Properties

Label 538.3.c.a.187.15
Level $538$
Weight $3$
Character 538.187
Analytic conductor $14.659$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,3,Mod(187,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.187");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 538.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6594382226\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.15
Character \(\chi\) \(=\) 538.187
Dual form 538.3.c.a.351.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +(1.79446 + 1.79446i) q^{3} +2.00000i q^{4} -4.75177 q^{5} +3.58893i q^{6} +(9.51668 - 9.51668i) q^{7} +(-2.00000 + 2.00000i) q^{8} -2.55979i q^{9} +(-4.75177 - 4.75177i) q^{10} -11.4091i q^{11} +(-3.58893 + 3.58893i) q^{12} -22.1551i q^{13} +19.0334 q^{14} +(-8.52688 - 8.52688i) q^{15} -4.00000 q^{16} +(0.892657 + 0.892657i) q^{17} +(2.55979 - 2.55979i) q^{18} +(4.21546 - 4.21546i) q^{19} -9.50354i q^{20} +34.1547 q^{21} +(11.4091 - 11.4091i) q^{22} -13.0222 q^{23} -7.17786 q^{24} -2.42070 q^{25} +(22.1551 - 22.1551i) q^{26} +(20.7436 - 20.7436i) q^{27} +(19.0334 + 19.0334i) q^{28} +(-27.9599 + 27.9599i) q^{29} -17.0538i q^{30} +(-24.2071 + 24.2071i) q^{31} +(-4.00000 - 4.00000i) q^{32} +(20.4732 - 20.4732i) q^{33} +1.78531i q^{34} +(-45.2211 + 45.2211i) q^{35} +5.11959 q^{36} +53.9522 q^{37} +8.43092 q^{38} +(39.7565 - 39.7565i) q^{39} +(9.50354 - 9.50354i) q^{40} +38.7731 q^{41} +(34.1547 + 34.1547i) q^{42} +63.1369i q^{43} +22.8182 q^{44} +12.1636i q^{45} +(-13.0222 - 13.0222i) q^{46} +7.00296 q^{47} +(-7.17786 - 7.17786i) q^{48} -132.134i q^{49} +(-2.42070 - 2.42070i) q^{50} +3.20368i q^{51} +44.3102 q^{52} -41.7361 q^{53} +41.4873 q^{54} +54.2133i q^{55} +38.0667i q^{56} +15.1290 q^{57} -55.9199 q^{58} +(-25.7489 + 25.7489i) q^{59} +(17.0538 - 17.0538i) q^{60} +41.7906 q^{61} -48.4141 q^{62} +(-24.3607 - 24.3607i) q^{63} -8.00000i q^{64} +105.276i q^{65} +40.9464 q^{66} +60.2833 q^{67} +(-1.78531 + 1.78531i) q^{68} +(-23.3678 - 23.3678i) q^{69} -90.4421 q^{70} +(24.6805 - 24.6805i) q^{71} +(5.11959 + 5.11959i) q^{72} -100.890i q^{73} +(53.9522 + 53.9522i) q^{74} +(-4.34385 - 4.34385i) q^{75} +(8.43092 + 8.43092i) q^{76} +(-108.577 - 108.577i) q^{77} +79.5130 q^{78} +147.725i q^{79} +19.0071 q^{80} +51.4093 q^{81} +(38.7731 + 38.7731i) q^{82} +(-14.3693 + 14.3693i) q^{83} +68.3094i q^{84} +(-4.24170 - 4.24170i) q^{85} +(-63.1369 + 63.1369i) q^{86} -100.346 q^{87} +(22.8182 + 22.8182i) q^{88} +146.915i q^{89} +(-12.1636 + 12.1636i) q^{90} +(-210.843 - 210.843i) q^{91} -26.0443i q^{92} -86.8774 q^{93} +(7.00296 + 7.00296i) q^{94} +(-20.0309 + 20.0309i) q^{95} -14.3557i q^{96} -52.1351i q^{97} +(132.134 - 132.134i) q^{98} -29.2049 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 44 q^{2} + 2 q^{3} + 4 q^{7} - 88 q^{8} - 4 q^{12} + 8 q^{14} + 38 q^{15} - 176 q^{16} - 120 q^{18} + 18 q^{19} - 16 q^{21} + 68 q^{23} - 8 q^{24} + 196 q^{25} + 16 q^{26} - 22 q^{27} + 8 q^{28}+ \cdots - 188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.500000 + 0.500000i
\(3\) 1.79446 + 1.79446i 0.598155 + 0.598155i 0.939821 0.341666i \(-0.110991\pi\)
−0.341666 + 0.939821i \(0.610991\pi\)
\(4\) 2.00000i 0.500000i
\(5\) −4.75177 −0.950354 −0.475177 0.879890i \(-0.657616\pi\)
−0.475177 + 0.879890i \(0.657616\pi\)
\(6\) 3.58893i 0.598155i
\(7\) 9.51668 9.51668i 1.35953 1.35953i 0.485026 0.874500i \(-0.338810\pi\)
0.874500 0.485026i \(-0.161190\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 2.55979i 0.284422i
\(10\) −4.75177 4.75177i −0.475177 0.475177i
\(11\) 11.4091i 1.03719i −0.855020 0.518595i \(-0.826455\pi\)
0.855020 0.518595i \(-0.173545\pi\)
\(12\) −3.58893 + 3.58893i −0.299077 + 0.299077i
\(13\) 22.1551i 1.70424i −0.523349 0.852119i \(-0.675317\pi\)
0.523349 0.852119i \(-0.324683\pi\)
\(14\) 19.0334 1.35953
\(15\) −8.52688 8.52688i −0.568459 0.568459i
\(16\) −4.00000 −0.250000
\(17\) 0.892657 + 0.892657i 0.0525092 + 0.0525092i 0.732874 0.680365i \(-0.238179\pi\)
−0.680365 + 0.732874i \(0.738179\pi\)
\(18\) 2.55979 2.55979i 0.142211 0.142211i
\(19\) 4.21546 4.21546i 0.221866 0.221866i −0.587418 0.809284i \(-0.699855\pi\)
0.809284 + 0.587418i \(0.199855\pi\)
\(20\) 9.50354i 0.475177i
\(21\) 34.1547 1.62641
\(22\) 11.4091 11.4091i 0.518595 0.518595i
\(23\) −13.0222 −0.566181 −0.283090 0.959093i \(-0.591360\pi\)
−0.283090 + 0.959093i \(0.591360\pi\)
\(24\) −7.17786 −0.299077
\(25\) −2.42070 −0.0968278
\(26\) 22.1551 22.1551i 0.852119 0.852119i
\(27\) 20.7436 20.7436i 0.768283 0.768283i
\(28\) 19.0334 + 19.0334i 0.679763 + 0.679763i
\(29\) −27.9599 + 27.9599i −0.964136 + 0.964136i −0.999379 0.0352427i \(-0.988780\pi\)
0.0352427 + 0.999379i \(0.488780\pi\)
\(30\) 17.0538i 0.568459i
\(31\) −24.2071 + 24.2071i −0.780873 + 0.780873i −0.979978 0.199105i \(-0.936196\pi\)
0.199105 + 0.979978i \(0.436196\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) 20.4732 20.4732i 0.620400 0.620400i
\(34\) 1.78531i 0.0525092i
\(35\) −45.2211 + 45.2211i −1.29203 + 1.29203i
\(36\) 5.11959 0.142211
\(37\) 53.9522 1.45817 0.729084 0.684424i \(-0.239946\pi\)
0.729084 + 0.684424i \(0.239946\pi\)
\(38\) 8.43092 0.221866
\(39\) 39.7565 39.7565i 1.01940 1.01940i
\(40\) 9.50354 9.50354i 0.237588 0.237588i
\(41\) 38.7731 0.945685 0.472843 0.881147i \(-0.343228\pi\)
0.472843 + 0.881147i \(0.343228\pi\)
\(42\) 34.1547 + 34.1547i 0.813207 + 0.813207i
\(43\) 63.1369i 1.46830i 0.678988 + 0.734150i \(0.262419\pi\)
−0.678988 + 0.734150i \(0.737581\pi\)
\(44\) 22.8182 0.518595
\(45\) 12.1636i 0.270301i
\(46\) −13.0222 13.0222i −0.283090 0.283090i
\(47\) 7.00296 0.148999 0.0744996 0.997221i \(-0.476264\pi\)
0.0744996 + 0.997221i \(0.476264\pi\)
\(48\) −7.17786 7.17786i −0.149539 0.149539i
\(49\) 132.134i 2.69662i
\(50\) −2.42070 2.42070i −0.0484139 0.0484139i
\(51\) 3.20368i 0.0628173i
\(52\) 44.3102 0.852119
\(53\) −41.7361 −0.787473 −0.393737 0.919223i \(-0.628818\pi\)
−0.393737 + 0.919223i \(0.628818\pi\)
\(54\) 41.4873 0.768283
\(55\) 54.2133i 0.985697i
\(56\) 38.0667i 0.679763i
\(57\) 15.1290 0.265421
\(58\) −55.9199 −0.964136
\(59\) −25.7489 + 25.7489i −0.436423 + 0.436423i −0.890806 0.454384i \(-0.849860\pi\)
0.454384 + 0.890806i \(0.349860\pi\)
\(60\) 17.0538 17.0538i 0.284229 0.284229i
\(61\) 41.7906 0.685092 0.342546 0.939501i \(-0.388711\pi\)
0.342546 + 0.939501i \(0.388711\pi\)
\(62\) −48.4141 −0.780873
\(63\) −24.3607 24.3607i −0.386679 0.386679i
\(64\) 8.00000i 0.125000i
\(65\) 105.276i 1.61963i
\(66\) 40.9464 0.620400
\(67\) 60.2833 0.899750 0.449875 0.893092i \(-0.351469\pi\)
0.449875 + 0.893092i \(0.351469\pi\)
