0.752471 + 0.658626i \(0.771138\pi\)
\(312\) −1.52878 −0.0865499
\(313\) 5.67790 0.320934 0.160467 0.987041i \(-0.448700\pi\)
0.160467 + 0.987041i \(0.448700\pi\)
\(314\) −0.364326 −0.0205601
\(315\) 10.4819i 0.590586i
\(316\) −7.49443 −0.421595
\(317\) 16.6550i 0.935441i 0.883877 + 0.467720i \(0.154925\pi\)
−0.883877 + 0.467720i \(0.845075\pi\)
\(318\) −7.18473 −0.402900
\(319\) 0.395845i 0.0221631i
\(320\) 3.72117 0.208020
\(321\) −10.9258 −0.609820
\(322\) −4.57463 −0.254934
\(323\) −44.6443 −2.48408
\(324\) −2.10064 −0.116702
\(325\) 14.7035 0.815605
\(326\) −4.60521 −0.255059
\(327\) −1.57595 −0.0871503
\(328\) 2.06152i 0.113829i
\(329\) 2.52547i 0.139234i
\(330\) −3.53980 −0.194860
\(331\) 3.47181 0.190828 0.0954140 0.995438i \(-0.469583\pi\)
0.0954140 + 0.995438i \(0.469583\pi\)
\(332\) 4.15931i 0.228272i
\(333\) 13.4843 0.738934
\(334\) −5.91606 −0.323713
\(335\) −35.1282 −1.91926
\(336\) 1.20300 0.0656291
\(337\) 5.29794i 0.288597i 0.989534 + 0.144299i \(0.0460926\pi\)
−0.989534 + 0.144299i \(0.953907\pi\)
\(338\) 10.2379i 0.556868i
\(339\) 0.565373 0.0307068
\(340\) 25.3853i 1.37671i
\(341\) 2.28654i 0.123823i
\(342\) 14.0954 0.762194
\(343\) 16.0725i 0.867831i
\(344\) 0.324584i 0.0175004i
\(345\) 11.9733i 0.644623i
\(346\) 7.27887i 0.391315i
\(347\) −11.7899 −0.632915 −0.316457 0.948607i \(-0.602493\pi\)
−0.316457 + 0.948607i \(0.602493\pi\)
\(348\) −0.352105 −0.0188748
\(349\) −30.0098 −1.60639 −0.803195 0.595716i \(-0.796868\pi\)
−0.803195 + 0.595716i \(0.796868\pi\)
\(350\) −11.5703 −0.618458
\(351\) 7.87908i 0.420554i
\(352\) 1.03413i 0.0551195i
\(353\) 21.4599 1.14220 0.571098 0.820882i \(-0.306518\pi\)
0.571098 + 0.820882i \(0.306518\pi\)
\(354\) 0.0338728i 0.00180032i
\(355\) 21.6609i 1.14964i
\(356\) 9.17684 0.486371
\(357\) 8.20671i 0.434345i
\(358\) 9.12777 0.482417
\(359\) 1.69504i 0.0894607i −0.998999 0.0447303i \(-0.985757\pi\)
0.998999 0.0447303i \(-0.0142429\pi\)
\(360\) 8.01485i 0.422420i
\(361\) −23.8278 −1.25409
\(362\) 23.3017 1.22471
\(363\) 9.13476i 0.479451i
\(364\) 2.17352i 0.113923i
\(365\) −13.5057 −0.706922
\(366\) −12.5268 −0.654789
\(367\) 13.5954i 0.709674i 0.934928 + 0.354837i \(0.115464\pi\)
−0.934928 + 0.354837i \(0.884536\pi\)
\(368\) 3.49794 0.182343
\(369\) −4.44022 −0.231148
\(370\) 23.2965i 1.21113i
\(371\) 10.2148i 0.530327i
\(372\) 2.03388 0.105452
\(373\) 30.6750i 1.58829i −0.607726 0.794147i \(-0.707918\pi\)
0.607726 0.794147i \(-0.292082\pi\)
\(374\) 7.05471 0.364791
\(375\) 13.1685i 0.680018i
\(376\) 1.93107i 0.0995875i
\(377\) 0.636165i 0.0327642i
\(378\) 6.20009i 0.318898i
\(379\) 35.4530i 1.82110i −0.413401 0.910549i \(-0.635659\pi\)
0.413401 0.910549i \(-0.364341\pi\)
\(380\) 24.3524i 1.24925i
\(381\) 12.2682i 0.628520i
\(382\) 4.89860i 0.250634i
\(383\) 6.04327i 0.308797i −0.988009 0.154398i \(-0.950656\pi\)
0.988009 0.154398i \(-0.0493439\pi\)
\(384\) −0.919863 −0.0469416
\(385\) 5.03267i 0.256489i
\(386\) −13.3856 −0.681310
\(387\) −0.699106 −0.0355376
\(388\) −13.3281 −0.676632
\(389\) 14.7955 0.750160 0.375080 0.926992i \(-0.377615\pi\)
0.375080 + 0.926992i \(0.377615\pi\)
\(390\) −5.68883 −0.288065
\(391\) 23.8625i 1.20678i
\(392\) 5.28965i 0.267167i
\(393\) 12.0104i 0.605846i
\(394\) 6.79324 0.342239
\(395\) −27.8881 −1.40320
\(396\) −2.22737 −0.111930