\(68\) −1.78531 + 1.78531i −0.0262546 + 0.0262546i
\(69\) −23.3678 23.3678i −0.338664 0.338664i
\(70\) −90.4421 −1.29203
\(71\) 24.6805 24.6805i 0.347613 0.347613i −0.511607 0.859220i \(-0.670949\pi\)
0.859220 + 0.511607i \(0.170949\pi\)
\(72\) 5.11959 + 5.11959i 0.0711054 + 0.0711054i
\(73\) 100.890i 1.38205i −0.722830 0.691026i \(-0.757159\pi\)
0.722830 0.691026i \(-0.242841\pi\)
\(74\) 53.9522 + 53.9522i 0.729084 + 0.729084i
\(75\) −4.34385 4.34385i −0.0579180 0.0579180i
\(76\) 8.43092 + 8.43092i 0.110933 + 0.110933i
\(77\) −108.577 108.577i −1.41009 1.41009i
\(78\) 79.5130 1.01940
\(79\) 147.725i 1.86994i 0.354732 + 0.934968i \(0.384572\pi\)
−0.354732 + 0.934968i \(0.615428\pi\)
\(80\) 19.0071 0.237588
\(81\) 51.4093 0.634683
\(82\) 38.7731 + 38.7731i 0.472843 + 0.472843i
\(83\) −14.3693 + 14.3693i −0.173124 + 0.173124i −0.788350 0.615226i \(-0.789065\pi\)
0.615226 + 0.788350i \(0.289065\pi\)
\(84\) 68.3094i 0.813207i
\(85\) −4.24170 4.24170i −0.0499023 0.0499023i
\(86\) −63.1369 + 63.1369i −0.734150 + 0.734150i
\(87\) −100.346 −1.15341
\(88\) 22.8182 + 22.8182i 0.259297 + 0.259297i
\(89\) 146.915i 1.65073i 0.564603 + 0.825363i \(0.309029\pi\)
−0.564603 + 0.825363i \(0.690971\pi\)
\(90\) −12.1636 + 12.1636i −0.135151 + 0.135151i
\(91\) −210.843 210.843i −2.31695 2.31695i
\(92\) 26.0443i 0.283090i
\(93\) −86.8774 −0.934166
\(94\) 7.00296 + 7.00296i 0.0744996 + 0.0744996i
\(95\) −20.0309 + 20.0309i −0.210852 + 0.210852i
\(96\) 14.3557i 0.149539i
\(97\) 52.1351i 0.537476i −0.963213 0.268738i \(-0.913393\pi\)
0.963213 0.268738i \(-0.0866065\pi\)
\(98\) 132.134 132.134i 1.34831 1.34831i
\(99\) −29.2049 −0.294999
\(100\) 4.84139i 0.0484139i
\(101\) 37.0283 + 37.0283i 0.366617 + 0.366617i 0.866242 0.499625i \(-0.166529\pi\)
−0.499625 + 0.866242i \(0.666529\pi\)
\(102\) −3.20368 + 3.20368i −0.0314086 + 0.0314086i
\(103\) 93.4599i 0.907377i −0.891160 0.453689i \(-0.850108\pi\)
0.891160 0.453689i \(-0.149892\pi\)
\(104\) 44.3102 + 44.3102i 0.426059 + 0.426059i
\(105\) −162.295 −1.54567
\(106\) −41.7361 41.7361i −0.393737 0.393737i
\(107\) −50.0728 + 50.0728i −0.467970 + 0.467970i −0.901256 0.433286i \(-0.857354\pi\)
0.433286 + 0.901256i \(0.357354\pi\)
\(108\) 41.4873 + 41.4873i 0.384141 + 0.384141i
\(109\) 105.381 105.381i 0.966796 0.966796i −0.0326701 0.999466i \(-0.510401\pi\)
0.999466 + 0.0326701i \(0.0104011\pi\)
\(110\) −54.2133 + 54.2133i −0.492848 + 0.492848i
\(111\) 96.8154 + 96.8154i 0.872210 + 0.872210i
\(112\) −38.0667 + 38.0667i −0.339881 + 0.339881i
\(113\) 109.427 109.427i 0.968382 0.968382i −0.0311328 0.999515i \(-0.509911\pi\)
0.999515 + 0.0311328i \(0.00991148\pi\)
\(114\) 15.1290 + 15.1290i 0.132710 + 0.132710i
\(115\) 61.8783 0.538072
\(116\) −55.9199 55.9199i −0.482068 0.482068i
\(117\) −56.7125 −0.484722
\(118\) −51.4979 −0.436423
\(119\) 16.9903 0.142775
\(120\) 34.1075 0.284229
\(121\) −9.16714 −0.0757615
\(122\) 41.7906 + 41.7906i 0.342546 + 0.342546i
\(123\) 69.5769 + 69.5769i 0.565666 + 0.565666i
\(124\) −48.4141 48.4141i −0.390436 0.390436i
\(125\) 130.297 1.04237
\(126\) 48.7215i 0.386679i
\(127\) 70.9217i 0.558439i −0.960227 0.279219i \(-0.909924\pi\)
0.960227 0.279219i \(-0.0900757\pi\)
\(128\) 8.00000 8.00000i 0.0625000 0.0625000i
\(129\) −113.297 + 113.297i −0.878270 + 0.878270i
\(130\) −105.276 + 105.276i −0.809814 + 0.809814i
\(131\) 237.667 1.81425 0.907125 0.420861i \(-0.138272\pi\)
0.907125 + 0.420861i \(0.138272\pi\)
\(132\) 40.9464 + 40.9464i 0.310200 + 0.310200i
\(133\) 80.2344i 0.603266i
\(134\) 60.2833 + 60.2833i 0.449875 + 0.449875i
\(135\) −98.5690 + 98.5690i −0.730141 + 0.730141i
\(136\) −3.57063 −0.0262546
\(137\) 61.8934 61.8934i 0.451777 0.451777i −0.444167 0.895944i \(-0.646500\pi\)
0.895944 + 0.444167i \(0.146500\pi\)
\(138\) 46.7356i 0.338664i
\(139\) −61.6648 61.6648i −0.443632 0.443632i 0.449599 0.893231i \(-0.351567\pi\)
−0.893231 + 0.449599i \(0.851567\pi\)
\(140\) −90.4421 90.4421i −0.646015 0.646015i
\(141\) 12.5666 + 12.5666i 0.0891246 + 0.0891246i
\(142\) 49.3611 0.347613
\(143\) −252.769 −1.76762
\(144\) 10.2392i 0.0711054i
\(145\) 132.859 132.859i 0.916270 0.916270i
\(146\) 100.890 100.890i 0.691026 0.691026i
\(147\) 237.110 237.110i 1.61300 1.61300i
\(148\) 107.904i 0.729084i
\(149\) 145.158i 0.974214i 0.873342 + 0.487107i \(0.161948\pi\)
−0.873342 + 0.487107i \(0.838052\pi\)
\(150\) 8.68770i 0.0579180i
\(151\) 198.815i 1.31666i 0.752731 + 0.658328i \(0.228736\pi\)
−0.752731 + 0.658328i \(0.771264\pi\)
\(152\) 16.8618i 0.110933i
\(153\) 2.28502 2.28502i 0.0149348 0.0149348i
\(154\) 217.153i 1.41009i
\(155\) 115.026 115.026i 0.742105 0.742105i
\(156\) 79.5130 + 79.5130i 0.509699 + 0.509699i
\(157\) 150.750 + 150.750i 0.960188 + 0.960188i 0.999237 0.0390494i \(-0.0124330\pi\)
−0.0390494 + 0.999237i \(0.512433\pi\)
\(158\) −147.725 + 147.725i −0.934968 + 0.934968i
\(159\) −74.8939 74.8939i −0.471031 0.471031i
\(160\) 19.0071 + 19.0071i 0.118794 + 0.118794i
\(161\) −123.928 + 123.928i −0.769737 + 0.769737i
\(162\) 51.4093 + 51.4093i 0.317341 + 0.317341i
\(163\) 158.766 158.766i 0.974022 0.974022i −0.0256486 0.999671i \(-0.508165\pi\)
0.999671 + 0.0256486i \(0.00816510\pi\)
\(164\) 77.5462i 0.472843i
\(165\) −97.2839 + 97.2839i −0.589599 + 0.589599i
\(166\) −28.7386 −0.173124
\(167\) 60.5109 + 60.5109i 0.362341 + 0.362341i 0.864674 0.502333i \(-0.167525\pi\)
−0.502333 + 0.864674i \(0.667525\pi\)
\(168\) −68.3094 + 68.3094i −0.406603 + 0.406603i
\(169\) −321.848 −1.90443
\(170\) 8.48340i 0.0499023i
\(171\) −10.7907 10.7907i −0.0631036 0.0631036i
\(172\) −126.274 −0.734150
\(173\) −304.092 −1.75775 −0.878877 0.477048i \(-0.841707\pi\)
−0.878877 + 0.477048i \(0.841707\pi\)
\(174\) −100.346 100.346i −0.576703 0.576703i
\(175\) −23.0370 + 23.0370i −0.131640 + 0.131640i
\(176\) 45.6363i 0.259297i
\(177\) −92.4111 −0.522097
\(178\) −146.915 + 146.915i −0.825363 + 0.825363i
\(179\) −10.1235 10.1235i −0.0565560 0.0565560i 0.678263 0.734819i \(-0.262733\pi\)
−0.734819 + 0.678263i \(0.762733\pi\)
\(180\) −24.3271 −0.135151
\(181\) −202.916 + 202.916i −1.12108 + 1.12108i −0.129501 + 0.991579i \(0.541338\pi\)
−0.991579 + 0.129501i \(0.958662\pi\)
\(182\) 421.686i 2.31695i
\(183\) 74.9918 + 74.9918i 0.409791 + 0.409791i
\(184\) 26.0443 26.0443i 0.141545 0.141545i
\(185\) −256.369 −1.38578
\(186\) −86.8774 86.8774i −0.467083 0.467083i
\(187\) 10.1844 10.1844i 0.0544620 0.0544620i
\(188\) 14.0059i 0.0744996i
\(189\) 394.821i 2.08900i
\(190\) −40.0618 −0.210852
\(191\) 266.822i 1.39697i −0.715623 0.698486i \(-0.753857\pi\)
0.715623 0.698486i \(-0.246143\pi\)
\(192\) 14.3557 14.3557i 0.0747694 0.0747694i