\(397\) 28.2174i 1.41619i 0.706116 + 0.708096i \(0.250446\pi\)
−0.706116 + 0.708096i \(0.749554\pi\)
\(398\) 12.1456i 0.608805i
\(399\) 7.87280i 0.394133i
\(400\) 8.84710 0.442355
\(401\) 35.7100i 1.78327i 0.452754 + 0.891636i \(0.350442\pi\)
−0.452754 + 0.891636i \(0.649558\pi\)
\(402\) 8.68358 0.433098
\(403\) 3.67471i 0.183050i
\(404\) 18.0226i 0.896659i
\(405\) −7.81682 −0.388421
\(406\) 0.500602i 0.0248445i
\(407\) 6.47423 0.320916
\(408\) 6.27518i 0.310668i
\(409\) 22.8670i 1.13070i −0.824851 0.565351i \(-0.808741\pi\)
0.824851 0.565351i \(-0.191259\pi\)
\(410\) 7.67128i 0.378857i
\(411\) −18.3448 −0.904883
\(412\) −7.79555 −0.384059
\(413\) 0.0481582 0.00236971
\(414\) 7.53406i 0.370279i
\(415\) 15.4775i 0.759760i
\(416\) 1.66196i 0.0814843i
\(417\) 12.4357 0.608978
\(418\) 6.76767 0.331018
\(419\) 32.9463 1.60953 0.804766 0.593592i \(-0.202291\pi\)
0.804766 + 0.593592i \(0.202291\pi\)
\(420\) 4.47657 0.218434
\(421\) −9.14584 −0.445741 −0.222870 0.974848i \(-0.571543\pi\)
−0.222870 + 0.974848i \(0.571543\pi\)
\(422\) 18.0139i 0.876901i
\(423\) −4.15925 −0.202230
\(424\) 7.81065i 0.379319i
\(425\) 60.3537i 2.92759i
\(426\) 5.35452i 0.259427i
\(427\) 17.8099i 0.861882i
\(428\) 11.8777i 0.574128i
\(429\) 1.58096i 0.0763293i
\(430\) 1.20783i 0.0582468i
\(431\) 34.7872i 1.67564i 0.545948 + 0.837819i \(0.316170\pi\)
−0.545948 + 0.837819i \(0.683830\pi\)
\(432\) 4.74084i 0.228094i
\(433\) −14.6378 −0.703450 −0.351725 0.936103i \(-0.614405\pi\)
−0.351725 + 0.936103i \(0.614405\pi\)
\(434\) 2.89165i 0.138803i
\(435\) −1.31024 −0.0628214
\(436\) 1.71325i 0.0820496i
\(437\) 22.8916i 1.09505i
\(438\) 3.33858 0.159523
\(439\) −29.5184 −1.40884 −0.704419 0.709784i \(-0.748792\pi\)
−0.704419 + 0.709784i \(0.748792\pi\)
\(440\) 3.84818i 0.183455i
\(441\) 11.3931 0.542529
\(442\) 11.3377 0.539278
\(443\) 29.4519i 1.39930i 0.714484 + 0.699652i \(0.246662\pi\)
−0.714484 + 0.699652i \(0.753338\pi\)
\(444\) 5.75884i 0.273302i
\(445\) 34.1486 1.61880
\(446\) −22.6418 −1.07212
\(447\) 7.39569i 0.349804i
\(448\) 1.30781i 0.0617880i
\(449\) 15.5814 0.735330 0.367665 0.929958i \(-0.380157\pi\)
0.367665 + 0.929958i \(0.380157\pi\)
\(450\) 19.0553i 0.898278i
\(451\) −2.13189 −0.100387
\(452\) 0.614627i 0.0289096i
\(453\) 15.2402i 0.716048i
\(454\) −17.2433 −0.809267
\(455\) 8.08804i 0.379173i
\(456\) 6.01985i 0.281906i
\(457\) 13.0025 0.608232 0.304116 0.952635i \(-0.401639\pi\)
0.304116 + 0.952635i \(0.401639\pi\)
\(458\) 11.2567 0.525989
\(459\) −32.3414 −1.50957
\(460\) 13.0164 0.606895
\(461\) 9.56016i 0.445261i 0.974903 + 0.222631i \(0.0714644\pi\)
−0.974903 + 0.222631i \(0.928536\pi\)
\(462\) 1.24406i 0.0578791i
\(463\) 34.5791i 1.60703i −0.595287 0.803513i \(-0.702962\pi\)
0.595287 0.803513i \(-0.297038\pi\)
\(464\) 0.382780i 0.0177701i
\(465\) 7.56841 0.350977
\(466\) 13.0664i 0.605289i
\(467\) 26.8002i 1.24017i 0.784536 + 0.620083i \(0.212901\pi\)
−0.784536 + 0.620083i \(0.787099\pi\)
\(468\) −3.57962 −0.165468
\(469\) 12.3458i 0.570076i
\(470\) 7.18585i 0.331459i
\(471\) 0.335130 0.0154420
\(472\) −0.0368237 −0.00169495
\(473\) −0.335663 −0.0154338
\(474\) 6.89385 0.316645
\(475\) 57.8980i 2.65654i
\(476\) −8.92167 −0.408924
\(477\) −16.8230 −0.770272
\(478\) 28.8237i 1.31836i
\(479\) 14.2506i 0.651128i −0.945520 0.325564i \(-0.894446\pi\)
0.945520 0.325564i \(-0.105554\pi\)
\(480\) −3.42297 −0.156236
\(481\) 10.4048 0.474417
\(482\) −13.7305 −0.625406
\(483\) 4.20803 0.191472
\(484\) 9.93057 0.451390
\(485\) −49.5962 −2.25205
\(486\) 16.1548 0.732797
\(487\) 14.2840 0.647271 0.323636 0.946182i \(-0.395095\pi\)
0.323636 + 0.946182i \(0.395095\pi\)
\(488\) 13.6182i 0.616465i
\(489\) 4.23616 0.191566
\(490\) 19.6837i 0.889217i
\(491\) −38.9011 −1.75558 −0.877791 0.479043i \(-0.840984\pi\)
−0.877791 + 0.479043i \(0.840984\pi\)
\(492\) 1.89632i 0.0854927i
\(493\) 2.61127 0.117606
\(494\) 10.8764 0.489351
\(495\) −8.28842 −0.372537
\(496\) 2.21107i 0.0992799i
\(497\) −7.61272 −0.341477
\(498\) 3.82599i 0.171447i
\(499\) 2.48954i 0.111447i −0.998446 0.0557235i \(-0.982253\pi\)
0.998446 0.0557235i \(-0.0177465\pi\)
\(500\) 14.3157 0.640218
\(501\) 5.44197 0.243129
\(502\) −25.6111 −1.14308
\(503\) 3.50005i 0.156059i −0.996951 0.0780297i \(-0.975137\pi\)
0.996951 0.0780297i \(-0.0248629\pi\)
\(504\) 2.81682 0.125471
\(505\) 67.0652i 2.98436i
\(506\) 3.61734i 0.160810i
\(507\) 9.41745i 0.418244i
\(508\) 13.3370 0.591734
\(509\) 31.3478i 1.38947i 0.719268 + 0.694733i \(0.244477\pi\)
−0.719268 + 0.694733i \(0.755523\pi\)
\(510\) 23.3510i 1.03400i
\(511\) 4.74659i 0.209977i
\(512\) 1.00000i 0.0441942i
\(513\) −31.0254 −1.36981
\(514\) 8.89335 0.392269
\(515\) −29.0086 −1.27827
\(516\) 0.298573i 0.0131439i
\(517\) −1.99699 −0.0878274
\(518\) −8.18757 −0.359741
\(519\) 6.69557i 0.293903i
\(520\) 6.18444i 0.271205i
\(521\) 5.07967i 0.222544i −0.993790 0.111272i \(-0.964507\pi\)
0.993790 0.111272i \(-0.0354925\pi\)
\(522\) −0.824452 −0.0360853
\(523\) 33.5497i 1.46702i −0.679676 0.733512i \(-0.737880\pi\)
0.679676 0.733512i \(-0.262120\pi\)
\(524\) 13.0568 0.570388
\(525\) 10.6431 0.464502
\(526\) 18.1107i 0.789665i
\(527\) −15.0836 −0.657052
\(528\) 0.951260i 0.0413983i
\(529\) −10.7644 −0.468017
\(530\) 29.0648i 1.26249i
\(531\) 0.0793128i 0.00344188i
\(532\) −8.55866 −0.371065
\(533\) −3.42617 −0.148404
\(534\) −8.44143 −0.365297
\(535\) 44.1988i 1.91088i
\(536\) 9.44008i 0.407750i
\(537\) −8.39629 −0.362327
\(538\) −14.3039 8.02478i −0.616687 0.345973i
\(539\) 5.47020 0.235618
\(540\) 17.6415i 0.759168i
\(541\) 27.8590i 1.19775i 0.800842 + 0.598876i \(0.204386\pi\)
−0.800842 + 0.598876i \(0.795614\pi\)
\(542\) −23.3751 −1.00405
\(543\) −21.4343 −0.919836
\(544\) 6.82187 0.292485
\(545\) 6.37528i 0.273087i
\(546\) 1.99934i 0.0855639i
\(547\) 35.4227 1.51457 0.757283 0.653087i \(-0.226526\pi\)
0.757283 + 0.653087i \(0.226526\pi\)
\(548\) 19.9430i 0.851922i
\(549\) −29.3315 −1.25184
\(550\) 9.14908i 0.390118i
\(551\) 2.50503 0.106718
\(552\) −3.21763 −0.136951
\(553\) 9.80126i 0.416792i
\(554\) −9.44473 −0.401268
\(555\) 21.4296i 0.909637i
\(556\) 13.5191i 0.573336i
\(557\) 10.7912i 0.457238i 0.973516 + 0.228619i \(0.0734210\pi\)
−0.973516 + 0.228619i \(0.926579\pi\)
\(558\) 4.76231 0.201605
\(559\) −0.539446 −0.0228161
\(560\) 4.86656i 0.205650i
\(561\) −6.48937 −0.273981
\(562\) 6.68455 0.281971
\(563\) 30.5042 1.28560 0.642799 0.766035i \(-0.277773\pi\)
0.642799 + 0.766035i \(0.277773\pi\)
\(564\) 1.77632i 0.0747967i
\(565\) 2.28713i 0.0962203i
\(566\) 30.4554i 1.28014i
\(567\) 2.74722i 0.115372i
\(568\) 5.82099 0.244243
\(569\) 14.7621i 0.618859i 0.950922 + 0.309430i \(0.100138\pi\)
−0.950922 + 0.309430i \(0.899862\pi\)