\(193\) −7.36026 + 7.36026i −0.0381361 + 0.0381361i −0.725918 0.687782i \(-0.758585\pi\)
0.687782 + 0.725918i \(0.258585\pi\)
\(194\) 52.1351 52.1351i 0.268738 0.268738i
\(195\) −188.914 + 188.914i −0.968789 + 0.968789i
\(196\) 264.269 1.34831
\(197\) −185.966 + 185.966i −0.943992 + 0.943992i −0.998513 0.0545205i \(-0.982637\pi\)
0.0545205 + 0.998513i \(0.482637\pi\)
\(198\) −29.2049 29.2049i −0.147500 0.147500i
\(199\) 106.214i 0.533740i 0.963733 + 0.266870i \(0.0859894\pi\)
−0.963733 + 0.266870i \(0.914011\pi\)
\(200\) 4.84139 4.84139i 0.0242070 0.0242070i
\(201\) 108.176 + 108.176i 0.538190 + 0.538190i
\(202\) 74.0567i 0.366617i
\(203\) 532.172i 2.62154i
\(204\) −6.40736 −0.0314086
\(205\) −184.241 −0.898735
\(206\) 93.4599 93.4599i 0.453689 0.453689i
\(207\) 33.3340i 0.161034i
\(208\) 88.6203i 0.426059i
\(209\) −48.0945 48.0945i −0.230117 0.230117i
\(210\) −162.295 162.295i −0.772834 0.772834i
\(211\) 9.73196i 0.0461230i −0.999734 0.0230615i \(-0.992659\pi\)
0.999734 0.0230615i \(-0.00734136\pi\)
\(212\) 83.4722i 0.393737i
\(213\) 88.5767 0.415853
\(214\) −100.146 −0.467970
\(215\) 300.012i 1.39540i
\(216\) 82.9746i 0.384141i
\(217\) 460.742i 2.12323i
\(218\) 210.762 0.966796
\(219\) 181.043 181.043i 0.826681 0.826681i
\(220\) −108.427 −0.492848
\(221\) 19.7769 19.7769i 0.0894882 0.0894882i
\(222\) 193.631i 0.872210i
\(223\) 97.2776 97.2776i 0.436223 0.436223i −0.454516 0.890739i \(-0.650188\pi\)
0.890739 + 0.454516i \(0.150188\pi\)
\(224\) −76.1334 −0.339881
\(225\) 6.19648i 0.0275399i
\(226\) 218.854 0.968382
\(227\) 40.8865 40.8865i 0.180117 0.180117i −0.611290 0.791407i \(-0.709349\pi\)
0.791407 + 0.611290i \(0.209349\pi\)
\(228\) 30.2580i 0.132710i
\(229\) 39.5071 + 39.5071i 0.172520 + 0.172520i 0.788086 0.615566i \(-0.211072\pi\)
−0.615566 + 0.788086i \(0.711072\pi\)
\(230\) 61.8783 + 61.8783i 0.269036 + 0.269036i
\(231\) 389.674i 1.68690i
\(232\) 111.840i 0.482068i
\(233\) 424.358i 1.82128i −0.413202 0.910639i \(-0.635590\pi\)
0.413202 0.910639i \(-0.364410\pi\)
\(234\) −56.7125 56.7125i −0.242361 0.242361i
\(235\) −33.2764 −0.141602
\(236\) −51.4979 51.4979i −0.218211 0.218211i
\(237\) −265.087 + 265.087i −1.11851 + 1.11851i
\(238\) 16.9903 + 16.9903i 0.0713876 + 0.0713876i
\(239\) −6.22089 −0.0260288 −0.0130144 0.999915i \(-0.504143\pi\)
−0.0130144 + 0.999915i \(0.504143\pi\)
\(240\) 34.1075 + 34.1075i 0.142115 + 0.142115i
\(241\) −2.33206 + 2.33206i −0.00967658 + 0.00967658i −0.711929 0.702252i \(-0.752178\pi\)
0.702252 + 0.711929i \(0.252178\pi\)
\(242\) −9.16714 9.16714i −0.0378808 0.0378808i
\(243\) −94.4406 94.4406i −0.388644 0.388644i
\(244\) 83.5812i 0.342546i
\(245\) 627.872i 2.56274i
\(246\) 139.154i 0.565666i
\(247\) −93.3939 93.3939i −0.378113 0.378113i
\(248\) 96.8282i 0.390436i
\(249\) −51.5704 −0.207110
\(250\) 130.297 + 130.297i 0.521187 + 0.521187i
\(251\) 269.043 + 269.043i 1.07189 + 1.07189i 0.997208 + 0.0746774i \(0.0237927\pi\)
0.0746774 + 0.997208i \(0.476207\pi\)
\(252\) 48.7215 48.7215i 0.193339 0.193339i
\(253\) 148.571i 0.587237i
\(254\) 70.9217 70.9217i 0.279219 0.279219i
\(255\) 15.2232i 0.0596986i
\(256\) 16.0000 0.0625000
\(257\) −19.1102 19.1102i −0.0743586 0.0743586i 0.668949 0.743308i \(-0.266744\pi\)
−0.743308 + 0.668949i \(0.766744\pi\)
\(258\) −226.594 −0.878270
\(259\) 513.446 513.446i 1.98242 1.98242i
\(260\) −210.552 −0.809814
\(261\) 71.5717 + 71.5717i 0.274221 + 0.274221i
\(262\) 237.667 + 237.667i 0.907125 + 0.907125i
\(263\) −368.542 −1.40130 −0.700650 0.713505i \(-0.747106\pi\)
−0.700650 + 0.713505i \(0.747106\pi\)
\(264\) 81.8928i 0.310200i
\(265\) 198.320 0.748378
\(266\) 80.2344 80.2344i 0.301633 0.301633i
\(267\) −263.633 + 263.633i −0.987389 + 0.987389i
\(268\) 120.567i 0.449875i
\(269\) 35.7347 + 266.616i 0.132843 + 0.991137i
\(270\) −197.138 −0.730141
\(271\) 134.797 + 134.797i 0.497405 + 0.497405i 0.910629 0.413224i \(-0.135597\pi\)
−0.413224 + 0.910629i \(0.635597\pi\)
\(272\) −3.57063 3.57063i −0.0131273 0.0131273i
\(273\) 756.700i 2.77180i
\(274\) 123.787 0.451777
\(275\) 27.6179i 0.100429i
\(276\) 46.7356 46.7356i 0.169332 0.169332i
\(277\) −122.099 + 122.099i −0.440791 + 0.440791i −0.892278 0.451487i \(-0.850894\pi\)
0.451487 + 0.892278i \(0.350894\pi\)
\(278\) 123.330i 0.443632i
\(279\) 61.9651 + 61.9651i 0.222097 + 0.222097i
\(280\) 180.884i 0.646015i
\(281\) 185.961 185.961i 0.661784 0.661784i −0.294017 0.955800i \(-0.594992\pi\)
0.955800 + 0.294017i \(0.0949921\pi\)
\(282\) 25.1331i 0.0891246i
\(283\) −267.368 −0.944763 −0.472381 0.881394i \(-0.656606\pi\)
−0.472381 + 0.881394i \(0.656606\pi\)
\(284\) 49.3611 + 49.3611i 0.173807 + 0.173807i
\(285\) −71.8895 −0.252244
\(286\) −252.769 252.769i −0.883808 0.883808i
\(287\) 368.991 368.991i 1.28568 1.28568i
\(288\) −10.2392 + 10.2392i −0.0355527 + 0.0355527i
\(289\) 287.406i 0.994486i
\(290\) 265.718 0.916270
\(291\) 93.5547 93.5547i 0.321494 0.321494i
\(292\) 201.779 0.691026
\(293\) 200.890 0.685631 0.342815 0.939403i \(-0.388619\pi\)
0.342815 + 0.939403i \(0.388619\pi\)
\(294\) 474.221 1.61300
\(295\) 122.353 122.353i 0.414756 0.414756i
\(296\) −107.904 + 107.904i −0.364542 + 0.364542i
\(297\) −236.666 236.666i −0.796855 0.796855i
\(298\) −145.158 + 145.158i −0.487107 + 0.487107i
\(299\) 288.507i 0.964906i
\(300\) 8.68770 8.68770i 0.0289590 0.0289590i
\(301\) 600.854 + 600.854i 1.99619 + 1.99619i
\(302\) −198.815 + 198.815i −0.658328 + 0.658328i
\(303\) 132.892i 0.438588i
\(304\) −16.8618 + 16.8618i −0.0554666 + 0.0554666i
\(305\) −198.579 −0.651080
\(306\) 4.57004 0.0149348
\(307\) 436.068 1.42042 0.710209 0.703991i \(-0.248600\pi\)
0.710209 + 0.703991i \(0.248600\pi\)
\(308\) 217.153 217.153i 0.705043 0.705043i
\(309\) 167.710 167.710i 0.542752 0.542752i
\(310\) 230.053 0.742105
\(311\) −232.477 232.477i −0.747514 0.747514i 0.226498 0.974012i \(-0.427272\pi\)
−0.974012 + 0.226498i \(0.927272\pi\)
\(312\) 159.026i 0.509699i
\(313\) −305.654 −0.976531 −0.488265 0.872695i \(-0.662370\pi\)
−0.488265 + 0.872695i \(0.662370\pi\)
\(314\) 301.499i 0.960188i
\(315\) 115.757 + 115.757i 0.367481 + 0.367481i
\(316\) −295.450 −0.934968
\(317\) −129.153 129.153i −0.407423 0.407423i 0.473416 0.880839i \(-0.343021\pi\)
−0.880839 + 0.473416i \(0.843021\pi\)
\(318\) 149.788i 0.471031i
\(319\) 318.997 + 318.997i 0.999992 + 0.999992i
\(320\) 38.0141i 0.118794i
\(321\) −179.708 −0.559837
\(322\) −247.855 −0.769737
\(323\) 7.52592 0.0233001
\(324\) 102.819i 0.317341i
\(325\) 53.6307i 0.165018i
\(326\) 317.531 0.974022
\(327\) 378.204 1.15659
\(328\) −77.5462 + 77.5462i −0.236421 + 0.236421i