\(570\) 22.4009i 0.938270i
\(571\) 15.5741i 0.651755i −0.945412 0.325878i \(-0.894340\pi\)
0.945412 0.325878i \(-0.105660\pi\)
\(572\) −1.71869 −0.0718619
\(573\) 4.50604i 0.188243i
\(574\) 2.69607 0.112532
\(575\) 30.9467 1.29057
\(576\) −2.15385 −0.0897438
\(577\) 3.80455i 0.158386i 0.996859 + 0.0791928i \(0.0252343\pi\)
−0.996859 + 0.0791928i \(0.974766\pi\)
\(578\) 29.5378i 1.22861i
\(579\) 12.3129 0.511708
\(580\) 1.42439i 0.0591446i
\(581\) −5.43957 −0.225671
\(582\) 12.2600 0.508195
\(583\) −8.07725 −0.334526
\(584\) 3.62943i 0.150187i
\(585\) −13.3204 −0.550729
\(586\) 5.74177i 0.237190i
\(587\) 34.8005 1.43637 0.718185 0.695853i \(-0.244973\pi\)
0.718185 + 0.695853i \(0.244973\pi\)
\(588\) 4.86575i 0.200660i
\(589\) −14.4699 −0.596221
\(590\) −0.137027 −0.00564132
\(591\) −6.24885 −0.257043
\(592\) 6.26054 0.257307
\(593\) 4.97852 0.204443 0.102222 0.994762i \(-0.467405\pi\)
0.102222 + 0.994762i \(0.467405\pi\)
\(594\) 4.90266 0.201158
\(595\) −33.1990 −1.36103
\(596\) 8.03999 0.329331
\(597\) 11.1723i 0.457252i
\(598\) 5.81345i 0.237729i
\(599\) −35.6144 −1.45516 −0.727582 0.686020i \(-0.759356\pi\)
−0.727582 + 0.686020i \(0.759356\pi\)
\(600\) −8.13812 −0.332237
\(601\) 45.9134i 1.87285i −0.350872 0.936423i \(-0.614115\pi\)
0.350872 0.936423i \(-0.385885\pi\)
\(602\) 0.424493 0.0173010
\(603\) 20.3325 0.828005
\(604\) −16.5679 −0.674139
\(605\) 36.9533 1.50237
\(606\) 16.5783i 0.673449i
\(607\) 22.9870i 0.933015i −0.884517 0.466508i \(-0.845512\pi\)
0.884517 0.466508i \(-0.154488\pi\)
\(608\) 6.54429 0.265406
\(609\) 0.460485i 0.0186598i
\(610\) 50.6755i 2.05179i
\(611\) −3.20937 −0.129837
\(612\) 14.6933i 0.593941i
\(613\) 33.0223i 1.33376i 0.745166 + 0.666880i \(0.232370\pi\)
−0.745166 + 0.666880i \(0.767630\pi\)
\(614\) 9.25181i 0.373373i
\(615\) 7.05652i 0.284547i
\(616\) 1.35244 0.0544915
\(617\) 20.7006 0.833376 0.416688 0.909050i \(-0.363191\pi\)
0.416688 + 0.909050i \(0.363191\pi\)
\(618\) 7.17084 0.288453
\(619\) 37.5867 1.51074 0.755369 0.655300i \(-0.227458\pi\)
0.755369 + 0.655300i \(0.227458\pi\)
\(620\) 8.22776i 0.330435i
\(621\) 16.5832i 0.665460i
\(622\) −23.2300 −0.931437
\(623\) 12.0015i 0.480831i
\(624\) 1.52878i 0.0612000i
\(625\) 9.03570 0.361428
\(626\) 5.67790i 0.226934i
\(627\) −6.22533 −0.248616
\(628\) 0.364326i 0.0145382i
\(629\) 42.7086i 1.70290i
\(630\) 10.4819 0.417607
\(631\) −26.4150 −1.05156 −0.525782 0.850619i \(-0.676227\pi\)
−0.525782 + 0.850619i \(0.676227\pi\)
\(632\) 7.49443i 0.298113i
\(633\) 16.5703i 0.658610i
\(634\) −16.6550 −0.661456
\(635\) 49.6293 1.96948
\(636\) 7.18473i 0.284893i
\(637\) 8.79118 0.348319
\(638\) −0.395845 −0.0156717
\(639\) 12.5376i 0.495978i
\(640\) 3.72117i 0.147092i
\(641\) −26.4787 −1.04585 −0.522924 0.852380i \(-0.675159\pi\)
−0.522924 + 0.852380i \(0.675159\pi\)
\(642\) 10.9258i 0.431208i
\(643\) −33.2723 −1.31213 −0.656065 0.754704i \(-0.727780\pi\)
−0.656065 + 0.754704i \(0.727780\pi\)
\(644\) 4.57463i 0.180266i
\(645\) 1.11104i 0.0437472i
\(646\) 44.6443i 1.75651i
\(647\) 25.4487i 1.00049i −0.865884 0.500245i \(-0.833243\pi\)
0.865884 0.500245i \(-0.166757\pi\)
\(648\) 2.10064i 0.0825208i
\(649\) 0.0380806i 0.00149479i
\(650\) 14.7035i 0.576720i
\(651\) 2.65992i 0.104250i
\(652\) 4.60521i 0.180354i
\(653\) 0.496062 0.0194124 0.00970621 0.999953i \(-0.496910\pi\)