\(329\) 66.6449 66.6449i 0.202568 0.202568i
\(330\) −194.568 −0.589599
\(331\) −385.720 −1.16532 −0.582658 0.812717i \(-0.697987\pi\)
−0.582658 + 0.812717i \(0.697987\pi\)
\(332\) −28.7386 28.7386i −0.0865621 0.0865621i
\(333\) 138.107i 0.414735i
\(334\) 121.022i 0.362341i
\(335\) −286.452 −0.855081
\(336\) −136.619 −0.406603
\(337\) 67.0198 67.0198i 0.198872 0.198872i −0.600644 0.799516i \(-0.705089\pi\)
0.799516 + 0.600644i \(0.205089\pi\)
\(338\) −321.848 321.848i −0.952213 0.952213i
\(339\) 392.727 1.15849
\(340\) 8.48340 8.48340i 0.0249512 0.0249512i
\(341\) 276.180 + 276.180i 0.809913 + 0.809913i
\(342\) 21.5814i 0.0631036i
\(343\) −791.164 791.164i −2.30660 2.30660i
\(344\) −126.274 126.274i −0.367075 0.367075i
\(345\) 111.038 + 111.038i 0.321850 + 0.321850i
\(346\) −304.092 304.092i −0.878877 0.878877i
\(347\) 386.357 1.11342 0.556710 0.830707i \(-0.312063\pi\)
0.556710 + 0.830707i \(0.312063\pi\)
\(348\) 200.693i 0.576703i
\(349\) 377.388 1.08134 0.540670 0.841235i \(-0.318171\pi\)
0.540670 + 0.841235i \(0.318171\pi\)
\(350\) −46.0740 −0.131640
\(351\) −459.577 459.577i −1.30934 1.30934i
\(352\) −45.6363 + 45.6363i −0.129649 + 0.129649i
\(353\) 471.661i 1.33615i 0.744093 + 0.668076i \(0.232882\pi\)
−0.744093 + 0.668076i \(0.767118\pi\)
\(354\) −92.4111 92.4111i −0.261048 0.261048i
\(355\) −117.276 + 117.276i −0.330356 + 0.330356i
\(356\) −293.829 −0.825363
\(357\) 30.4884 + 30.4884i 0.0854017 + 0.0854017i
\(358\) 20.2470i 0.0565560i
\(359\) 318.793 318.793i 0.888002 0.888002i −0.106329 0.994331i \(-0.533910\pi\)
0.994331 + 0.106329i \(0.0339098\pi\)
\(360\) −24.3271 24.3271i −0.0675753 0.0675753i
\(361\) 325.460i 0.901551i
\(362\) −405.831 −1.12108
\(363\) −16.4501 16.4501i −0.0453171 0.0453171i
\(364\) 421.686 421.686i 1.15848 1.15848i
\(365\) 479.405i 1.31344i
\(366\) 149.984i 0.409791i
\(367\) −65.2673 + 65.2673i −0.177840 + 0.177840i −0.790414 0.612573i \(-0.790134\pi\)
0.612573 + 0.790414i \(0.290134\pi\)
\(368\) 52.0886 0.141545
\(369\) 99.2512i 0.268973i
\(370\) −256.369 256.369i −0.692888 0.692888i
\(371\) −397.189 + 397.189i −1.07059 + 1.07059i
\(372\) 173.755i 0.467083i
\(373\) 42.7381 + 42.7381i 0.114579 + 0.114579i 0.762072 0.647493i \(-0.224182\pi\)
−0.647493 + 0.762072i \(0.724182\pi\)
\(374\) 20.3688 0.0544620
\(375\) 233.813 + 233.813i 0.623501 + 0.623501i
\(376\) −14.0059 + 14.0059i −0.0372498 + 0.0372498i
\(377\) 619.455 + 619.455i 1.64312 + 1.64312i
\(378\) 394.821 394.821i 1.04450 1.04450i
\(379\) 170.947 170.947i 0.451047 0.451047i −0.444655 0.895702i \(-0.646674\pi\)
0.895702 + 0.444655i \(0.146674\pi\)
\(380\) −40.0618 40.0618i −0.105426 0.105426i
\(381\) 127.266 127.266i 0.334033 0.334033i
\(382\) 266.822 266.822i 0.698486 0.698486i
\(383\) −111.848 111.848i −0.292031 0.292031i 0.545851 0.837882i \(-0.316206\pi\)
−0.837882 + 0.545851i \(0.816206\pi\)
\(384\) 28.7114 0.0747694
\(385\) 515.931 + 515.931i 1.34008 + 1.34008i
\(386\) −14.7205 −0.0381361
\(387\) 161.617 0.417616
\(388\) 104.270 0.268738
\(389\) 182.560 0.469306 0.234653 0.972079i \(-0.424605\pi\)
0.234653 + 0.972079i \(0.424605\pi\)
\(390\) −377.828 −0.968789
\(391\) −11.6243 11.6243i −0.0297297 0.0297297i
\(392\) 264.269 + 264.269i 0.674155 + 0.674155i
\(393\) 426.485 + 426.485i 1.08520 + 1.08520i
\(394\) −371.933 −0.943992
\(395\) 701.955i 1.77710i
\(396\) 58.4098i 0.147500i
\(397\) −188.940 + 188.940i −0.475920 + 0.475920i −0.903824 0.427904i \(-0.859252\pi\)
0.427904 + 0.903824i \(0.359252\pi\)
\(398\) −106.214 + 106.214i −0.266870 + 0.266870i
\(399\) 143.978 143.978i 0.360847 0.360847i
\(400\) 9.68278 0.0242070
\(401\) 380.746 + 380.746i 0.949491 + 0.949491i 0.998784 0.0492930i \(-0.0156968\pi\)
−0.0492930 + 0.998784i \(0.515697\pi\)
\(402\) 216.352i 0.538190i
\(403\) 536.309 + 536.309i 1.33079 + 1.33079i
\(404\) −74.0567 + 74.0567i −0.183309 + 0.183309i
\(405\) −244.285 −0.603173
\(406\) −532.172 + 532.172i −1.31077 + 1.31077i
\(407\) 615.545i 1.51240i
\(408\) −6.40736 6.40736i −0.0157043 0.0157043i
\(409\) 89.2298 + 89.2298i 0.218166 + 0.218166i 0.807725 0.589559i \(-0.200699\pi\)
−0.589559 + 0.807725i \(0.700699\pi\)
\(410\) −184.241 184.241i −0.449368 0.449368i
\(411\) 222.131 0.540465
\(412\) 186.920 0.453689
\(413\) 490.089i 1.18666i
\(414\) −33.3340 + 33.3340i −0.0805170 + 0.0805170i
\(415\) 68.2796 68.2796i 0.164529 0.164529i
\(416\) −88.6203 + 88.6203i −0.213030 + 0.213030i
\(417\) 221.311i 0.530721i
\(418\) 96.1891i 0.230117i
\(419\) 240.384i 0.573709i 0.957974 + 0.286855i \(0.0926097\pi\)
−0.957974 + 0.286855i \(0.907390\pi\)
\(420\) 324.590i 0.772834i
\(421\) 399.203i 0.948225i −0.880464 0.474113i \(-0.842769\pi\)
0.880464 0.474113i \(-0.157231\pi\)
\(422\) 9.73196 9.73196i 0.0230615 0.0230615i
\(423\) 17.9261i 0.0423786i
\(424\) 83.4722 83.4722i 0.196868 0.196868i
\(425\) −2.16085 2.16085i −0.00508435 0.00508435i
\(426\) 88.5767 + 88.5767i 0.207927 + 0.207927i
\(427\) 397.708 397.708i 0.931400 0.931400i
\(428\) −100.146 100.146i −0.233985 0.233985i
\(429\) −453.585 453.585i −1.05731 1.05731i
\(430\) 300.012 300.012i 0.697702 0.697702i
\(431\) 116.865 + 116.865i 0.271149 + 0.271149i 0.829563 0.558413i \(-0.188590\pi\)
−0.558413 + 0.829563i \(0.688590\pi\)
\(432\) −82.9746 + 82.9746i −0.192071 + 0.192071i
\(433\) 429.883i 0.992802i 0.868093 + 0.496401i \(0.165345\pi\)
−0.868093 + 0.496401i \(0.834655\pi\)
\(434\) −460.742 + 460.742i −1.06162 + 1.06162i
\(435\) 476.822 1.09614
\(436\) 210.762 + 210.762i 0.483398 + 0.483398i
\(437\) −54.8944 + 54.8944i −0.125616 + 0.125616i
\(438\) 362.086 0.826681
\(439\) 565.480i 1.28811i −0.764980 0.644054i \(-0.777251\pi\)
0.764980 0.644054i \(-0.222749\pi\)
\(440\) −108.427 108.427i −0.246424 0.246424i
\(441\) −338.237 −0.766977
\(442\) 39.5538 0.0894882
\(443\) −14.7763 14.7763i −0.0333550 0.0333550i 0.690233 0.723588i \(-0.257508\pi\)
−0.723588 + 0.690233i \(0.757508\pi\)
\(444\) −193.631 + 193.631i −0.436105 + 0.436105i
\(445\) 698.104i 1.56877i
\(446\) 194.555 0.436223
\(447\) −260.481 + 260.481i −0.582731 + 0.582731i
\(448\) −76.1334 76.1334i −0.169941 0.169941i
\(449\) −15.5790 −0.0346971 −0.0173486 0.999850i \(-0.505522\pi\)
−0.0173486 + 0.999850i \(0.505522\pi\)
\(450\) −6.19648 + 6.19648i −0.0137700 + 0.0137700i
\(451\) 442.365i 0.980854i
\(452\) 218.854 + 218.854i 0.484191 + 0.484191i
\(453\) −356.766 + 356.766i −0.787564 + 0.787564i
\(454\) 81.7730 0.180117
\(455\) 1001.88 + 1001.88i 2.20193 + 2.20193i
\(456\) −30.2580 + 30.2580i −0.0663552 + 0.0663552i
\(457\) 676.235i 1.47973i −0.672758 0.739863i \(-0.734890\pi\)
0.672758 0.739863i \(-0.265110\pi\)
\(458\) 79.0142i 0.172520i