0.00970621 + 0.999953i \(0.496910\pi\)
\(654\) 1.57595i 0.0616246i
\(655\) 48.5864 1.89843
\(656\) −2.06152 −0.0804890
\(657\) 7.81726 0.304980
\(658\) 2.52547 0.0984530
\(659\) 21.8450 0.850961 0.425480 0.904968i \(-0.360105\pi\)
0.425480 + 0.904968i \(0.360105\pi\)
\(660\) 3.53980i 0.137787i
\(661\) 22.4503i 0.873215i −0.899652 0.436608i \(-0.856180\pi\)
0.899652 0.436608i \(-0.143820\pi\)
\(662\) 3.47181i 0.134936i
\(663\) −10.4291 −0.405033
\(664\) 4.15931 0.161412
\(665\) −31.8482 −1.23502
\(666\) 13.4843i 0.522505i
\(667\) 1.33894i 0.0518441i
\(668\) 5.91606i 0.228899i
\(669\) 20.8273 0.805231
\(670\) 35.1282i 1.35712i
\(671\) −14.0830 −0.543668
\(672\) 1.20300i 0.0464068i
\(673\) 2.89485i 0.111588i 0.998442 + 0.0557941i \(0.0177691\pi\)
−0.998442 + 0.0557941i \(0.982231\pi\)
\(674\) −5.29794 −0.204069
\(675\) 41.9427i 1.61437i
\(676\) 10.2379 0.393765
\(677\) 17.5748i 0.675454i 0.941244 + 0.337727i \(0.109658\pi\)
−0.941244 + 0.337727i \(0.890342\pi\)
\(678\) 0.565373i 0.0217130i
\(679\) 17.4306i 0.668924i
\(680\) 25.3853 0.973482
\(681\) 15.8614 0.607812
\(682\) 2.28654 0.0875560
\(683\) 6.54991i 0.250625i 0.992117 + 0.125313i \(0.0399934\pi\)
−0.992117 + 0.125313i \(0.960007\pi\)
\(684\) 14.0954i 0.538953i
\(685\) 74.2112i 2.83546i
\(686\) −16.0725 −0.613649
\(687\) −10.3546 −0.395052
\(688\) −0.324584 −0.0123747
\(689\) −12.9810 −0.494537
\(690\) −11.9733 −0.455817
\(691\) 50.9782i 1.93930i 0.244494 + 0.969651i \(0.421378\pi\)
−0.244494 + 0.969651i \(0.578622\pi\)
\(692\) −7.27887 −0.276701
\(693\) 2.91296i 0.110654i
\(694\) 11.7899i 0.447538i
\(695\) 50.3067i 1.90824i
\(696\) 0.352105i 0.0133465i
\(697\) 14.0634i 0.532691i
\(698\) 30.0098i 1.13589i
\(699\) 12.0193i 0.454611i
\(700\) 11.5703i 0.437316i
\(701\) 26.2569i 0.991709i −0.868406 0.495855i \(-0.834855\pi\)
0.868406 0.495855i \(-0.165145\pi\)
\(702\) 7.87908 0.297377
\(703\) 40.9708i 1.54524i
\(704\) −1.03413 −0.0389753
\(705\) 6.61000i 0.248947i
\(706\) 21.4599i 0.807655i
\(707\) 23.5701 0.886444
\(708\) 0.0338728 0.00127302
\(709\) 44.8738i 1.68527i 0.538484 + 0.842636i \(0.318997\pi\)
−0.538484 + 0.842636i \(0.681003\pi\)
\(710\) 21.6609 0.812919
\(711\) 16.1419 0.605369
\(712\) 9.17684i 0.343917i
\(713\) 7.73419i 0.289648i
\(714\) 8.20671 0.307129
\(715\) −6.39553 −0.239179
\(716\) 9.12777i 0.341121i
\(717\) 26.5138i 0.990178i
\(718\) 1.69504 0.0632583
\(719\) 24.3323i 0.907442i −0.891144 0.453721i \(-0.850096\pi\)
0.891144 0.453721i \(-0.149904\pi\)
\(720\) −8.01485 −0.298696
\(721\) 10.1951i 0.379684i
\(722\) 23.8278i 0.886779i
\(723\) 12.6302 0.469720
\(724\) 23.3017i 0.866000i
\(725\) 3.38650i 0.125771i
\(726\) −9.13476 −0.339023
\(727\) 11.7219 0.434740 0.217370 0.976089i \(-0.430252\pi\)
0.217370 + 0.976089i \(0.430252\pi\)
\(728\) 2.17352 0.0805560
\(729\) −8.55830 −0.316974
\(730\) 13.5057i 0.499869i
\(731\) 2.21427i 0.0818977i
\(732\) 12.5268i 0.463006i
\(733\) 31.3743i 1.15884i −0.815031 0.579418i \(-0.803280\pi\)
0.815031 0.579418i \(-0.196720\pi\)
\(734\) −13.5954 −0.501815
\(735\) 18.1063i 0.667860i
\(736\) 3.49794i 0.128936i
\(737\) 9.76230 0.359599
\(738\) 4.44022i 0.163447i
\(739\) 26.8045i 0.986021i 0.870023 + 0.493011i \(0.164104\pi\)
−0.870023 + 0.493011i \(0.835896\pi\)
\(740\) 23.2965 0.856398
\(741\) −10.0048 −0.367534
\(742\) 10.2148 0.374998
\(743\) 21.9137 0.803934 0.401967 0.915654i \(-0.368327\pi\)
0.401967 + 0.915654i \(0.368327\pi\)
\(744\) 2.03388i 0.0745656i
\(745\) 29.9182 1.09612
\(746\) 30.6750 1.12309
\(747\) 8.95854i 0.327776i
\(748\) 7.05471i 0.257946i
\(749\) 15.5337 0.567588
\(750\) −13.1685 −0.480846
\(751\) −27.9564 −1.02014 −0.510071 0.860132i \(-0.670381\pi\)
−0.510071 + 0.860132i \(0.670381\pi\)
\(752\) −1.93107 −0.0704190
\(753\) 23.5587 0.858526
\(754\) −0.636165 −0.0231678
\(755\) −61.6520 −2.24375
\(756\) −6.20009 −0.225495
\(757\) 26.0610i 0.947204i −0.880739 0.473602i \(-0.842954\pi\)
0.880739 0.473602i \(-0.157046\pi\)
\(758\) 35.4530 1.28771
\(759\) 3.32746i 0.120779i
\(760\) 24.3524 0.883355
\(761\) 16.6466i 0.603438i −0.953397 0.301719i \(-0.902440\pi\)
0.953397 0.301719i \(-0.0975604\pi\)
\(762\) −12.2682 −0.444431
\(763\) 2.24059 0.0811149
\(764\) −4.89860 −0.177225
\(765\) 54.6762i 1.97682i
\(766\) 6.04327 0.218352
\(767\) 0.0611995i 0.00220979i
\(768\) 0.919863i 0.0331927i
\(769\) −52.9510 −1.90946 −0.954731 0.297470i \(-0.903857\pi\)
−0.954731 + 0.297470i \(0.903857\pi\)
\(770\) 5.03267 0.181365
\(771\) −8.18066 −0.294619
\(772\) 13.3856i 0.481759i
\(773\) 3.90976 0.140624 0.0703122 0.997525i \(-0.477600\pi\)
0.0703122 + 0.997525i \(0.477600\pi\)
\(774\) 0.699106i 0.0251288i
\(775\) 19.5615i 0.702671i
\(776\) 13.3281i 0.478451i
\(777\) 7.53144 0.270189
\(778\) 14.7955i 0.530444i
\(779\) 13.4912i 0.483373i
\(780\) 5.68883i 0.203693i
\(781\) 6.01968i 0.215401i
\(782\) 23.8625 0.853322
\(783\) 1.81470 0.0648520
\(784\) 5.28965 0.188916
\(785\) 1.35572i 0.0483877i
\(786\) −12.0104 −0.428398
\(787\) −46.6425 −1.66262 −0.831312 0.555806i \(-0.812410\pi\)
−0.831312 + 0.555806i \(0.812410\pi\)
\(788\) 6.79324i 0.241999i
\(789\) 16.6594i 0.593090i
\(790\) 27.8881i 0.992213i
\(791\) −0.803812 −0.0285803
\(792\) 2.22737i 0.0791461i
\(793\) −22.6329 −0.803716
\(794\) −28.2174 −1.00140
\(795\) 26.7356i 0.948214i
\(796\) −12.1456 −0.430490
\(797\) 14.5674i 0.516002i −0.966145 0.258001i \(-0.916936\pi\)
0.966145 0.258001i \(-0.0830638\pi\)
\(798\) 7.87280 0.278694
\(799\) 13.1735i 0.466046i
\(800\) 8.84710i 0.312792i
\(801\) −19.7656 −0.698381
\(802\) −35.7100 −1.26096
\(803\) 3.75331 0.132452
\(804\) 8.68358i 0.306246i
\(805\) 17.0230i 0.599981i
\(806\) 3.67471 0.129436
\(807\) 13.1577 + 7.38170i 0.463172 + 0.259848i
\(808\) −18.0226 −0.634033
\(809\) 36.0726i 1.26825i −0.773233 0.634123i \(-0.781361\pi\)
0.773233 0.634123i \(-0.218639\pi\)
\(810\) 7.81682i 0.274655i
\(811\) −45.4145 −1.59472 −0.797359 0.603506i \(-0.793770\pi\)
−0.797359 + 0.603506i \(0.793770\pi\)
\(812\) 0.500602 0.0175677
\(813\) 21.5019 0.754105
\(814\) 6.47423i 0.226922i
\(815\) 17.1368i 0.600274i
\(816\) −6.27518 −0.219675
\(817\) 2.12417i 0.0743154i
\(818\) 22.8670 0.799527
\(819\) 4.68144i 0.163583i
\(820\) −7.67128 −0.267893
\(821\) −21.4500 −0.748609 −0.374305 0.927306i \(-0.622119\pi\)
−0.374305 + 0.927306i \(0.622119\pi\)
\(822\) 18.3448i 0.639849i
\(823\) 4.40136 0.153422 0.0767110 0.997053i \(-0.475558\pi\)
0.0767110 + 0.997053i \(0.475558\pi\)
\(824\) 7.79555i 0.271571i
\(825\) 8.41590i 0.293004i
\(826\) 0.0481582i 0.00167564i
\(827\) 47.0678 1.63671 0.818354 0.574715i \(-0.194887\pi\)
0.818354 + 0.574715i \(0.194887\pi\)
\(828\) −7.53406 −0.261827