\(459\) 37.0339 0.0806839
\(460\) 123.757i 0.269036i
\(461\) −409.407 + 409.407i −0.888084 + 0.888084i −0.994339 0.106255i \(-0.966114\pi\)
0.106255 + 0.994339i \(0.466114\pi\)
\(462\) 389.674 389.674i 0.843449 0.843449i
\(463\) −97.7188 + 97.7188i −0.211056 + 0.211056i −0.804716 0.593660i \(-0.797682\pi\)
0.593660 + 0.804716i \(0.297682\pi\)
\(464\) 111.840 111.840i 0.241034 0.241034i
\(465\) 412.821 0.887788
\(466\) 424.358 424.358i 0.910639 0.910639i
\(467\) 402.844 + 402.844i 0.862622 + 0.862622i 0.991642 0.129020i \(-0.0411833\pi\)
−0.129020 + 0.991642i \(0.541183\pi\)
\(468\) 113.425i 0.242361i
\(469\) 573.696 573.696i 1.22323 1.22323i
\(470\) −33.2764 33.2764i −0.0708009 0.0708009i
\(471\) 541.029i 1.14868i
\(472\) 102.996i 0.218211i
\(473\) 720.334 1.52290
\(474\) −530.174 −1.11851
\(475\) −10.2043 + 10.2043i −0.0214828 + 0.0214828i
\(476\) 33.9805i 0.0713876i
\(477\) 106.836i 0.223974i
\(478\) −6.22089 6.22089i −0.0130144 0.0130144i
\(479\) 144.194 + 144.194i 0.301032 + 0.301032i 0.841418 0.540385i \(-0.181722\pi\)
−0.540385 + 0.841418i \(0.681722\pi\)
\(480\) 68.2150i 0.142115i
\(481\) 1195.32i 2.48507i
\(482\) −4.66411 −0.00967658
\(483\) −444.768 −0.920844
\(484\) 18.3343i 0.0378808i
\(485\) 247.734i 0.510792i
\(486\) 188.881i 0.388644i
\(487\) −541.406 −1.11172 −0.555859 0.831277i \(-0.687610\pi\)
−0.555859 + 0.831277i \(0.687610\pi\)
\(488\) −83.5812 + 83.5812i −0.171273 + 0.171273i
\(489\) 569.799 1.16523
\(490\) −627.872 + 627.872i −1.28137 + 1.28137i
\(491\) 279.654i 0.569560i −0.958593 0.284780i \(-0.908080\pi\)
0.958593 0.284780i \(-0.0919205\pi\)
\(492\) −139.154 + 139.154i −0.282833 + 0.282833i
\(493\) −49.9173 −0.101252
\(494\) 186.788i 0.378113i
\(495\) 138.775 0.280353
\(496\) 96.8282 96.8282i 0.195218 0.195218i
\(497\) 469.754i 0.945179i
\(498\) −51.5704 51.5704i −0.103555 0.103555i
\(499\) −105.935 105.935i −0.212295 0.212295i 0.592947 0.805242i \(-0.297964\pi\)
−0.805242 + 0.592947i \(0.797964\pi\)
\(500\) 260.594i 0.521187i
\(501\) 217.169i 0.433472i
\(502\) 538.086i 1.07189i
\(503\) −468.820 468.820i −0.932048 0.932048i 0.0657862 0.997834i \(-0.479044\pi\)
−0.997834 + 0.0657862i \(0.979044\pi\)
\(504\) 97.4430 0.193339
\(505\) −175.950 175.950i −0.348416 0.348416i
\(506\) −148.571 + 148.571i −0.293618 + 0.293618i
\(507\) −577.545 577.545i −1.13914 1.13914i
\(508\) 141.843 0.279219
\(509\) −271.626 271.626i −0.533646 0.533646i 0.388009 0.921655i \(-0.373163\pi\)
−0.921655 + 0.388009i \(0.873163\pi\)
\(510\) 15.2232 15.2232i 0.0298493 0.0298493i
\(511\) −960.135 960.135i −1.87893 1.87893i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 174.888i 0.340912i
\(514\) 38.2203i 0.0743586i
\(515\) 444.100i 0.862329i
\(516\) −226.594 226.594i −0.439135 0.439135i
\(517\) 79.8973i 0.154540i
\(518\) 1026.89 1.98242
\(519\) −545.682 545.682i −1.05141 1.05141i
\(520\) −210.552 210.552i −0.404907 0.404907i
\(521\) −339.802 + 339.802i −0.652211 + 0.652211i −0.953525 0.301314i \(-0.902575\pi\)
0.301314 + 0.953525i \(0.402575\pi\)
\(522\) 143.143i 0.274221i
\(523\) −221.682 + 221.682i −0.423865 + 0.423865i −0.886532 0.462667i \(-0.846893\pi\)
0.462667 + 0.886532i \(0.346893\pi\)
\(524\) 475.334i 0.907125i
\(525\) −82.6781 −0.157482
\(526\) −368.542 368.542i −0.700650 0.700650i
\(527\) −43.2172 −0.0820060
\(528\) −81.8928 + 81.8928i −0.155100 + 0.155100i
\(529\) −359.423 −0.679439
\(530\) 198.320 + 198.320i 0.374189 + 0.374189i
\(531\) 65.9120 + 65.9120i 0.124128 + 0.124128i
\(532\) 160.469 0.301633
\(533\) 859.021i 1.61167i
\(534\) −527.266 −0.987389
\(535\) 237.934 237.934i 0.444737 0.444737i
\(536\) −120.567 + 120.567i −0.224938 + 0.224938i
\(537\) 36.3326i 0.0676585i
\(538\) −230.881 + 302.351i −0.429147 + 0.561990i
\(539\) −1507.53 −2.79691
\(540\) −197.138 197.138i −0.365070 0.365070i
\(541\) −181.302 181.302i −0.335124 0.335124i 0.519404 0.854529i \(-0.326154\pi\)
−0.854529 + 0.519404i \(0.826154\pi\)
\(542\) 269.594i 0.497405i
\(543\) −728.250 −1.34116
\(544\) 7.14125i 0.0131273i
\(545\) −500.745 + 500.745i −0.918798 + 0.918798i
\(546\) 756.700 756.700i 1.38590 1.38590i
\(547\) 453.445i 0.828967i 0.910057 + 0.414483i \(0.136038\pi\)
−0.910057 + 0.414483i \(0.863962\pi\)
\(548\) 123.787 + 123.787i 0.225888 + 0.225888i
\(549\) 106.975i 0.194855i
\(550\) −27.6179 + 27.6179i −0.0502144 + 0.0502144i
\(551\) 235.728i 0.427819i
\(552\) 93.4712 0.169332
\(553\) 1405.85 + 1405.85i 2.54223 + 2.54223i
\(554\) −244.198 −0.440791
\(555\) −460.044 460.044i −0.828908 0.828908i
\(556\) 123.330 123.330i 0.221816 0.221816i
\(557\) −191.888 + 191.888i −0.344502 + 0.344502i −0.858057 0.513555i \(-0.828328\pi\)
0.513555 + 0.858057i \(0.328328\pi\)
\(558\) 123.930i 0.222097i
\(559\) 1398.80 2.50233
\(560\) 180.884 180.884i 0.323008 0.323008i
\(561\) 36.5511 0.0651534
\(562\) 371.922 0.661784
\(563\) 299.551 0.532062 0.266031 0.963965i \(-0.414288\pi\)
0.266031 + 0.963965i \(0.414288\pi\)
\(564\) −25.1331 + 25.1331i −0.0445623 + 0.0445623i
\(565\) −519.973 + 519.973i −0.920306 + 0.920306i
\(566\) −267.368 267.368i −0.472381 0.472381i
\(567\) 489.246 489.246i 0.862867 0.862867i
\(568\) 98.7222i 0.173807i
\(569\) −535.376 + 535.376i −0.940907 + 0.940907i −0.998349 0.0574414i \(-0.981706\pi\)
0.0574414 + 0.998349i \(0.481706\pi\)
\(570\) −71.8895 71.8895i −0.126122 0.126122i
\(571\) −238.022 + 238.022i −0.416852 + 0.416852i −0.884117 0.467265i \(-0.845239\pi\)
0.467265 + 0.884117i \(0.345239\pi\)
\(572\) 505.538i 0.883808i
\(573\) 478.802 478.802i 0.835606 0.835606i
\(574\) 737.982 1.28568
\(575\) 31.5227 0.0548220
\(576\) −20.4784 −0.0355527
\(577\) 83.6317 83.6317i 0.144942 0.144942i −0.630912 0.775854i \(-0.717319\pi\)
0.775854 + 0.630912i \(0.217319\pi\)
\(578\) 287.406 287.406i 0.497243 0.497243i
\(579\) −26.4155 −0.0456226
\(580\) 265.718 + 265.718i 0.458135 + 0.458135i
\(581\) 273.496i 0.470733i
\(582\) 187.109 0.321494
\(583\) 476.170i 0.816759i
\(584\) 201.779 + 201.779i 0.345513 + 0.345513i
\(585\) 269.485 0.460657
\(586\) 200.890 + 200.890i 0.342815 + 0.342815i
\(587\) 224.995i 0.383297i 0.981464 + 0.191649i \(0.0613834\pi\)
−0.981464 + 0.191649i \(0.938617\pi\)
\(588\) 474.221 + 474.221i 0.806498 + 0.806498i
\(589\) 204.088i 0.346499i
\(590\) 244.706 0.414756
\(591\) −667.420 −1.12931
\(592\) −215.809 −0.364542
\(593\) 724.039i 1.22098i −0.792025 0.610489i \(-0.790973\pi\)
0.792025 0.610489i \(-0.209027\pi\)
\(594\) 473.332i 0.796855i
\(595\) −80.7338 −0.135687
\(596\) −290.316 −0.487107
\(597\) −190.598 + 190.598i −0.319259 + 0.319259i
\(598\) −288.507 + 288.507i −0.482453 + 0.482453i