\(829\) 39.8839i 1.38522i −0.721310 0.692612i \(-0.756460\pi\)
0.721310 0.692612i \(-0.243540\pi\)
\(830\) 15.4775 0.537232
\(831\) 8.68786 0.301378
\(832\) −1.66196 −0.0576181
\(833\) 36.0853i 1.25028i
\(834\) 12.4357i 0.430612i
\(835\) 22.0147i 0.761849i
\(836\) 6.76767i 0.234065i
\(837\) −10.4823 −0.362322
\(838\) 32.9463i 1.13811i
\(839\) 1.72103i 0.0594165i 0.999559 + 0.0297082i \(0.00945782\pi\)
−0.999559 + 0.0297082i \(0.990542\pi\)
\(840\) 4.47657i 0.154456i
\(841\) 28.8535 0.994948
\(842\) 9.14584i 0.315186i
\(843\) −6.14887 −0.211778
\(844\) 18.0139 0.620063
\(845\) 38.0969 1.31057
\(846\) 4.15925i 0.142998i
\(847\) 12.9872i 0.446247i
\(848\) −7.81065 −0.268219
\(849\) 28.0148i 0.961466i
\(850\) 60.3537 2.07012
\(851\) 21.8990 0.750689
\(852\) −5.35452 −0.183443
\(853\) 18.5544i 0.635292i −0.948209 0.317646i \(-0.897108\pi\)
0.948209 0.317646i \(-0.102892\pi\)
\(854\) 17.8099 0.609443
\(855\) 52.4515i 1.79380i
\(856\) −11.8777 −0.405970
\(857\) 12.7124i 0.434247i −0.976144 0.217124i \(-0.930332\pi\)
0.976144 0.217124i \(-0.0696675\pi\)
\(858\) 1.58096 0.0539730
\(859\) −22.0874 −0.753614 −0.376807 0.926292i \(-0.622978\pi\)
−0.376807 + 0.926292i \(0.622978\pi\)
\(860\) −1.20783 −0.0411867
\(861\) −2.48002 −0.0845187
\(862\) −34.7872 −1.18486
\(863\) 11.1084 0.378135 0.189068 0.981964i \(-0.439453\pi\)
0.189068 + 0.981964i \(0.439453\pi\)
\(864\) 4.74084 0.161287
\(865\) −27.0859 −0.920949
\(866\) 14.6378i 0.497414i
\(867\) 27.1708i 0.922768i
\(868\) −2.89165 −0.0981488
\(869\) 7.75024 0.262909
\(870\) 1.31024i 0.0444214i
\(871\) 15.6890 0.531603
\(872\) −1.71325 −0.0580178
\(873\) 28.7068 0.971577
\(874\) 22.8916 0.774319
\(875\) 18.7222i 0.632925i
\(876\) 3.33858i 0.112800i
\(877\) 19.7221 0.665969 0.332984 0.942932i \(-0.391944\pi\)
0.332984 + 0.942932i \(0.391944\pi\)
\(878\) 29.5184i 0.996199i
\(879\) 5.28164i 0.178145i
\(880\) −3.84818 −0.129722
\(881\) 16.8249i 0.566846i 0.958995 + 0.283423i \(0.0914700\pi\)
−0.958995 + 0.283423i \(0.908530\pi\)
\(882\) 11.3931i 0.383626i
\(883\) 28.6944i 0.965644i 0.875719 + 0.482822i \(0.160388\pi\)
−0.875719 + 0.482822i \(0.839612\pi\)
\(884\) 11.3377i 0.381327i
\(885\) 0.126046 0.00423700
\(886\) −29.4519 −0.989457
\(887\) 33.3888 1.12109 0.560543 0.828125i \(-0.310593\pi\)
0.560543 + 0.828125i \(0.310593\pi\)
\(888\) −5.75884 −0.193254
\(889\) 17.4422i 0.584993i
\(890\) 34.1486i 1.14466i
\(891\) 2.17234 0.0727760
\(892\) 22.6418i 0.758102i
\(893\) 12.6375i 0.422898i
\(894\) −7.39569 −0.247349
\(895\) 33.9660i 1.13536i
\(896\) 1.30781 0.0436907
\(897\) 5.34757i 0.178550i
\(898\) 15.5814i 0.519957i
\(899\) 0.846353 0.0282274
\(900\) −19.0553 −0.635178
\(901\) 53.2832i 1.77512i
\(902\) 2.13189i 0.0709841i
\(903\) −0.390475 −0.0129942
\(904\) 0.614627 0.0204422
\(905\) 86.7095i 2.88232i
\(906\) 15.2402 0.506322
\(907\) 39.2092 1.30192 0.650961 0.759111i \(-0.274366\pi\)
0.650961 + 0.759111i \(0.274366\pi\)
\(908\) 17.2433i 0.572238i
\(909\) 38.8180i 1.28751i
\(910\) 8.08804 0.268116
\(911\) 4.85288i 0.160783i −0.996763 0.0803916i \(-0.974383\pi\)
0.996763 0.0803916i \(-0.0256171\pi\)
\(912\) −6.01985 −0.199337
\(913\) 4.30128i 0.142351i
\(914\) 13.0025i 0.430085i
\(915\) 46.6145i 1.54103i
\(916\) 11.2567i 0.371931i
\(917\) 17.0757i 0.563890i
\(918\) 32.3414i 1.06742i