\(599\) 177.995 0.297153 0.148577 0.988901i \(-0.452531\pi\)
0.148577 + 0.988901i \(0.452531\pi\)
\(600\) 17.3754 0.0289590
\(601\) 90.4397 + 90.4397i 0.150482 + 0.150482i 0.778333 0.627851i \(-0.216065\pi\)
−0.627851 + 0.778333i \(0.716065\pi\)
\(602\) 1201.71i 1.99619i
\(603\) 154.313i 0.255908i
\(604\) −397.630 −0.658328
\(605\) 43.5601 0.0720002
\(606\) −132.892 + 132.892i −0.219294 + 0.219294i
\(607\) 25.2699 + 25.2699i 0.0416308 + 0.0416308i 0.727616 0.685985i \(-0.240628\pi\)
−0.685985 + 0.727616i \(0.740628\pi\)
\(608\) −33.7237 −0.0554666
\(609\) −954.963 + 954.963i −1.56808 + 1.56808i
\(610\) −198.579 198.579i −0.325540 0.325540i
\(611\) 155.151i 0.253930i
\(612\) 4.57004 + 4.57004i 0.00746738 + 0.00746738i
\(613\) −654.493 654.493i −1.06769 1.06769i −0.997536 0.0701529i \(-0.977651\pi\)
−0.0701529 0.997536i \(-0.522349\pi\)
\(614\) 436.068 + 436.068i 0.710209 + 0.710209i
\(615\) −330.613 330.613i −0.537583 0.537583i
\(616\) 434.306 0.705043
\(617\) 329.981i 0.534815i −0.963583 0.267408i \(-0.913833\pi\)
0.963583 0.267408i \(-0.0861670\pi\)
\(618\) 335.421 0.542752
\(619\) 648.468 1.04761 0.523803 0.851839i \(-0.324513\pi\)
0.523803 + 0.851839i \(0.324513\pi\)
\(620\) 230.053 + 230.053i 0.371053 + 0.371053i
\(621\) −270.127 + 270.127i −0.434987 + 0.434987i
\(622\) 464.954i 0.747514i
\(623\) 1398.14 + 1398.14i 2.24420 + 2.24420i
\(624\) −159.026 + 159.026i −0.254849 + 0.254849i
\(625\) −558.623 −0.893797
\(626\) −305.654 305.654i −0.488265 0.488265i
\(627\) 172.608i 0.275292i
\(628\) −301.499 + 301.499i −0.480094 + 0.480094i
\(629\) 48.1608 + 48.1608i 0.0765673 + 0.0765673i
\(630\) 231.513i 0.367481i
\(631\) −619.619 −0.981963 −0.490981 0.871170i \(-0.663362\pi\)
−0.490981 + 0.871170i \(0.663362\pi\)
\(632\) −295.450 295.450i −0.467484 0.467484i
\(633\) 17.4637 17.4637i 0.0275887 0.0275887i
\(634\) 258.306i 0.407423i
\(635\) 337.004i 0.530714i
\(636\) 149.788 149.788i 0.235515 0.235515i
\(637\) −2927.45 −4.59568
\(638\) 637.995i 0.999992i
\(639\) −63.1771 63.1771i −0.0988688 0.0988688i
\(640\) −38.0141 + 38.0141i −0.0593971 + 0.0593971i
\(641\) 48.9919i 0.0764304i −0.999270 0.0382152i \(-0.987833\pi\)
0.999270 0.0382152i \(-0.0121672\pi\)
\(642\) −179.708 179.708i −0.279919 0.279919i
\(643\) 1234.26 1.91953 0.959763 0.280812i \(-0.0906036\pi\)
0.959763 + 0.280812i \(0.0906036\pi\)
\(644\) −247.855 247.855i −0.384869 0.384869i
\(645\) 538.361 538.361i 0.834668 0.834668i
\(646\) 7.52592 + 7.52592i 0.0116500 + 0.0116500i
\(647\) 345.808 345.808i 0.534480 0.534480i −0.387423 0.921902i \(-0.626635\pi\)
0.921902 + 0.387423i \(0.126635\pi\)
\(648\) −102.819 + 102.819i −0.158671 + 0.158671i
\(649\) 293.772 + 293.772i 0.452653 + 0.452653i
\(650\) −53.6307 + 53.6307i −0.0825088 + 0.0825088i
\(651\) −826.784 + 826.784i −1.27002 + 1.27002i
\(652\) 317.531 + 317.531i 0.487011 + 0.487011i
\(653\) 614.311 0.940751 0.470376 0.882466i \(-0.344118\pi\)
0.470376 + 0.882466i \(0.344118\pi\)
\(654\) 378.204 + 378.204i 0.578294 + 0.578294i
\(655\) −1129.34 −1.72418
\(656\) −155.092 −0.236421
\(657\) −258.257 −0.393085
\(658\) 133.290 0.202568
\(659\) −297.742 −0.451808 −0.225904 0.974150i \(-0.572534\pi\)
−0.225904 + 0.974150i \(0.572534\pi\)
\(660\) −194.568 194.568i −0.294800 0.294800i
\(661\) 496.795 + 496.795i 0.751581 + 0.751581i 0.974774 0.223193i \(-0.0716481\pi\)
−0.223193 + 0.974774i \(0.571648\pi\)
\(662\) −385.720 385.720i −0.582658 0.582658i
\(663\) 70.9778 0.107056
\(664\) 57.4772i 0.0865621i
\(665\) 381.255i 0.573316i
\(666\) 138.107 138.107i 0.207367 0.207367i
\(667\) 364.099 364.099i 0.545875 0.545875i
\(668\) −121.022 + 121.022i −0.181170 + 0.181170i
\(669\) 349.123 0.521857
\(670\) −286.452 286.452i −0.427540 0.427540i
\(671\) 476.792i 0.710570i
\(672\) −136.619 136.619i −0.203302 0.203302i
\(673\) −712.652 + 712.652i −1.05892 + 1.05892i −0.0607666 + 0.998152i \(0.519355\pi\)
−0.998152 + 0.0607666i \(0.980645\pi\)
\(674\) 134.040 0.198872
\(675\) −50.2140 + 50.2140i −0.0743912 + 0.0743912i
\(676\) 643.696i 0.952213i
\(677\) −82.0217 82.0217i −0.121155 0.121155i 0.643930 0.765084i \(-0.277303\pi\)
−0.765084 + 0.643930i \(0.777303\pi\)
\(678\) 392.727 + 392.727i 0.579243 + 0.579243i
\(679\) −496.153 496.153i −0.730712 0.730712i
\(680\) 16.9668 0.0249512
\(681\) 146.739 0.215476
\(682\) 552.361i 0.809913i
\(683\) −592.867 + 592.867i −0.868033 + 0.868033i −0.992255 0.124221i \(-0.960357\pi\)
0.124221 + 0.992255i \(0.460357\pi\)
\(684\) 21.5814 21.5814i 0.0315518 0.0315518i
\(685\) −294.103 + 294.103i −0.429348 + 0.429348i
\(686\) 1582.33i 2.30660i
\(687\) 141.788i 0.206387i
\(688\) 252.548i 0.367075i
\(689\) 924.667i 1.34204i
\(690\) 222.077i 0.321850i
\(691\) 40.2932 40.2932i 0.0583115 0.0583115i −0.677350 0.735661i \(-0.736872\pi\)
0.735661 + 0.677350i \(0.236872\pi\)
\(692\) 608.183i 0.878877i
\(693\) −277.934 + 277.934i −0.401059 + 0.401059i
\(694\) 386.357 + 386.357i 0.556710 + 0.556710i
\(695\) 293.017 + 293.017i 0.421607 + 0.421607i
\(696\) 200.693 200.693i 0.288351 0.288351i
\(697\) 34.6111 + 34.6111i 0.0496572 + 0.0496572i
\(698\) 377.388 + 377.388i 0.540670 + 0.540670i
\(699\) 761.495 761.495i 1.08941 1.08941i
\(700\) −46.0740 46.0740i −0.0658200 0.0658200i
\(701\) −555.051 + 555.051i −0.791799 + 0.791799i −0.981787 0.189987i \(-0.939155\pi\)
0.189987 + 0.981787i \(0.439155\pi\)
\(702\) 919.154i 1.30934i
\(703\) 227.434 227.434i 0.323519 0.323519i
\(704\) −91.2727 −0.129649
\(705\) −59.7134 59.7134i −0.0846998 0.0846998i
\(706\) −471.661 + 471.661i −0.668076 + 0.668076i
\(707\) 704.774 0.996851
\(708\) 184.822i 0.261048i
\(709\) −535.874 535.874i −0.755816 0.755816i 0.219742 0.975558i \(-0.429478\pi\)
−0.975558 + 0.219742i \(0.929478\pi\)
\(710\) −234.552 −0.330356
\(711\) 378.146 0.531850
\(712\) −293.829 293.829i −0.412681 0.412681i
\(713\) 315.228 315.228i 0.442115 0.442115i
\(714\) 60.9768i 0.0854017i
\(715\) 1201.10 1.67986
\(716\) 20.2470 20.2470i 0.0282780 0.0282780i
\(717\) −11.1632 11.1632i −0.0155693 0.0155693i
\(718\) 637.585 0.888002
\(719\) −172.918 + 172.918i −0.240498 + 0.240498i −0.817056 0.576558i \(-0.804395\pi\)
0.576558 + 0.817056i \(0.304395\pi\)
\(720\) 48.6542i 0.0675753i
\(721\) −889.428 889.428i −1.23360 1.23360i
\(722\) −325.460 + 325.460i −0.450775 + 0.450775i
\(723\) −8.36959 −0.0115762
\(724\) −405.831 405.831i −0.560540 0.560540i
\(725\) 67.6825 67.6825i 0.0933552 0.0933552i
\(726\) 32.9002i 0.0453171i
\(727\) 976.300i 1.34292i −0.741043 0.671458i \(-0.765668\pi\)
0.741043 0.671458i \(-0.234332\pi\)
\(728\) 843.372 1.15848
\(729\) 801.624i 1.09962i
\(730\) −479.405 + 479.405i −0.656719 + 0.656719i
\(731\) −56.3596 + 56.3596i −0.0770993 + 0.0770993i
\(732\) −149.984 + 149.984i −0.204896 + 0.204896i
\(733\) −922.393 + 922.393i −1.25838 + 1.25838i −0.306515 + 0.951866i \(0.599163\pi\)
−0.951866 + 0.306515i \(0.900837\pi\)
\(734\) −130.535 −0.177840
\(735\) −1126.69 + 1126.69i −1.53292 + 1.53292i
\(736\) 52.0886 + 52.0886i 0.0707726 + 0.0707726i
\(737\) 687.777i 0.933211i
\(738\) 99.2512 99.2512i 0.134487 0.134487i
\(739\) 122.586 + 122.586i 0.165880 + 0.165880i 0.785166 0.619285i \(-0.212578\pi\)
−0.619285 + 0.785166i \(0.712578\pi\)
\(740\) 512.737i 0.692888i
\(741\) 335.184i 0.452340i
\(742\) −794.378 −1.07059
\(743\) −628.224 −0.845524 −0.422762 0.906241i \(-0.638939\pi\)
−0.422762 + 0.906241i \(0.638939\pi\)
\(744\) 173.755 173.755i 0.233541 0.233541i
\(745\) 689.757i 0.925848i
\(746\) 85.4761i 0.114579i
\(747\) 36.7825 + 36.7825i 0.0492402 + 0.0492402i
\(748\) 20.3688 + 20.3688i 0.0272310 + 0.0272310i
\(749\) 953.054i 1.27243i
\(750\) 467.626i 0.623501i
\(751\) −676.940 −0.901385 −0.450692 0.892679i \(-0.648823\pi\)
−0.450692 + 0.892679i \(0.648823\pi\)
\(752\) −28.0118 −0.0372498
\(753\) 965.577i 1.28231i
\(754\) 1238.91i 1.64312i
\(755\) 944.723i 1.25129i
\(756\) 789.642 1.04450
\(757\) −72.5433 + 72.5433i −0.0958300 + 0.0958300i −0.753396 0.657567i \(-0.771586\pi\)
0.657567 + 0.753396i \(0.271586\pi\)
\(758\) 341.894 0.451047
\(759\) −266.605 + 266.605i −0.351258 + 0.351258i
\(760\) 80.1236i 0.105426i
\(761\) −133.650 + 133.650i −0.175624 + 0.175624i −0.789445 0.613821i \(-0.789632\pi\)
0.613821 + 0.789445i \(0.289632\pi\)
\(762\) 254.533 0.334033
\(763\) 2005.75i 2.62877i
\(764\) 533.644 0.698486
\(765\) −10.8579 + 10.8579i −0.0141933 + 0.0141933i
\(766\) 223.695i 0.292031i
\(767\) 570.470 + 570.470i 0.743768 + 0.743768i
\(768\) 28.7114 + 28.7114i 0.0373847 + 0.0373847i
\(769\) 1006.01i 1.30821i 0.756404 + 0.654104i \(0.226954\pi\)
−0.756404 + 0.654104i \(0.773046\pi\)
\(770\) 1031.86i 1.34008i
\(771\) 68.5850i 0.0889559i
\(772\) −14.7205 14.7205i −0.0190680 0.0190680i
\(773\) −792.686 −1.02547 −0.512734 0.858548i \(-0.671367\pi\)
−0.512734 + 0.858548i \(0.671367\pi\)
\(774\) 161.617 + 161.617i 0.208808 + 0.208808i
\(775\) 58.5979 58.5979i 0.0756102 0.0756102i
\(776\) 104.270 + 104.270i 0.134369 + 0.134369i
\(777\) 1842.72 2.37159
\(778\) 182.560 + 182.560i 0.234653 + 0.234653i
\(779\) 163.446 163.446i 0.209816 0.209816i
\(780\) −377.828 377.828i −0.484394 0.484394i
\(781\) −281.582 281.582i −0.360541 0.360541i
\(782\) 23.2486i 0.0297297i
\(783\) 1159.98i 1.48146i
\(784\) 528.538i 0.674155i
\(785\) −716.327 716.327i −0.912518 0.912518i
\(786\) 852.969i 1.08520i
\(787\) −681.424 −0.865850 −0.432925 0.901430i \(-0.642518\pi\)
−0.432925 + 0.901430i \(0.642518\pi\)
\(788\) −371.933 371.933i −0.471996 0.471996i
\(789\) −661.335 661.335i −0.838194 0.838194i
\(790\) 701.955 701.955i 0.888550 0.888550i
\(791\) 2082.77i 2.63308i
\(792\) 58.4098 58.4098i 0.0737498 0.0737498i
\(793\) 925.875i 1.16756i
\(794\) −377.880 −0.475920
\(795\) 355.879 + 355.879i 0.447646 + 0.447646i
\(796\) −212.429 −0.266870
\(797\) 646.500 646.500i 0.811167 0.811167i −0.173642 0.984809i \(-0.555554\pi\)
0.984809 + 0.173642i \(0.0555536\pi\)
\(798\) 287.956 0.360847
\(799\) 6.25124 + 6.25124i 0.00782383 + 0.00782383i
\(800\) 9.68278 + 9.68278i 0.0121035 + 0.0121035i
\(801\) 376.071 0.469502
\(802\) 761.492i 0.949491i
\(803\) −1151.06 −1.43345
\(804\) −216.352 + 216.352i −0.269095 + 0.269095i
\(805\) 588.876 588.876i 0.731523 0.731523i
\(806\) 1072.62i 1.33079i
\(807\) −414.308 + 542.557i −0.513393 + 0.672314i
\(808\) −148.113 −0.183309
\(809\) 286.713 + 286.713i 0.354405 + 0.354405i 0.861745 0.507341i \(-0.169371\pi\)
−0.507341 + 0.861745i \(0.669371\pi\)
\(810\) −244.285 244.285i −0.301587 0.301587i
\(811\) 1213.32i 1.49607i 0.663657 + 0.748037i \(0.269004\pi\)
−0.663657 + 0.748037i \(0.730996\pi\)
\(812\) −1064.34 −1.31077
\(813\) 483.776i 0.595051i
\(814\) 615.545 615.545i 0.756198 0.756198i
\(815\) −754.418 + 754.418i −0.925666 + 0.925666i
\(816\) 12.8147i 0.0157043i
\(817\) 266.151 + 266.151i 0.325766 + 0.325766i
\(818\) 178.460i 0.218166i
\(819\) −539.715 + 539.715i −0.658992 + 0.658992i
\(820\) 368.481i 0.449368i
\(821\) −512.109 −0.623763 −0.311881 0.950121i \(-0.600959\pi\)
−0.311881 + 0.950121i \(0.600959\pi\)
\(822\) 222.131 + 222.131i 0.270232 + 0.270232i
\(823\) 650.504 0.790406 0.395203 0.918594i \(-0.370674\pi\)
0.395203 + 0.918594i \(0.370674\pi\)
\(824\) 186.920 + 186.920i 0.226844 + 0.226844i
\(825\) −49.5594 + 49.5594i −0.0600720 + 0.0600720i
\(826\) −490.089 + 490.089i −0.593328 + 0.593328i
\(827\) 1087.15i 1.31457i 0.753643 + 0.657284i \(0.228295\pi\)
−0.753643 + 0.657284i \(0.771705\pi\)
\(828\) −66.6681 −0.0805170
\(829\) −569.606 + 569.606i −0.687100 + 0.687100i −0.961590 0.274490i \(-0.911491\pi\)
0.274490 + 0.961590i \(0.411491\pi\)
\(830\) 136.559 0.164529
\(831\) −438.205 −0.527323
\(832\) −177.241 −0.213030
\(833\) 117.951 117.951i 0.141597 0.141597i
\(834\) 221.311 221.311i 0.265360 0.265360i
\(835\) −287.534 287.534i −0.344352 0.344352i
\(836\) 96.1891 96.1891i 0.115059 0.115059i
\(837\) 1004.28i 1.19986i
\(838\) −240.384 + 240.384i −0.286855 + 0.286855i
\(839\) 907.852 + 907.852i 1.08206 + 1.08206i 0.996317 + 0.0857472i \(0.0273278\pi\)
0.0857472 + 0.996317i \(0.472672\pi\)
\(840\) 324.590 324.590i 0.386417 0.386417i
\(841\) 722.517i 0.859117i
\(842\) 399.203 399.203i 0.474113 0.474113i
\(843\) 667.401 0.791698
\(844\) 19.4639 0.0230615
\(845\) 1529.35 1.80988
\(846\) 17.9261 17.9261i 0.0211893 0.0211893i
\(847\) −87.2408 + 87.2408i −0.103000 + 0.103000i
\(848\) 166.944 0.196868
\(849\) −479.782 479.782i −0.565114 0.565114i
\(850\) 4.32170i 0.00508435i
\(851\) −702.574 −0.825587
\(852\) 177.153i 0.207927i
\(853\) −753.895 753.895i −0.883816 0.883816i 0.110104 0.993920i \(-0.464882\pi\)
−0.993920 + 0.110104i \(0.964882\pi\)
\(854\) 795.416 0.931400
\(855\) 51.2750 + 51.2750i 0.0599707 + 0.0599707i
\(856\) 200.291i 0.233985i
\(857\) −492.147 492.147i −0.574267 0.574267i 0.359051 0.933318i \(-0.383100\pi\)
−0.933318 + 0.359051i \(0.883100\pi\)
\(858\) 907.171i 1.05731i
\(859\) 878.234 1.02239 0.511196 0.859464i \(-0.329203\pi\)
0.511196 + 0.859464i \(0.329203\pi\)
\(860\) 600.024 0.697702
\(861\) 1324.28 1.53808
\(862\) 233.731i 0.271149i
\(863\) 553.270i 0.641101i 0.947231 + 0.320550i \(0.103868\pi\)
−0.947231 + 0.320550i \(0.896132\pi\)
\(864\) −165.949 −0.192071
\(865\) 1444.97 1.67049
\(866\) −429.883 + 429.883i −0.496401 + 0.496401i
\(867\) 515.740 515.740i 0.594856 0.594856i