\(919\) 15.2345i 0.502541i 0.967917 + 0.251271i \(0.0808484\pi\)
−0.967917 + 0.251271i \(0.919152\pi\)
\(920\) 13.0164i 0.429139i
\(921\) 8.51040i 0.280427i
\(922\) −9.56016 −0.314847
\(923\) 9.67426i 0.318432i
\(924\) −1.24406 −0.0409267
\(925\) 55.3876 1.82113
\(926\) 34.5791 1.13634
\(927\) 16.7905 0.551471
\(928\) −0.382780 −0.0125654
\(929\) 30.8070i 1.01075i −0.862901 0.505373i \(-0.831355\pi\)
0.862901 0.505373i \(-0.168645\pi\)
\(930\) 7.56841i 0.248178i
\(931\) 34.6170i 1.13453i
\(932\) 13.0664 0.428004
\(933\) 21.3684 0.699570
\(934\) −26.8002 −0.876930
\(935\) 26.2518i 0.858525i
\(936\) 3.57962i 0.117003i
\(937\) 52.6618i 1.72039i 0.509969 + 0.860193i \(0.329657\pi\)
−0.509969 + 0.860193i \(0.670343\pi\)
\(938\) −12.3458 −0.403104
\(939\) 5.22289i 0.170442i
\(940\) −7.18585 −0.234377
\(941\) 46.9242i 1.52968i 0.644217 + 0.764842i \(0.277183\pi\)
−0.644217 + 0.764842i \(0.722817\pi\)
\(942\) 0.335130i 0.0109191i
\(943\) −7.21109 −0.234826
\(944\) 0.0368237i 0.00119851i
\(945\) −23.0716 −0.750519
\(946\) 0.335663i 0.0109133i
\(947\) 21.7491i 0.706752i −0.935481 0.353376i \(-0.885034\pi\)
0.935481 0.353376i \(-0.114966\pi\)
\(948\) 6.89385i 0.223902i
\(949\) 6.03197 0.195806
\(950\) 57.8980 1.87846
\(951\) 15.3204 0.496797
\(952\) 8.92167i 0.289153i
\(953\) 17.1576i 0.555788i 0.960612 + 0.277894i \(0.0896364\pi\)
−0.960612 + 0.277894i \(0.910364\pi\)
\(954\) 16.8230i 0.544665i
\(955\) −18.2285 −0.589862
\(956\) −28.8237 −0.932225
\(957\) 0.364124 0.0117704
\(958\) 14.2506 0.460417
\(959\) 26.0815 0.842217
\(960\) 3.42297i 0.110476i
\(961\) 26.1112 0.842296
\(962\) 10.4048i 0.335463i
\(963\) 25.5827i 0.824391i
\(964\) 13.7305i 0.442229i
\(965\) 49.8102i 1.60345i
\(966\) 4.20803i 0.135391i
\(967\) 13.6697i 0.439589i −0.975546 0.219794i \(-0.929461\pi\)
0.975546 0.219794i \(-0.0705386\pi\)
\(968\) 9.93057i 0.319181i
\(969\) 41.0666i 1.31925i
\(970\) 49.5962i 1.59244i
\(971\) −15.8659 −0.509161 −0.254580 0.967052i \(-0.581937\pi\)
−0.254580 + 0.967052i \(0.581937\pi\)
\(972\) 16.1548i 0.518166i
\(973\) −17.6803 −0.566804
\(974\) 14.2840i 0.457690i
\(975\) 13.5252i 0.433154i
\(976\) −13.6182 −0.435907
\(977\) 33.1179 1.05953 0.529767 0.848143i \(-0.322279\pi\)
0.529767 + 0.848143i \(0.322279\pi\)
\(978\) 4.23616i 0.135457i
\(979\) −9.49007 −0.303304
\(980\) 19.6837 0.628772
\(981\) 3.69008i 0.117815i
\(982\) 38.9011i 1.24138i
\(983\) −40.9969 −1.30760 −0.653799 0.756668i \(-0.726826\pi\)
−0.653799 + 0.756668i \(0.726826\pi\)
\(984\) 1.89632 0.0604524
\(985\) 25.2788i 0.805449i
\(986\) 2.61127i 0.0831599i
\(987\) −2.32308 −0.0739446
\(988\) 10.8764i 0.346023i
\(989\) −1.13538 −0.0361029
\(990\) 8.28842i 0.263423i
\(991\) 28.5196i 0.905956i 0.891522 + 0.452978i \(0.149638\pi\)
−0.891522 + 0.452978i \(0.850362\pi\)
\(992\) 2.21107 0.0702015
\(993\) 3.19359i 0.101345i
\(994\) 7.61272i 0.241461i
\(995\) −45.1959 −1.43281
\(996\) −3.82599 −0.121231
\(997\) −0.361615 −0.0114525 −0.00572623 0.999984i \(-0.501823\pi\)
−0.00572623 + 0.999984i \(0.501823\pi\)
\(998\) 2.48954 0.0788050
\(999\) 29.6802i 0.939040i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.2.b.b.537.12 yes 18
269.268 even 2 inner 538.2.b.b.537.7 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.2.b.b.537.7 18 269.268 even 2 inner
538.2.b.b.537.12 yes 18 1.1 even 1 trivial