\(868\) −921.483 −1.06162
\(869\) 1685.41 1.93948
\(870\) 476.822 + 476.822i 0.548071 + 0.548071i
\(871\) 1335.58i 1.53339i
\(872\) 421.523i 0.483398i
\(873\) −133.455 −0.152870
\(874\) −109.789 −0.125616
\(875\) 1239.99 1239.99i 1.41713 1.41713i
\(876\) 362.086 + 362.086i 0.413340 + 0.413340i
\(877\) −282.253 −0.321839 −0.160919 0.986968i \(-0.551446\pi\)
−0.160919 + 0.986968i \(0.551446\pi\)
\(878\) 565.480 565.480i 0.644054 0.644054i
\(879\) 360.490 + 360.490i 0.410113 + 0.410113i
\(880\) 216.853i 0.246424i
\(881\) 72.1331 + 72.1331i 0.0818763 + 0.0818763i 0.746859 0.664983i \(-0.231561\pi\)
−0.664983 + 0.746859i \(0.731561\pi\)
\(882\) −338.237 338.237i −0.383489 0.383489i
\(883\) 422.957 + 422.957i 0.479000 + 0.479000i 0.904812 0.425811i \(-0.140011\pi\)
−0.425811 + 0.904812i \(0.640011\pi\)
\(884\) 39.5538 + 39.5538i 0.0447441 + 0.0447441i
\(885\) 439.116 0.496176
\(886\) 29.5525i 0.0333550i
\(887\) −148.042 −0.166902 −0.0834509 0.996512i \(-0.526594\pi\)
−0.0834509 + 0.996512i \(0.526594\pi\)
\(888\) −387.261 −0.436105
\(889\) −674.939 674.939i −0.759212 0.759212i
\(890\) 698.104 698.104i 0.784386 0.784386i
\(891\) 586.533i 0.658286i
\(892\) 194.555 + 194.555i 0.218111 + 0.218111i
\(893\) 29.5207 29.5207i 0.0330579 0.0330579i
\(894\) −520.962 −0.582731
\(895\) 48.1046 + 48.1046i 0.0537482 + 0.0537482i
\(896\) 152.267i 0.169941i
\(897\) −517.716 + 517.716i −0.577163 + 0.577163i
\(898\) −15.5790 15.5790i −0.0173486 0.0173486i
\(899\) 1353.66i 1.50574i
\(900\) −12.3930 −0.0137700
\(901\) −37.2560 37.2560i −0.0413496 0.0413496i
\(902\) 442.365 442.365i 0.490427 0.490427i
\(903\) 2156.42i 2.38806i
\(904\) 437.709i 0.484191i
\(905\) 964.208 964.208i 1.06542 1.06542i
\(906\) −713.533 −0.787564
\(907\) 791.820i 0.873010i 0.899702 + 0.436505i \(0.143784\pi\)
−0.899702 + 0.436505i \(0.856216\pi\)
\(908\) 81.7730 + 81.7730i 0.0900584 + 0.0900584i
\(909\) 94.7850 94.7850i 0.104274 0.104274i
\(910\) 2003.75i 2.20193i
\(911\) −983.982 983.982i −1.08011 1.08011i −0.996498 0.0836132i \(-0.973354\pi\)
−0.0836132 0.996498i \(-0.526646\pi\)
\(912\) −60.5160 −0.0663552
\(913\) 163.941 + 163.941i 0.179562 + 0.179562i
\(914\) 676.235 676.235i 0.739863 0.739863i
\(915\) −356.343 356.343i −0.389446 0.389446i
\(916\) −79.0142 + 79.0142i −0.0862600 + 0.0862600i
\(917\) 2261.80 2261.80i 2.46652 2.46652i
\(918\) 37.0339 + 37.0339i 0.0403419 + 0.0403419i
\(919\) 369.811 369.811i 0.402406 0.402406i −0.476674 0.879080i \(-0.658158\pi\)
0.879080 + 0.476674i \(0.158158\pi\)
\(920\) −123.757 + 123.757i −0.134518 + 0.134518i
\(921\) 782.509 + 782.509i 0.849630 + 0.849630i
\(922\) −818.814 −0.888084
\(923\) −546.800 546.800i −0.592416 0.592416i
\(924\) 779.347 0.843449
\(925\) −130.602 −0.141191
\(926\) −195.438 −0.211056
\(927\) −239.238 −0.258078
\(928\) 223.680 0.241034
\(929\) 228.632 + 228.632i 0.246105 + 0.246105i 0.819370 0.573265i \(-0.194323\pi\)
−0.573265 + 0.819370i \(0.694323\pi\)
\(930\) 412.821 + 412.821i 0.443894 + 0.443894i
\(931\) −557.008 557.008i −0.598289 0.598289i
\(932\) 848.716 0.910639
\(933\) 834.343i 0.894258i
\(934\) 805.688i 0.862622i
\(935\) −48.3939 + 48.3939i −0.0517582 + 0.0517582i
\(936\) 113.425 113.425i 0.121181 0.121181i
\(937\) 1040.98 1040.98i 1.11097 1.11097i 0.117952 0.993019i \(-0.462367\pi\)
0.993019 0.117952i \(-0.0376330\pi\)
\(938\) 1147.39 1.22323
\(939\) −548.486 548.486i −0.584117 0.584117i
\(940\) 66.5529i 0.0708009i
\(941\) −619.978 619.978i −0.658850 0.658850i 0.296258 0.955108i \(-0.404261\pi\)
−0.955108 + 0.296258i \(0.904261\pi\)
\(942\) −541.029 + 541.029i −0.574341 + 0.574341i
\(943\) −504.909 −0.535429
\(944\) 102.996 102.996i 0.109106 0.109106i
\(945\) 1876.10i 1.98529i
\(946\) 720.334 + 720.334i 0.761452 + 0.761452i
\(947\) 939.235 + 939.235i 0.991801 + 0.991801i 0.999967 0.00816604i \(-0.00259936\pi\)
−0.00816604 + 0.999967i \(0.502599\pi\)
\(948\) −530.174 530.174i −0.559256 0.559256i
\(949\) −2235.22 −2.35534
\(950\) −20.4087 −0.0214828
\(951\) 463.521i 0.487404i
\(952\) −33.9805 + 33.9805i −0.0356938 + 0.0356938i
\(953\) 1303.06 1303.06i 1.36733 1.36733i 0.503093 0.864233i \(-0.332195\pi\)
0.864233 0.503093i \(-0.167805\pi\)
\(954\) −106.836 + 106.836i −0.111987 + 0.111987i
\(955\) 1267.88i 1.32762i
\(956\) 12.4418i 0.0130144i
\(957\) 1144.86i 1.19630i
\(958\) 288.389i 0.301032i
\(959\) 1178.04i 1.22840i
\(960\) −68.2150 + 68.2150i −0.0710573 + 0.0710573i
\(961\) 210.963i 0.219524i
\(962\) 1195.32 1195.32i 1.24253 1.24253i
\(963\) 128.176 + 128.176i 0.133101 + 0.133101i
\(964\) −4.66411 4.66411i −0.00483829 0.00483829i
\(965\) 34.9743 34.9743i 0.0362428 0.0362428i
\(966\) −444.768 444.768i −0.460422 0.460422i
\(967\) −470.586 470.586i −0.486646 0.486646i 0.420600 0.907246i \(-0.361819\pi\)
−0.907246 + 0.420600i \(0.861819\pi\)
\(968\) 18.3343 18.3343i 0.0189404 0.0189404i
\(969\) 13.5050 + 13.5050i 0.0139370 + 0.0139370i
\(970\) −247.734 + 247.734i −0.255396 + 0.255396i
\(971\) 409.170i 0.421390i 0.977552 + 0.210695i \(0.0675727\pi\)
−0.977552 + 0.210695i \(0.932427\pi\)
\(972\) 188.881 188.881i 0.194322 0.194322i
\(973\) −1173.69 −1.20626
\(974\) −541.406 541.406i −0.555859 0.555859i
\(975\) −96.2384 + 96.2384i −0.0987061 + 0.0987061i
\(976\) −167.162 −0.171273
\(977\) 1261.84i 1.29155i 0.763528 + 0.645774i \(0.223465\pi\)
−0.763528 + 0.645774i \(0.776535\pi\)
\(978\) 569.799 + 569.799i 0.582616 + 0.582616i
\(979\) 1676.16 1.71211
\(980\) −1255.74 −1.28137
\(981\) −269.753 269.753i −0.274978 0.274978i
\(982\) 279.654 279.654i 0.284780 0.284780i
\(983\) 1858.50i 1.89064i 0.326139 + 0.945322i \(0.394252\pi\)
−0.326139 + 0.945322i \(0.605748\pi\)
\(984\) −278.308 −0.282833
\(985\) 883.670 883.670i 0.897126 0.897126i
\(986\) −49.9173 49.9173i −0.0506260 0.0506260i
\(987\) 239.184 0.242334
\(988\) 186.788 186.788i 0.189057 0.189057i
\(989\) 822.178i 0.831323i
\(990\) 138.775 + 138.775i 0.140177 + 0.140177i
\(991\) −233.156 + 233.156i −0.235274 + 0.235274i −0.814890 0.579616i \(-0.803203\pi\)
0.579616 + 0.814890i \(0.303203\pi\)
\(992\) 193.656 0.195218
\(993\) −692.160 692.160i −0.697039 0.697039i
\(994\) 469.754 469.754i 0.472589 0.472589i
\(995\) 504.706i 0.507242i
\(996\) 103.141i 0.103555i
\(997\) 1078.14 1.08138 0.540691 0.841221i \(-0.318163\pi\)
0.540691 + 0.841221i \(0.318163\pi\)
\(998\) 211.870i 0.212295i
\(999\) 1119.17 1119.17i 1.12029 1.12029i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.3.c.a.187.15 44
269.82 odd 4 inner 538.3.c.a.351.15 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.3.c.a.187.15 44 1.1 even 1 trivial
538.3.c.a.351.15 yes 44 269.82 odd 4 inner